blob: eeeb5083584f17d23f2d89ff6c8866ce8cdcb546 [file] [log] [blame] [edit]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "actions/actions-suggestions.h"
#include <memory>
#include <string>
#include <vector>
#include "utils/base/statusor.h"
#include "absl/container/flat_hash_map.h"
#include "absl/random/random.h"
#if !defined(TC3_DISABLE_LUA)
#include "actions/lua-actions.h"
#endif
#include "actions/ngram-model.h"
#include "actions/tflite-sensitive-model.h"
#include "actions/types.h"
#include "actions/utils.h"
#include "actions/zlib-utils.h"
#include "annotator/collections.h"
#include "utils/base/logging.h"
#if !defined(TC3_DISABLE_LUA)
#include "utils/lua-utils.h"
#endif
#include "utils/normalization.h"
#include "utils/optional.h"
#include "utils/strings/split.h"
#include "utils/strings/stringpiece.h"
#include "utils/strings/utf8.h"
#include "utils/utf8/unicodetext.h"
#include "absl/container/flat_hash_set.h"
#include "absl/random/distributions.h"
#include "tensorflow/lite/string_util.h"
namespace libtextclassifier3 {
constexpr float kDefaultFloat = 0.0;
constexpr bool kDefaultBool = false;
constexpr int kDefaultInt = 1;
namespace {
const ActionsModel* LoadAndVerifyModel(const uint8_t* addr, int size) {
flatbuffers::Verifier verifier(addr, size);
if (VerifyActionsModelBuffer(verifier)) {
return GetActionsModel(addr);
} else {
return nullptr;
}
}
template <typename T>
T ValueOrDefault(const flatbuffers::Table* values, const int32 field_offset,
const T default_value) {
if (values == nullptr) {
return default_value;
}
return values->GetField<T>(field_offset, default_value);
}
// Returns number of (tail) messages of a conversation to consider.
int NumMessagesToConsider(const Conversation& conversation,
const int max_conversation_history_length) {
return ((max_conversation_history_length < 0 ||
conversation.messages.size() < max_conversation_history_length)
? conversation.messages.size()
: max_conversation_history_length);
}
template <typename T>
std::vector<T> PadOrTruncateToTargetLength(const std::vector<T>& inputs,
const int max_length,
const T pad_value) {
if (inputs.size() >= max_length) {
return std::vector<T>(inputs.begin(), inputs.begin() + max_length);
} else {
std::vector<T> result;
result.reserve(max_length);
result.insert(result.begin(), inputs.begin(), inputs.end());
result.insert(result.end(), max_length - inputs.size(), pad_value);
return result;
}
}
template <typename T>
void SetVectorOrScalarAsModelInput(
const int param_index, const Variant& param_value,
tflite::Interpreter* interpreter,
const std::unique_ptr<const TfLiteModelExecutor>& model_executor) {
if (param_value.Has<std::vector<T>>()) {
model_executor->SetInput<T>(
param_index, param_value.ConstRefValue<std::vector<T>>(), interpreter);
} else if (param_value.Has<T>()) {
model_executor->SetInput<float>(param_index, param_value.Value<T>(),
interpreter);
} else {
TC3_LOG(ERROR) << "Variant type error!";
}
}
} // namespace
std::unique_ptr<ActionsSuggestions> ActionsSuggestions::FromUnownedBuffer(
const uint8_t* buffer, const int size, const UniLib* unilib,
const std::string& triggering_preconditions_overlay) {
auto actions = std::unique_ptr<ActionsSuggestions>(new ActionsSuggestions());
const ActionsModel* model = LoadAndVerifyModel(buffer, size);
if (model == nullptr) {
return nullptr;
}
actions->model_ = model;
actions->SetOrCreateUnilib(unilib);
actions->triggering_preconditions_overlay_buffer_ =
triggering_preconditions_overlay;
if (!actions->ValidateAndInitialize()) {
return nullptr;
}
return actions;
}
std::unique_ptr<ActionsSuggestions> ActionsSuggestions::FromScopedMmap(
std::unique_ptr<libtextclassifier3::ScopedMmap> mmap, const UniLib* unilib,
const std::string& triggering_preconditions_overlay) {
if (!mmap->handle().ok()) {
TC3_VLOG(1) << "Mmap failed.";
return nullptr;
}
const ActionsModel* model = LoadAndVerifyModel(
reinterpret_cast<const uint8_t*>(mmap->handle().start()),
mmap->handle().num_bytes());
if (!model) {
TC3_LOG(ERROR) << "Model verification failed.";
return nullptr;
}
auto actions = std::unique_ptr<ActionsSuggestions>(new ActionsSuggestions());
actions->model_ = model;
actions->mmap_ = std::move(mmap);
actions->SetOrCreateUnilib(unilib);
actions->triggering_preconditions_overlay_buffer_ =
triggering_preconditions_overlay;
if (!actions->ValidateAndInitialize()) {
return nullptr;
}
return actions;
}
std::unique_ptr<ActionsSuggestions> ActionsSuggestions::FromScopedMmap(
std::unique_ptr<libtextclassifier3::ScopedMmap> mmap,
std::unique_ptr<UniLib> unilib,
const std::string& triggering_preconditions_overlay) {
if (!mmap->handle().ok()) {
TC3_VLOG(1) << "Mmap failed.";
return nullptr;
}
const ActionsModel* model = LoadAndVerifyModel(
reinterpret_cast<const uint8_t*>(mmap->handle().start()),
mmap->handle().num_bytes());
if (!model) {
TC3_LOG(ERROR) << "Model verification failed.";
return nullptr;
}
auto actions = std::unique_ptr<ActionsSuggestions>(new ActionsSuggestions());
actions->model_ = model;
actions->mmap_ = std::move(mmap);
actions->owned_unilib_ = std::move(unilib);
actions->unilib_ = actions->owned_unilib_.get();
actions->triggering_preconditions_overlay_buffer_ =
triggering_preconditions_overlay;
if (!actions->ValidateAndInitialize()) {
return nullptr;
}
return actions;
}
std::unique_ptr<ActionsSuggestions> ActionsSuggestions::FromFileDescriptor(
const int fd, const int offset, const int size, const UniLib* unilib,
const std::string& triggering_preconditions_overlay) {
std::unique_ptr<libtextclassifier3::ScopedMmap> mmap;
if (offset >= 0 && size >= 0) {
mmap.reset(new libtextclassifier3::ScopedMmap(fd, offset, size));
} else {
mmap.reset(new libtextclassifier3::ScopedMmap(fd));
}
return FromScopedMmap(std::move(mmap), unilib,
triggering_preconditions_overlay);
}
std::unique_ptr<ActionsSuggestions> ActionsSuggestions::FromFileDescriptor(
const int fd, const int offset, const int size,
std::unique_ptr<UniLib> unilib,
const std::string& triggering_preconditions_overlay) {
std::unique_ptr<libtextclassifier3::ScopedMmap> mmap;
if (offset >= 0 && size >= 0) {
mmap.reset(new libtextclassifier3::ScopedMmap(fd, offset, size));
} else {
mmap.reset(new libtextclassifier3::ScopedMmap(fd));
}
return FromScopedMmap(std::move(mmap), std::move(unilib),
triggering_preconditions_overlay);
}
std::unique_ptr<ActionsSuggestions> ActionsSuggestions::FromFileDescriptor(
const int fd, const UniLib* unilib,
const std::string& triggering_preconditions_overlay) {
std::unique_ptr<libtextclassifier3::ScopedMmap> mmap(
new libtextclassifier3::ScopedMmap(fd));
return FromScopedMmap(std::move(mmap), unilib,
triggering_preconditions_overlay);
}
std::unique_ptr<ActionsSuggestions> ActionsSuggestions::FromFileDescriptor(
const int fd, std::unique_ptr<UniLib> unilib,
const std::string& triggering_preconditions_overlay) {
std::unique_ptr<libtextclassifier3::ScopedMmap> mmap(
new libtextclassifier3::ScopedMmap(fd));
return FromScopedMmap(std::move(mmap), std::move(unilib),
triggering_preconditions_overlay);
}
std::unique_ptr<ActionsSuggestions> ActionsSuggestions::FromPath(
const std::string& path, const UniLib* unilib,
const std::string& triggering_preconditions_overlay) {
std::unique_ptr<libtextclassifier3::ScopedMmap> mmap(
new libtextclassifier3::ScopedMmap(path));
return FromScopedMmap(std::move(mmap), unilib,
triggering_preconditions_overlay);
}
std::unique_ptr<ActionsSuggestions> ActionsSuggestions::FromPath(
const std::string& path, std::unique_ptr<UniLib> unilib,
const std::string& triggering_preconditions_overlay) {
std::unique_ptr<libtextclassifier3::ScopedMmap> mmap(
new libtextclassifier3::ScopedMmap(path));
return FromScopedMmap(std::move(mmap), std::move(unilib),
triggering_preconditions_overlay);
}
void ActionsSuggestions::SetOrCreateUnilib(const UniLib* unilib) {
if (unilib != nullptr) {
unilib_ = unilib;
} else {
owned_unilib_.reset(new UniLib);
unilib_ = owned_unilib_.get();
}
}
bool ActionsSuggestions::ValidateAndInitialize() {
if (model_ == nullptr) {
TC3_LOG(ERROR) << "No model specified.";
return false;
}
if (model_->smart_reply_action_type() == nullptr) {
TC3_LOG(ERROR) << "No smart reply action type specified.";
return false;
}
if (!InitializeTriggeringPreconditions()) {
TC3_LOG(ERROR) << "Could not initialize preconditions.";
return false;
}
if (model_->locales() &&
!ParseLocales(model_->locales()->c_str(), &locales_)) {
TC3_LOG(ERROR) << "Could not parse model supported locales.";
return false;
}
if (model_->tflite_model_spec() != nullptr) {
model_executor_ = TfLiteModelExecutor::FromBuffer(
model_->tflite_model_spec()->tflite_model());
if (!model_executor_) {
TC3_LOG(ERROR) << "Could not initialize model executor.";
return false;
}
}
// Gather annotation entities for the rules.
if (model_->annotation_actions_spec() != nullptr &&
model_->annotation_actions_spec()->annotation_mapping() != nullptr) {
for (const AnnotationActionsSpec_::AnnotationMapping* mapping :
*model_->annotation_actions_spec()->annotation_mapping()) {
annotation_entity_types_.insert(mapping->annotation_collection()->str());
}
}
if (model_->actions_entity_data_schema() != nullptr) {
entity_data_schema_ = LoadAndVerifyFlatbuffer<reflection::Schema>(
model_->actions_entity_data_schema()->Data(),
model_->actions_entity_data_schema()->size());
if (entity_data_schema_ == nullptr) {
TC3_LOG(ERROR) << "Could not load entity data schema data.";
return false;
}
entity_data_builder_.reset(
new MutableFlatbufferBuilder(entity_data_schema_));
} else {
entity_data_schema_ = nullptr;
}
// Initialize regular expressions model.
std::unique_ptr<ZlibDecompressor> decompressor = ZlibDecompressor::Instance();
regex_actions_.reset(
new RegexActions(unilib_, model_->smart_reply_action_type()->str()));
if (!regex_actions_->InitializeRules(
model_->rules(), model_->low_confidence_rules(),
triggering_preconditions_overlay_, decompressor.get())) {
TC3_LOG(ERROR) << "Could not initialize regex rules.";
return false;
}
// Setup grammar model.
if (model_->rules() != nullptr &&
model_->rules()->grammar_rules() != nullptr) {
grammar_actions_.reset(new GrammarActions(
unilib_, model_->rules()->grammar_rules(), entity_data_builder_.get(),
model_->smart_reply_action_type()->str()));
// Gather annotation entities for the grammars.
if (auto annotation_nt = model_->rules()
->grammar_rules()
->rules()
->nonterminals()
->annotation_nt()) {
for (const grammar::RulesSet_::Nonterminals_::AnnotationNtEntry* entry :
*annotation_nt) {
annotation_entity_types_.insert(entry->key()->str());
}
}
}
#if !defined(TC3_DISABLE_LUA)
std::string actions_script;
if (GetUncompressedString(model_->lua_actions_script(),
model_->compressed_lua_actions_script(),
decompressor.get(), &actions_script) &&
!actions_script.empty()) {
if (!Compile(actions_script, &lua_bytecode_)) {
TC3_LOG(ERROR) << "Could not precompile lua actions snippet.";
return false;
}
}
#endif // TC3_DISABLE_LUA
if (!(ranker_ = ActionsSuggestionsRanker::CreateActionsSuggestionsRanker(
model_->ranking_options(), decompressor.get(),
model_->smart_reply_action_type()->str()))) {
TC3_LOG(ERROR) << "Could not create an action suggestions ranker.";
return false;
}
// Create feature processor if specified.
const ActionsTokenFeatureProcessorOptions* options =
model_->feature_processor_options();
if (options != nullptr) {
if (options->tokenizer_options() == nullptr) {
TC3_LOG(ERROR) << "No tokenizer options specified.";
return false;
}
feature_processor_.reset(new ActionsFeatureProcessor(options, unilib_));
embedding_executor_ = TFLiteEmbeddingExecutor::FromBuffer(
options->embedding_model(), options->embedding_size(),
options->embedding_quantization_bits());
if (embedding_executor_ == nullptr) {
TC3_LOG(ERROR) << "Could not initialize embedding executor.";
return false;
}
// Cache embedding of padding, start and end token.
if (!EmbedTokenId(options->padding_token_id(), &embedded_padding_token_) ||
!EmbedTokenId(options->start_token_id(), &embedded_start_token_) ||
!EmbedTokenId(options->end_token_id(), &embedded_end_token_)) {
TC3_LOG(ERROR) << "Could not precompute token embeddings.";
return false;
}
token_embedding_size_ = feature_processor_->GetTokenEmbeddingSize();
}
// Create low confidence model if specified.
if (model_->low_confidence_ngram_model() != nullptr) {
sensitive_model_ = NGramSensitiveModel::Create(
unilib_, model_->low_confidence_ngram_model(),
feature_processor_ == nullptr ? nullptr
: feature_processor_->tokenizer());
if (sensitive_model_ == nullptr) {
TC3_LOG(ERROR) << "Could not create ngram linear regression model.";
return false;
}
}
if (model_->low_confidence_tflite_model() != nullptr) {
sensitive_model_ =
TFLiteSensitiveModel::Create(model_->low_confidence_tflite_model());
if (sensitive_model_ == nullptr) {
TC3_LOG(ERROR) << "Could not create TFLite sensitive model.";
return false;
}
}
return true;
}
bool ActionsSuggestions::InitializeTriggeringPreconditions() {
triggering_preconditions_overlay_ =
LoadAndVerifyFlatbuffer<TriggeringPreconditions>(
triggering_preconditions_overlay_buffer_);
if (triggering_preconditions_overlay_ == nullptr &&
!triggering_preconditions_overlay_buffer_.empty()) {
TC3_LOG(ERROR) << "Could not load triggering preconditions overwrites.";
return false;
}
const flatbuffers::Table* overlay =
reinterpret_cast<const flatbuffers::Table*>(
triggering_preconditions_overlay_);
const TriggeringPreconditions* defaults = model_->preconditions();
if (defaults == nullptr) {
TC3_LOG(ERROR) << "No triggering conditions specified.";
return false;
}
preconditions_.min_smart_reply_triggering_score = ValueOrDefault(
overlay, TriggeringPreconditions::VT_MIN_SMART_REPLY_TRIGGERING_SCORE,
defaults->min_smart_reply_triggering_score());
preconditions_.max_sensitive_topic_score = ValueOrDefault(
overlay, TriggeringPreconditions::VT_MAX_SENSITIVE_TOPIC_SCORE,
defaults->max_sensitive_topic_score());
preconditions_.suppress_on_sensitive_topic = ValueOrDefault(
overlay, TriggeringPreconditions::VT_SUPPRESS_ON_SENSITIVE_TOPIC,
defaults->suppress_on_sensitive_topic());
preconditions_.min_input_length =
ValueOrDefault(overlay, TriggeringPreconditions::VT_MIN_INPUT_LENGTH,
defaults->min_input_length());
preconditions_.max_input_length =
ValueOrDefault(overlay, TriggeringPreconditions::VT_MAX_INPUT_LENGTH,
defaults->max_input_length());
preconditions_.min_locale_match_fraction = ValueOrDefault(
overlay, TriggeringPreconditions::VT_MIN_LOCALE_MATCH_FRACTION,
defaults->min_locale_match_fraction());
preconditions_.handle_missing_locale_as_supported = ValueOrDefault(
overlay, TriggeringPreconditions::VT_HANDLE_MISSING_LOCALE_AS_SUPPORTED,
defaults->handle_missing_locale_as_supported());
preconditions_.handle_unknown_locale_as_supported = ValueOrDefault(
overlay, TriggeringPreconditions::VT_HANDLE_UNKNOWN_LOCALE_AS_SUPPORTED,
defaults->handle_unknown_locale_as_supported());
preconditions_.suppress_on_low_confidence_input = ValueOrDefault(
overlay, TriggeringPreconditions::VT_SUPPRESS_ON_LOW_CONFIDENCE_INPUT,
defaults->suppress_on_low_confidence_input());
preconditions_.min_reply_score_threshold = ValueOrDefault(
overlay, TriggeringPreconditions::VT_MIN_REPLY_SCORE_THRESHOLD,
defaults->min_reply_score_threshold());
return true;
}
bool ActionsSuggestions::EmbedTokenId(const int32 token_id,
std::vector<float>* embedding) const {
return feature_processor_->AppendFeatures(
{token_id},
/*dense_features=*/{}, embedding_executor_.get(), embedding);
}
std::vector<std::vector<Token>> ActionsSuggestions::Tokenize(
const std::vector<std::string>& context) const {
std::vector<std::vector<Token>> tokens;
tokens.reserve(context.size());
for (const std::string& message : context) {
tokens.push_back(feature_processor_->tokenizer()->Tokenize(message));
}
return tokens;
}
bool ActionsSuggestions::EmbedTokensPerMessage(
const std::vector<std::vector<Token>>& tokens,
std::vector<float>* embeddings, int* max_num_tokens_per_message) const {
const int num_messages = tokens.size();
*max_num_tokens_per_message = 0;
for (int i = 0; i < num_messages; i++) {
const int num_message_tokens = tokens[i].size();
if (num_message_tokens > *max_num_tokens_per_message) {
*max_num_tokens_per_message = num_message_tokens;
}
}
if (model_->feature_processor_options()->min_num_tokens_per_message() >
*max_num_tokens_per_message) {
*max_num_tokens_per_message =
model_->feature_processor_options()->min_num_tokens_per_message();
}
if (model_->feature_processor_options()->max_num_tokens_per_message() > 0 &&
*max_num_tokens_per_message >
model_->feature_processor_options()->max_num_tokens_per_message()) {
*max_num_tokens_per_message =
model_->feature_processor_options()->max_num_tokens_per_message();
}
// Embed all tokens and add paddings to pad tokens of each message to the
// maximum number of tokens in a message of the conversation.
// If a number of tokens is specified in the model config, tokens at the
// beginning of a message are dropped if they don't fit in the limit.
for (int i = 0; i < num_messages; i++) {
const int start =
std::max<int>(tokens[i].size() - *max_num_tokens_per_message, 0);
for (int pos = start; pos < tokens[i].size(); pos++) {
if (!feature_processor_->AppendTokenFeatures(
tokens[i][pos], embedding_executor_.get(), embeddings)) {
TC3_LOG(ERROR) << "Could not run token feature extractor.";
return false;
}
}
// Add padding.
for (int k = tokens[i].size(); k < *max_num_tokens_per_message; k++) {
embeddings->insert(embeddings->end(), embedded_padding_token_.begin(),
embedded_padding_token_.end());
}
}
return true;
}
bool ActionsSuggestions::EmbedAndFlattenTokens(
const std::vector<std::vector<Token>>& tokens,
std::vector<float>* embeddings, int* total_token_count) const {
const int num_messages = tokens.size();
int start_message = 0;
int message_token_offset = 0;
// If a maximum model input length is specified, we need to check how
// much we need to trim at the start.
const int max_num_total_tokens =
model_->feature_processor_options()->max_num_total_tokens();
if (max_num_total_tokens > 0) {
int total_tokens = 0;
start_message = num_messages - 1;
for (; start_message >= 0; start_message--) {
// Tokens of the message + start and end token.
const int num_message_tokens = tokens[start_message].size() + 2;
total_tokens += num_message_tokens;
// Check whether we exhausted the budget.
if (total_tokens >= max_num_total_tokens) {
message_token_offset = total_tokens - max_num_total_tokens;
break;
}
}
}
// Add embeddings.
*total_token_count = 0;
for (int i = start_message; i < num_messages; i++) {
if (message_token_offset == 0) {
++(*total_token_count);
// Add `start message` token.
embeddings->insert(embeddings->end(), embedded_start_token_.begin(),
embedded_start_token_.end());
}
for (int pos = std::max(0, message_token_offset - 1);
pos < tokens[i].size(); pos++) {
++(*total_token_count);
if (!feature_processor_->AppendTokenFeatures(
tokens[i][pos], embedding_executor_.get(), embeddings)) {
TC3_LOG(ERROR) << "Could not run token feature extractor.";
return false;
}
}
// Add `end message` token.
++(*total_token_count);
embeddings->insert(embeddings->end(), embedded_end_token_.begin(),
embedded_end_token_.end());
// Reset for the subsequent messages.
message_token_offset = 0;
}
// Add optional padding.
const int min_num_total_tokens =
model_->feature_processor_options()->min_num_total_tokens();
for (; *total_token_count < min_num_total_tokens; ++(*total_token_count)) {
embeddings->insert(embeddings->end(), embedded_padding_token_.begin(),
embedded_padding_token_.end());
}
return true;
}
bool ActionsSuggestions::AllocateInput(const int conversation_length,
const int max_tokens,
const int total_token_count,
tflite::Interpreter* interpreter) const {
if (model_->tflite_model_spec()->resize_inputs()) {
if (model_->tflite_model_spec()->input_context() >= 0) {
interpreter->ResizeInputTensor(
interpreter->inputs()[model_->tflite_model_spec()->input_context()],
{1, conversation_length});
}
if (model_->tflite_model_spec()->input_user_id() >= 0) {
interpreter->ResizeInputTensor(
interpreter->inputs()[model_->tflite_model_spec()->input_user_id()],
{1, conversation_length});
}
if (model_->tflite_model_spec()->input_time_diffs() >= 0) {
interpreter->ResizeInputTensor(
interpreter
->inputs()[model_->tflite_model_spec()->input_time_diffs()],
{1, conversation_length});
}
if (model_->tflite_model_spec()->input_num_tokens() >= 0) {
interpreter->ResizeInputTensor(
interpreter
->inputs()[model_->tflite_model_spec()->input_num_tokens()],
{conversation_length, 1});
}
if (model_->tflite_model_spec()->input_token_embeddings() >= 0) {
interpreter->ResizeInputTensor(
interpreter
->inputs()[model_->tflite_model_spec()->input_token_embeddings()],
{conversation_length, max_tokens, token_embedding_size_});
}
if (model_->tflite_model_spec()->input_flattened_token_embeddings() >= 0) {
interpreter->ResizeInputTensor(
interpreter->inputs()[model_->tflite_model_spec()
->input_flattened_token_embeddings()],
{1, total_token_count});
}
}
return interpreter->AllocateTensors() == kTfLiteOk;
}
bool ActionsSuggestions::SetupModelInput(
const std::vector<std::string>& context, const std::vector<int>& user_ids,
const std::vector<float>& time_diffs, const int num_suggestions,
const ActionSuggestionOptions& options,
tflite::Interpreter* interpreter) const {
// Compute token embeddings.
std::vector<std::vector<Token>> tokens;
std::vector<float> token_embeddings;
std::vector<float> flattened_token_embeddings;
int max_tokens = 0;
int total_token_count = 0;
if (model_->tflite_model_spec()->input_num_tokens() >= 0 ||
model_->tflite_model_spec()->input_token_embeddings() >= 0 ||
model_->tflite_model_spec()->input_flattened_token_embeddings() >= 0) {
if (feature_processor_ == nullptr) {
TC3_LOG(ERROR) << "No feature processor specified.";
return false;
}
// Tokenize the messages in the conversation.
tokens = Tokenize(context);
if (model_->tflite_model_spec()->input_token_embeddings() >= 0) {
if (!EmbedTokensPerMessage(tokens, &token_embeddings, &max_tokens)) {
TC3_LOG(ERROR) << "Could not extract token features.";
return false;
}
}
if (model_->tflite_model_spec()->input_flattened_token_embeddings() >= 0) {
if (!EmbedAndFlattenTokens(tokens, &flattened_token_embeddings,
&total_token_count)) {
TC3_LOG(ERROR) << "Could not extract token features.";
return false;
}
}
}
if (!AllocateInput(context.size(), max_tokens, total_token_count,
interpreter)) {
TC3_LOG(ERROR) << "TensorFlow Lite model allocation failed.";
return false;
}
if (model_->tflite_model_spec()->input_context() >= 0) {
if (model_->tflite_model_spec()->input_length_to_pad() > 0) {
model_executor_->SetInput<std::string>(
model_->tflite_model_spec()->input_context(),
PadOrTruncateToTargetLength(
context, model_->tflite_model_spec()->input_length_to_pad(),
std::string("")),
interpreter);
} else {
model_executor_->SetInput<std::string>(
model_->tflite_model_spec()->input_context(), context, interpreter);
}
}
if (model_->tflite_model_spec()->input_context_length() >= 0) {
model_executor_->SetInput<int>(
model_->tflite_model_spec()->input_context_length(), context.size(),
interpreter);
}
if (model_->tflite_model_spec()->input_user_id() >= 0) {
if (model_->tflite_model_spec()->input_length_to_pad() > 0) {
model_executor_->SetInput<int>(
model_->tflite_model_spec()->input_user_id(),
PadOrTruncateToTargetLength(
user_ids, model_->tflite_model_spec()->input_length_to_pad(), 0),
interpreter);
} else {
model_executor_->SetInput<int>(
model_->tflite_model_spec()->input_user_id(), user_ids, interpreter);
}
}
if (model_->tflite_model_spec()->input_num_suggestions() >= 0) {
model_executor_->SetInput<int>(
model_->tflite_model_spec()->input_num_suggestions(), num_suggestions,
interpreter);
}
if (model_->tflite_model_spec()->input_time_diffs() >= 0) {
model_executor_->SetInput<float>(
model_->tflite_model_spec()->input_time_diffs(), time_diffs,
interpreter);
}
if (model_->tflite_model_spec()->input_num_tokens() >= 0) {
std::vector<int> num_tokens_per_message(tokens.size());
for (int i = 0; i < tokens.size(); i++) {
num_tokens_per_message[i] = tokens[i].size();
}
model_executor_->SetInput<int>(
model_->tflite_model_spec()->input_num_tokens(), num_tokens_per_message,
interpreter);
}
if (model_->tflite_model_spec()->input_token_embeddings() >= 0) {
model_executor_->SetInput<float>(
model_->tflite_model_spec()->input_token_embeddings(), token_embeddings,
interpreter);
}
if (model_->tflite_model_spec()->input_flattened_token_embeddings() >= 0) {
model_executor_->SetInput<float>(
model_->tflite_model_spec()->input_flattened_token_embeddings(),
flattened_token_embeddings, interpreter);
}
// Set up additional input parameters.
if (const auto* input_name_index =
model_->tflite_model_spec()->input_name_index()) {
const std::unordered_map<std::string, Variant>& model_parameters =
options.model_parameters;
for (const TensorflowLiteModelSpec_::InputNameIndexEntry* entry :
*input_name_index) {
const std::string param_name = entry->key()->str();
const int param_index = entry->value();
const TfLiteType param_type =
interpreter->tensor(interpreter->inputs()[param_index])->type;
const auto param_value_it = model_parameters.find(param_name);
const bool has_value = param_value_it != model_parameters.end();
switch (param_type) {
case kTfLiteFloat32:
if (has_value) {
SetVectorOrScalarAsModelInput<float>(param_index,
param_value_it->second,
interpreter, model_executor_);
} else {
model_executor_->SetInput<float>(param_index, kDefaultFloat,
interpreter);
}
break;
case kTfLiteInt32:
if (has_value) {
SetVectorOrScalarAsModelInput<int32_t>(
param_index, param_value_it->second, interpreter,
model_executor_);
} else {
model_executor_->SetInput<int32_t>(param_index, kDefaultInt,
interpreter);
}
break;
case kTfLiteInt64:
model_executor_->SetInput<int64_t>(
param_index,
has_value ? param_value_it->second.Value<int64>() : kDefaultInt,
interpreter);
break;
case kTfLiteUInt8:
model_executor_->SetInput<uint8_t>(
param_index,
has_value ? param_value_it->second.Value<uint8>() : kDefaultInt,
interpreter);
break;
case kTfLiteInt8:
model_executor_->SetInput<int8_t>(
param_index,
has_value ? param_value_it->second.Value<int8>() : kDefaultInt,
interpreter);
break;
case kTfLiteBool:
model_executor_->SetInput<bool>(
param_index,
has_value ? param_value_it->second.Value<bool>() : kDefaultBool,
interpreter);
break;
default:
TC3_LOG(ERROR) << "Unsupported type of additional input parameter: "
<< param_name;
}
}
}
return true;
}
void ActionsSuggestions::PopulateTextReplies(
const tflite::Interpreter* interpreter, int suggestion_index,
int score_index, const std::string& type, float priority_score,
const absl::flat_hash_set<std::string>& blocklist,
const absl::flat_hash_map<std::string, std::vector<std::string>>&
concept_mappings,
ActionsSuggestionsResponse* response) const {
const std::vector<tflite::StringRef> replies =
model_executor_->Output<tflite::StringRef>(suggestion_index, interpreter);
const TensorView<float> scores =
model_executor_->OutputView<float>(score_index, interpreter);
for (int i = 0; i < replies.size(); i++) {
if (replies[i].len == 0) {
continue;
}
const float score = scores.data()[i];
if (score < preconditions_.min_reply_score_threshold) {
continue;
}
std::string response_text(replies[i].str, replies[i].len);
if (blocklist.contains(response_text)) {
continue;
}
if (concept_mappings.contains(response_text)) {
const int candidates_size = concept_mappings.at(response_text).size();
const int candidate_index = absl::Uniform<int>(
absl::IntervalOpenOpen, bit_gen_, 0, candidates_size);
response_text = concept_mappings.at(response_text)[candidate_index];
}
response->actions.push_back({response_text, type, score, priority_score});
}
}
void ActionsSuggestions::FillSuggestionFromSpecWithEntityData(
const ActionSuggestionSpec* spec, ActionSuggestion* suggestion) const {
std::unique_ptr<MutableFlatbuffer> entity_data =
entity_data_builder_ != nullptr ? entity_data_builder_->NewRoot()
: nullptr;
FillSuggestionFromSpec(spec, entity_data.get(), suggestion);
}
void ActionsSuggestions::PopulateIntentTriggering(
const tflite::Interpreter* interpreter, int suggestion_index,
int score_index, const ActionSuggestionSpec* task_spec,
ActionsSuggestionsResponse* response) const {
if (!task_spec || task_spec->type()->size() == 0) {
TC3_LOG(ERROR)
<< "Task type for intent (action) triggering cannot be empty!";
return;
}
const TensorView<bool> intent_prediction =
model_executor_->OutputView<bool>(suggestion_index, interpreter);
const TensorView<float> intent_scores =
model_executor_->OutputView<float>(score_index, interpreter);
// Two result corresponding to binary triggering case.
TC3_CHECK_EQ(intent_prediction.size(), 2);
TC3_CHECK_EQ(intent_scores.size(), 2);
// We rely on in-graph thresholding logic so at this point the results
// have been ranked properly according to threshold.
const bool triggering = intent_prediction.data()[0];
const float trigger_score = intent_scores.data()[0];
if (triggering) {
ActionSuggestion suggestion;
std::unique_ptr<MutableFlatbuffer> entity_data =
entity_data_builder_ != nullptr ? entity_data_builder_->NewRoot()
: nullptr;
FillSuggestionFromSpecWithEntityData(task_spec, &suggestion);
suggestion.score = trigger_score;
response->actions.push_back(std::move(suggestion));
}
}
bool ActionsSuggestions::ReadModelOutput(
tflite::Interpreter* interpreter, const ActionSuggestionOptions& options,
ActionsSuggestionsResponse* response) const {
// Read sensitivity and triggering score predictions.
if (model_->tflite_model_spec()->output_triggering_score() >= 0) {
const TensorView<float> triggering_score =
model_executor_->OutputView<float>(
model_->tflite_model_spec()->output_triggering_score(),
interpreter);
if (!triggering_score.is_valid() || triggering_score.size() == 0) {
TC3_LOG(ERROR) << "Could not compute triggering score.";
return false;
}
response->triggering_score = triggering_score.data()[0];
response->output_filtered_min_triggering_score =
(response->triggering_score <
preconditions_.min_smart_reply_triggering_score);
}
if (model_->tflite_model_spec()->output_sensitive_topic_score() >= 0) {
const TensorView<float> sensitive_topic_score =
model_executor_->OutputView<float>(
model_->tflite_model_spec()->output_sensitive_topic_score(),
interpreter);
if (!sensitive_topic_score.is_valid() ||
sensitive_topic_score.dim(0) != 1) {
TC3_LOG(ERROR) << "Could not compute sensitive topic score.";
return false;
}
response->sensitivity_score = sensitive_topic_score.data()[0];
response->is_sensitive = (response->sensitivity_score >
preconditions_.max_sensitive_topic_score);
}
// Suppress model outputs.
if (response->is_sensitive) {
return true;
}
// Read smart reply predictions.
if (!response->output_filtered_min_triggering_score &&
model_->tflite_model_spec()->output_replies() >= 0) {
absl::flat_hash_set<std::string> empty_blocklist;
PopulateTextReplies(
interpreter, model_->tflite_model_spec()->output_replies(),
model_->tflite_model_spec()->output_replies_scores(),
model_->smart_reply_action_type()->str(),
/* priority_score */ 0.0, empty_blocklist, {}, response);
}
// Read actions suggestions.
if (model_->tflite_model_spec()->output_actions_scores() >= 0) {
const TensorView<float> actions_scores = model_executor_->OutputView<float>(
model_->tflite_model_spec()->output_actions_scores(), interpreter);
for (int i = 0; i < model_->action_type()->size(); i++) {
const ActionTypeOptions* action_type = model_->action_type()->Get(i);
// Skip disabled action classes, such as the default other category.
if (!action_type->enabled()) {
continue;
}
const float score = actions_scores.data()[i];
if (score < action_type->min_triggering_score()) {
continue;
}
// Create action from model output.
ActionSuggestion suggestion;
suggestion.type = action_type->name()->str();
std::unique_ptr<MutableFlatbuffer> entity_data =
entity_data_builder_ != nullptr ? entity_data_builder_->NewRoot()
: nullptr;
FillSuggestionFromSpecWithEntityData(action_type->action(), &suggestion);
suggestion.score = score;
response->actions.push_back(std::move(suggestion));
}
}
// Read multi-task predictions and construct the result properly.
if (const auto* prediction_metadata =
model_->tflite_model_spec()->prediction_metadata()) {
for (const PredictionMetadata* metadata : *prediction_metadata) {
const ActionSuggestionSpec* task_spec = metadata->task_spec();
const int suggestions_index = metadata->output_suggestions();
const int suggestions_scores_index =
metadata->output_suggestions_scores();
absl::flat_hash_set<std::string> response_text_blocklist;
absl::flat_hash_map<std::string, std::vector<std::string>>
concept_mappings;
switch (metadata->prediction_type()) {
case PredictionType_NEXT_MESSAGE_PREDICTION:
if (!task_spec || task_spec->type()->size() == 0) {
TC3_LOG(WARNING) << "Task type not provided, use default "
"smart_reply_action_type!";
}
if (task_spec) {
if (task_spec->response_text_blocklist()) {
for (const auto& val : *task_spec->response_text_blocklist()) {
response_text_blocklist.insert(val->str());
}
}
if (task_spec->concept_mappings()) {
for (const auto& concept : *task_spec->concept_mappings()) {
std::vector<std::string> candidates;
for (const auto& candidate : *concept->candidates()) {
candidates.push_back(candidate->str());
}
concept_mappings[concept->concept_name()->str()] = candidates;
}
}
}
PopulateTextReplies(
interpreter, suggestions_index, suggestions_scores_index,
task_spec ? task_spec->type()->str()
: model_->smart_reply_action_type()->str(),
task_spec ? task_spec->priority_score() : 0.0,
response_text_blocklist, concept_mappings, response);
break;
case PredictionType_INTENT_TRIGGERING:
PopulateIntentTriggering(interpreter, suggestions_index,
suggestions_scores_index, task_spec,
response);
break;
default:
TC3_LOG(ERROR) << "Unsupported prediction type!";
return false;
}
}
}
return true;
}
bool ActionsSuggestions::SuggestActionsFromModel(
const Conversation& conversation, const int num_messages,
const ActionSuggestionOptions& options,
ActionsSuggestionsResponse* response,
std::unique_ptr<tflite::Interpreter>* interpreter) const {
TC3_CHECK_LE(num_messages, conversation.messages.size());
if (sensitive_model_ != nullptr &&
sensitive_model_->EvalConversation(conversation, num_messages).first) {
response->is_sensitive = true;
return true;
}
if (!model_executor_) {
return true;
}
*interpreter = model_executor_->CreateInterpreter();
if (!*interpreter) {
TC3_LOG(ERROR) << "Could not build TensorFlow Lite interpreter for the "
"actions suggestions model.";
return false;
}
std::vector<std::string> context;
std::vector<int> user_ids;
std::vector<float> time_diffs;
context.reserve(num_messages);
user_ids.reserve(num_messages);
time_diffs.reserve(num_messages);
// Gather last `num_messages` messages from the conversation.
int64 last_message_reference_time_ms_utc = 0;
const float second_in_ms = 1000;
for (int i = conversation.messages.size() - num_messages;
i < conversation.messages.size(); i++) {
const ConversationMessage& message = conversation.messages[i];
context.push_back(message.text);
user_ids.push_back(message.user_id);
float time_diff_secs = 0;
if (message.reference_time_ms_utc != 0 &&
last_message_reference_time_ms_utc != 0) {
time_diff_secs = std::max(0.0f, (message.reference_time_ms_utc -
last_message_reference_time_ms_utc) /
second_in_ms);
}
if (message.reference_time_ms_utc != 0) {
last_message_reference_time_ms_utc = message.reference_time_ms_utc;
}
time_diffs.push_back(time_diff_secs);
}
if (!SetupModelInput(context, user_ids, time_diffs,
/*num_suggestions=*/model_->num_smart_replies(), options,
interpreter->get())) {
TC3_LOG(ERROR) << "Failed to setup input for TensorFlow Lite model.";
return false;
}
if ((*interpreter)->Invoke() != kTfLiteOk) {
TC3_LOG(ERROR) << "Failed to invoke TensorFlow Lite interpreter.";
return false;
}
return ReadModelOutput(interpreter->get(), options, response);
}
Status ActionsSuggestions::SuggestActionsFromConversationIntentDetection(
const Conversation& conversation, const ActionSuggestionOptions& options,
std::vector<ActionSuggestion>* actions) const {
TC3_ASSIGN_OR_RETURN(
std::vector<ActionSuggestion> new_actions,
conversation_intent_detection_->SuggestActions(conversation, options));
for (auto& action : new_actions) {
actions->push_back(std::move(action));
}
return Status::OK;
}
AnnotationOptions ActionsSuggestions::AnnotationOptionsForMessage(
const ConversationMessage& message) const {
AnnotationOptions options;
options.detected_text_language_tags = message.detected_text_language_tags;
options.reference_time_ms_utc = message.reference_time_ms_utc;
options.reference_timezone = message.reference_timezone;
options.annotation_usecase =
model_->annotation_actions_spec()->annotation_usecase();
options.is_serialized_entity_data_enabled =
model_->annotation_actions_spec()->is_serialized_entity_data_enabled();
options.entity_types = annotation_entity_types_;
return options;
}
// Run annotator on the messages of a conversation.
Conversation ActionsSuggestions::AnnotateConversation(
const Conversation& conversation, const Annotator* annotator) const {
if (annotator == nullptr) {
return conversation;
}
const int num_messages_grammar =
((model_->rules() && model_->rules()->grammar_rules() &&
model_->rules()
->grammar_rules()
->rules()
->nonterminals()
->annotation_nt())
? 1
: 0);
const int num_messages_mapping =
(model_->annotation_actions_spec()
? std::max(model_->annotation_actions_spec()
->max_history_from_any_person(),
model_->annotation_actions_spec()
->max_history_from_last_person())
: 0);
const int num_messages = std::max(num_messages_grammar, num_messages_mapping);
if (num_messages == 0) {
// No annotations are used.
return conversation;
}
Conversation annotated_conversation = conversation;
for (int i = 0, message_index = annotated_conversation.messages.size() - 1;
i < num_messages && message_index >= 0; i++, message_index--) {
ConversationMessage* message =
&annotated_conversation.messages[message_index];
if (message->annotations.empty()) {
message->annotations = annotator->Annotate(
message->text, AnnotationOptionsForMessage(*message));
ConvertDatetimeToTime(&message->annotations);
}
}
return annotated_conversation;
}
void ActionsSuggestions::SuggestActionsFromAnnotations(
const Conversation& conversation,
std::vector<ActionSuggestion>* actions) const {
if (model_->annotation_actions_spec() == nullptr ||
model_->annotation_actions_spec()->annotation_mapping() == nullptr ||
model_->annotation_actions_spec()->annotation_mapping()->size() == 0) {
return;
}
// Create actions based on the annotations.
const int max_from_any_person =
model_->annotation_actions_spec()->max_history_from_any_person();
const int max_from_last_person =
model_->annotation_actions_spec()->max_history_from_last_person();
const int last_person = conversation.messages.back().user_id;
int num_messages_last_person = 0;
int num_messages_any_person = 0;
bool all_from_last_person = true;
for (int message_index = conversation.messages.size() - 1; message_index >= 0;
message_index--) {
const ConversationMessage& message = conversation.messages[message_index];
std::vector<AnnotatedSpan> annotations = message.annotations;
// Update how many messages we have processed from the last person in the
// conversation and from any person in the conversation.
num_messages_any_person++;
if (all_from_last_person && message.user_id == last_person) {
num_messages_last_person++;
} else {
all_from_last_person = false;
}
if (num_messages_any_person > max_from_any_person &&
(!all_from_last_person ||
num_messages_last_person > max_from_last_person)) {
break;
}
if (message.user_id == kLocalUserId) {
if (model_->annotation_actions_spec()->only_until_last_sent()) {
break;
}
if (!model_->annotation_actions_spec()->include_local_user_messages()) {
continue;
}
}
std::vector<ActionSuggestionAnnotation> action_annotations;
action_annotations.reserve(annotations.size());
for (const AnnotatedSpan& annotation : annotations) {
if (annotation.classification.empty()) {
continue;
}
const ClassificationResult& classification_result =
annotation.classification[0];
ActionSuggestionAnnotation action_annotation;
action_annotation.span = {
message_index, annotation.span,
UTF8ToUnicodeText(message.text, /*do_copy=*/false)
.UTF8Substring(annotation.span.first, annotation.span.second)};
action_annotation.entity = classification_result;
action_annotation.name = classification_result.collection;
action_annotations.push_back(std::move(action_annotation));
}
if (model_->annotation_actions_spec()->deduplicate_annotations()) {
// Create actions only for deduplicated annotations.
for (const int annotation_id :
DeduplicateAnnotations(action_annotations)) {
SuggestActionsFromAnnotation(
message_index, action_annotations[annotation_id], actions);
}
} else {
// Create actions for all annotations.
for (const ActionSuggestionAnnotation& annotation : action_annotations) {
SuggestActionsFromAnnotation(message_index, annotation, actions);
}
}
}
}
void ActionsSuggestions::SuggestActionsFromAnnotation(
const int message_index, const ActionSuggestionAnnotation& annotation,
std::vector<ActionSuggestion>* actions) const {
for (const AnnotationActionsSpec_::AnnotationMapping* mapping :
*model_->annotation_actions_spec()->annotation_mapping()) {
if (annotation.entity.collection ==
mapping->annotation_collection()->str()) {
if (annotation.entity.score < mapping->min_annotation_score()) {
continue;
}
std::unique_ptr<MutableFlatbuffer> entity_data =
entity_data_builder_ != nullptr ? entity_data_builder_->NewRoot()
: nullptr;
// Set annotation text as (additional) entity data field.
if (mapping->entity_field() != nullptr) {
TC3_CHECK_NE(entity_data, nullptr);
UnicodeText normalized_annotation_text =
UTF8ToUnicodeText(annotation.span.text, /*do_copy=*/false);
// Apply normalization if specified.
if (mapping->normalization_options() != nullptr) {
normalized_annotation_text =
NormalizeText(*unilib_, mapping->normalization_options(),
normalized_annotation_text);
}
entity_data->ParseAndSet(mapping->entity_field(),
normalized_annotation_text.ToUTF8String());
}
ActionSuggestion suggestion;
FillSuggestionFromSpec(mapping->action(), entity_data.get(), &suggestion);
if (mapping->use_annotation_score()) {
suggestion.score = annotation.entity.score;
}
suggestion.annotations = {annotation};
actions->push_back(std::move(suggestion));
}
}
}
std::vector<int> ActionsSuggestions::DeduplicateAnnotations(
const std::vector<ActionSuggestionAnnotation>& annotations) const {
std::map<std::pair<std::string, std::string>, int> deduplicated_annotations;
for (int i = 0; i < annotations.size(); i++) {
const std::pair<std::string, std::string> key = {annotations[i].name,
annotations[i].span.text};
auto entry = deduplicated_annotations.find(key);
if (entry != deduplicated_annotations.end()) {
// Kepp the annotation with the higher score.
if (annotations[entry->second].entity.score <
annotations[i].entity.score) {
entry->second = i;
}
continue;
}
deduplicated_annotations.insert(entry, {key, i});
}
std::vector<int> result;
result.reserve(deduplicated_annotations.size());
for (const auto& key_and_annotation : deduplicated_annotations) {
result.push_back(key_and_annotation.second);
}
return result;
}
#if !defined(TC3_DISABLE_LUA)
bool ActionsSuggestions::SuggestActionsFromLua(
const Conversation& conversation, const TfLiteModelExecutor* model_executor,
const tflite::Interpreter* interpreter,
const reflection::Schema* annotation_entity_data_schema,
std::vector<ActionSuggestion>* actions) const {
if (lua_bytecode_.empty()) {
return true;
}
auto lua_actions = LuaActionsSuggestions::CreateLuaActionsSuggestions(
lua_bytecode_, conversation, model_executor, model_->tflite_model_spec(),
interpreter, entity_data_schema_, annotation_entity_data_schema);
if (lua_actions == nullptr) {
TC3_LOG(ERROR) << "Could not create lua actions.";
return false;
}
return lua_actions->SuggestActions(actions);
}
#else
bool ActionsSuggestions::SuggestActionsFromLua(
const Conversation& conversation, const TfLiteModelExecutor* model_executor,
const tflite::Interpreter* interpreter,
const reflection::Schema* annotation_entity_data_schema,
std::vector<ActionSuggestion>* actions) const {
return true;
}
#endif
bool ActionsSuggestions::GatherActionsSuggestions(
const Conversation& conversation, const Annotator* annotator,
const ActionSuggestionOptions& options,
ActionsSuggestionsResponse* response) const {
if (conversation.messages.empty()) {
return true;
}
// Run annotator against messages.
const Conversation annotated_conversation =
AnnotateConversation(conversation, annotator);
const int num_messages = NumMessagesToConsider(
annotated_conversation, model_->max_conversation_history_length());
if (num_messages <= 0) {
TC3_LOG(INFO) << "No messages provided for actions suggestions.";
return false;
}
SuggestActionsFromAnnotations(annotated_conversation, &response->actions);
if (grammar_actions_ != nullptr &&
!grammar_actions_->SuggestActions(annotated_conversation,
&response->actions)) {
TC3_LOG(ERROR) << "Could not suggest actions from grammar rules.";
return false;
}
int input_text_length = 0;
int num_matching_locales = 0;
for (int i = annotated_conversation.messages.size() - num_messages;
i < annotated_conversation.messages.size(); i++) {
input_text_length += annotated_conversation.messages[i].text.length();
std::vector<Locale> message_languages;
if (!ParseLocales(
annotated_conversation.messages[i].detected_text_language_tags,
&message_languages)) {
continue;
}
if (Locale::IsAnyLocaleSupported(
message_languages, locales_,
preconditions_.handle_unknown_locale_as_supported)) {
++num_matching_locales;
}
}
// Bail out if we are provided with too few or too much input.
if (input_text_length < preconditions_.min_input_length ||
(preconditions_.max_input_length >= 0 &&
input_text_length > preconditions_.max_input_length)) {
TC3_LOG(INFO) << "Too much or not enough input for inference.";
return response;
}
// Bail out if the text does not look like it can be handled by the model.
const float matching_fraction =
static_cast<float>(num_matching_locales) / num_messages;
if (matching_fraction < preconditions_.min_locale_match_fraction) {
TC3_LOG(INFO) << "Not enough locale matches.";
response->output_filtered_locale_mismatch = true;
return true;
}
std::vector<const UniLib::RegexPattern*> post_check_rules;
if (preconditions_.suppress_on_low_confidence_input) {
if (regex_actions_->IsLowConfidenceInput(annotated_conversation,
num_messages, &post_check_rules)) {
response->output_filtered_low_confidence = true;
return true;
}
}
std::unique_ptr<tflite::Interpreter> interpreter;
if (!SuggestActionsFromModel(annotated_conversation, num_messages, options,
response, &interpreter)) {
TC3_LOG(ERROR) << "Could not run model.";
return false;
}
// SuggestActionsFromModel also detects if the conversation is sensitive,
// either by using the old ngram model or the new model.
// Suppress all predictions if the conversation was deemed sensitive.
if (preconditions_.suppress_on_sensitive_topic && response->is_sensitive) {
return true;
}
if (conversation_intent_detection_) {
// TODO(zbin): Ensure the deduplication/ranking logic in ranker.cc works.
auto actions = SuggestActionsFromConversationIntentDetection(
annotated_conversation, options, &response->actions);
if (!actions.ok()) {
TC3_LOG(ERROR) << "Could not run conversation intent detection: "
<< actions.error_message();
return false;
}
}
if (!SuggestActionsFromLua(
annotated_conversation, model_executor_.get(), interpreter.get(),
annotator != nullptr ? annotator->entity_data_schema() : nullptr,
&response->actions)) {
TC3_LOG(ERROR) << "Could not suggest actions from script.";
return false;
}
if (!regex_actions_->SuggestActions(annotated_conversation,
entity_data_builder_.get(),
&response->actions)) {
TC3_LOG(ERROR) << "Could not suggest actions from regex rules.";
return false;
}
if (preconditions_.suppress_on_low_confidence_input &&
!regex_actions_->FilterConfidenceOutput(post_check_rules,
&response->actions)) {
TC3_LOG(ERROR) << "Could not post-check actions.";
return false;
}
return true;
}
ActionsSuggestionsResponse ActionsSuggestions::SuggestActions(
const Conversation& conversation, const Annotator* annotator,
const ActionSuggestionOptions& options) const {
ActionsSuggestionsResponse response;
// Assert that messages are sorted correctly.
for (int i = 1; i < conversation.messages.size(); i++) {
if (conversation.messages[i].reference_time_ms_utc <
conversation.messages[i - 1].reference_time_ms_utc) {
TC3_LOG(ERROR) << "Messages are not sorted most recent last.";
return response;
}
}
// Check that messages are valid utf8.
for (const ConversationMessage& message : conversation.messages) {
if (message.text.size() > std::numeric_limits<int>::max()) {
TC3_LOG(ERROR) << "Rejecting too long input: " << message.text.size();
return {};
}
if (!unilib_->IsValidUtf8(UTF8ToUnicodeText(
message.text.data(), message.text.size(), /*do_copy=*/false))) {
TC3_LOG(ERROR) << "Not valid utf8 provided.";
return response;
}
}
if (!GatherActionsSuggestions(conversation, annotator, options, &response)) {
TC3_LOG(ERROR) << "Could not gather actions suggestions.";
response.actions.clear();
} else if (!ranker_->RankActions(conversation, &response, entity_data_schema_,
annotator != nullptr
? annotator->entity_data_schema()
: nullptr)) {
TC3_LOG(ERROR) << "Could not rank actions.";
response.actions.clear();
}
return response;
}
ActionsSuggestionsResponse ActionsSuggestions::SuggestActions(
const Conversation& conversation,
const ActionSuggestionOptions& options) const {
return SuggestActions(conversation, /*annotator=*/nullptr, options);
}
const ActionsModel* ActionsSuggestions::model() const { return model_; }
const reflection::Schema* ActionsSuggestions::entity_data_schema() const {
return entity_data_schema_;
}
const ActionsModel* ViewActionsModel(const void* buffer, int size) {
if (buffer == nullptr) {
return nullptr;
}
return LoadAndVerifyModel(reinterpret_cast<const uint8_t*>(buffer), size);
}
bool ActionsSuggestions::InitializeConversationIntentDetection(
const std::string& serialized_config) {
auto conversation_intent_detection =
std::make_unique<ConversationIntentDetection>();
if (!conversation_intent_detection->Initialize(serialized_config).ok()) {
TC3_LOG(ERROR) << "Failed to initialize conversation intent detection.";
return false;
}
conversation_intent_detection_ = std::move(conversation_intent_detection);
return true;
}
} // namespace libtextclassifier3