blob: dab4f70e47b71a201c4b7babc86bae8c8eb64034 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "utils/utf8/unilib-javaicu.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <map>
#include "utils/java/string_utils.h"
namespace libtextclassifier3 {
namespace {
// -----------------------------------------------------------------------------
// Native implementations.
// -----------------------------------------------------------------------------
#define ARRAYSIZE(a) sizeof(a) / sizeof(*a)
// Derived from http://www.unicode.org/Public/UNIDATA/UnicodeData.txt
// grep -E "Ps" UnicodeData.txt | \
// sed -rne "s/^([0-9A-Z]{4});.*(PAREN|BRACKET|BRAKCET|BRACE).*/0x\1, /p"
// IMPORTANT: entries with the same offsets in kOpeningBrackets and
// kClosingBrackets must be counterparts.
constexpr char32 kOpeningBrackets[] = {
0x0028, 0x005B, 0x007B, 0x0F3C, 0x2045, 0x207D, 0x208D, 0x2329, 0x2768,
0x276A, 0x276C, 0x2770, 0x2772, 0x2774, 0x27E6, 0x27E8, 0x27EA, 0x27EC,
0x27EE, 0x2983, 0x2985, 0x2987, 0x2989, 0x298B, 0x298D, 0x298F, 0x2991,
0x2993, 0x2995, 0x2997, 0x29FC, 0x2E22, 0x2E24, 0x2E26, 0x2E28, 0x3008,
0x300A, 0x300C, 0x300E, 0x3010, 0x3014, 0x3016, 0x3018, 0x301A, 0xFD3F,
0xFE17, 0xFE35, 0xFE37, 0xFE39, 0xFE3B, 0xFE3D, 0xFE3F, 0xFE41, 0xFE43,
0xFE47, 0xFE59, 0xFE5B, 0xFE5D, 0xFF08, 0xFF3B, 0xFF5B, 0xFF5F, 0xFF62};
constexpr int kNumOpeningBrackets = ARRAYSIZE(kOpeningBrackets);
// grep -E "Pe" UnicodeData.txt | \
// sed -rne "s/^([0-9A-Z]{4});.*(PAREN|BRACKET|BRAKCET|BRACE).*/0x\1, /p"
constexpr char32 kClosingBrackets[] = {
0x0029, 0x005D, 0x007D, 0x0F3D, 0x2046, 0x207E, 0x208E, 0x232A, 0x2769,
0x276B, 0x276D, 0x2771, 0x2773, 0x2775, 0x27E7, 0x27E9, 0x27EB, 0x27ED,
0x27EF, 0x2984, 0x2986, 0x2988, 0x298A, 0x298C, 0x298E, 0x2990, 0x2992,
0x2994, 0x2996, 0x2998, 0x29FD, 0x2E23, 0x2E25, 0x2E27, 0x2E29, 0x3009,
0x300B, 0x300D, 0x300F, 0x3011, 0x3015, 0x3017, 0x3019, 0x301B, 0xFD3E,
0xFE18, 0xFE36, 0xFE38, 0xFE3A, 0xFE3C, 0xFE3E, 0xFE40, 0xFE42, 0xFE44,
0xFE48, 0xFE5A, 0xFE5C, 0xFE5E, 0xFF09, 0xFF3D, 0xFF5D, 0xFF60, 0xFF63};
constexpr int kNumClosingBrackets = ARRAYSIZE(kClosingBrackets);
// grep -E "WS" UnicodeData.txt | sed -re "s/([0-9A-Z]+);.*/0x\1, /"
constexpr char32 kWhitespaces[] = {
0x000C, 0x0020, 0x1680, 0x2000, 0x2001, 0x2002, 0x2003, 0x2004,
0x2005, 0x2006, 0x2007, 0x2008, 0x2009, 0x200A, 0x2028, 0x205F,
0x21C7, 0x21C8, 0x21C9, 0x21CA, 0x21F6, 0x2B31, 0x2B84, 0x2B85,
0x2B86, 0x2B87, 0x2B94, 0x3000, 0x4DCC, 0x10344, 0x10347, 0x1DA0A,
0x1DA0B, 0x1DA0C, 0x1DA0D, 0x1DA0E, 0x1DA0F, 0x1DA10, 0x1F4F0, 0x1F500,
0x1F501, 0x1F502, 0x1F503, 0x1F504, 0x1F5D8, 0x1F5DE};
constexpr int kNumWhitespaces = ARRAYSIZE(kWhitespaces);
// grep -E "Nd" UnicodeData.txt | sed -re "s/([0-9A-Z]+);.*/0x\1, /"
// As the name suggests, these ranges are always 10 codepoints long, so we just
// store the end of the range.
constexpr char32 kDecimalDigitRangesEnd[] = {
0x0039, 0x0669, 0x06f9, 0x07c9, 0x096f, 0x09ef, 0x0a6f, 0x0aef,
0x0b6f, 0x0bef, 0x0c6f, 0x0cef, 0x0d6f, 0x0def, 0x0e59, 0x0ed9,
0x0f29, 0x1049, 0x1099, 0x17e9, 0x1819, 0x194f, 0x19d9, 0x1a89,
0x1a99, 0x1b59, 0x1bb9, 0x1c49, 0x1c59, 0xa629, 0xa8d9, 0xa909,
0xa9d9, 0xa9f9, 0xaa59, 0xabf9, 0xff19, 0x104a9, 0x1106f, 0x110f9,
0x1113f, 0x111d9, 0x112f9, 0x11459, 0x114d9, 0x11659, 0x116c9, 0x11739,
0x118e9, 0x11c59, 0x11d59, 0x16a69, 0x16b59, 0x1d7ff};
constexpr int kNumDecimalDigitRangesEnd = ARRAYSIZE(kDecimalDigitRangesEnd);
// grep -E "Lu" UnicodeData.txt | sed -re "s/([0-9A-Z]+);.*/0x\1, /"
// There are three common ways in which upper/lower case codepoint ranges
// were introduced: one offs, dense ranges, and ranges that alternate between
// lower and upper case. For the sake of keeping out binary size down, we
// treat each independently.
constexpr char32 kUpperSingles[] = {
0x01b8, 0x01bc, 0x01c4, 0x01c7, 0x01ca, 0x01f1, 0x0376, 0x037f,
0x03cf, 0x03f4, 0x03fa, 0x10c7, 0x10cd, 0x2102, 0x2107, 0x2115,
0x2145, 0x2183, 0x2c72, 0x2c75, 0x2cf2, 0xa7b6};
constexpr int kNumUpperSingles = ARRAYSIZE(kUpperSingles);
constexpr char32 kUpperRanges1Start[] = {
0x0041, 0x00c0, 0x00d8, 0x0181, 0x018a, 0x018e, 0x0193, 0x0196,
0x019c, 0x019f, 0x01b2, 0x01f7, 0x023a, 0x023d, 0x0244, 0x0389,
0x0392, 0x03a3, 0x03d2, 0x03fd, 0x0531, 0x10a0, 0x13a0, 0x1f08,
0x1f18, 0x1f28, 0x1f38, 0x1f48, 0x1f68, 0x1fb8, 0x1fc8, 0x1fd8,
0x1fe8, 0x1ff8, 0x210b, 0x2110, 0x2119, 0x212b, 0x2130, 0x213e,
0x2c00, 0x2c63, 0x2c6e, 0x2c7e, 0xa7ab, 0xa7b0};
constexpr int kNumUpperRanges1Start = ARRAYSIZE(kUpperRanges1Start);
constexpr char32 kUpperRanges1End[] = {
0x005a, 0x00d6, 0x00de, 0x0182, 0x018b, 0x0191, 0x0194, 0x0198,
0x019d, 0x01a0, 0x01b3, 0x01f8, 0x023b, 0x023e, 0x0246, 0x038a,
0x03a1, 0x03ab, 0x03d4, 0x042f, 0x0556, 0x10c5, 0x13f5, 0x1f0f,
0x1f1d, 0x1f2f, 0x1f3f, 0x1f4d, 0x1f6f, 0x1fbb, 0x1fcb, 0x1fdb,
0x1fec, 0x1ffb, 0x210d, 0x2112, 0x211d, 0x212d, 0x2133, 0x213f,
0x2c2e, 0x2c64, 0x2c70, 0x2c80, 0xa7ae, 0xa7b4};
constexpr int kNumUpperRanges1End = ARRAYSIZE(kUpperRanges1End);
constexpr char32 kUpperRanges2Start[] = {
0x0100, 0x0139, 0x014a, 0x0179, 0x0184, 0x0187, 0x01a2, 0x01a7, 0x01ac,
0x01af, 0x01b5, 0x01cd, 0x01de, 0x01f4, 0x01fa, 0x0241, 0x0248, 0x0370,
0x0386, 0x038c, 0x038f, 0x03d8, 0x03f7, 0x0460, 0x048a, 0x04c1, 0x04d0,
0x1e00, 0x1e9e, 0x1f59, 0x2124, 0x2c60, 0x2c67, 0x2c82, 0x2ceb, 0xa640,
0xa680, 0xa722, 0xa732, 0xa779, 0xa77e, 0xa78b, 0xa790, 0xa796};
constexpr int kNumUpperRanges2Start = ARRAYSIZE(kUpperRanges2Start);
constexpr char32 kUpperRanges2End[] = {
0x0136, 0x0147, 0x0178, 0x017d, 0x0186, 0x0189, 0x01a6, 0x01a9, 0x01ae,
0x01b1, 0x01b7, 0x01db, 0x01ee, 0x01f6, 0x0232, 0x0243, 0x024e, 0x0372,
0x0388, 0x038e, 0x0391, 0x03ee, 0x03f9, 0x0480, 0x04c0, 0x04cd, 0x052e,
0x1e94, 0x1efe, 0x1f5f, 0x212a, 0x2c62, 0x2c6d, 0x2ce2, 0x2ced, 0xa66c,
0xa69a, 0xa72e, 0xa76e, 0xa77d, 0xa786, 0xa78d, 0xa792, 0xa7aa};
constexpr int kNumUpperRanges2End = ARRAYSIZE(kUpperRanges2End);
// grep -E "Lu" UnicodeData.txt | \
// sed -rne "s/^([0-9A-Z]+);.*;([0-9A-Z]+);$/(0x\1, 0x\2), /p"
// We have two strategies for mapping from upper to lower case. We have single
// character lookups that do not follow a pattern, and ranges for which there
// is a constant codepoint shift.
// Note that these ranges ignore anything that's not an upper case character,
// so when applied to a non-uppercase character the result is incorrect.
constexpr int kToLowerSingles[] = {
0x0130, 0x0178, 0x0181, 0x0186, 0x018b, 0x018e, 0x018f, 0x0190, 0x0191,
0x0194, 0x0196, 0x0197, 0x0198, 0x019c, 0x019d, 0x019f, 0x01a6, 0x01a9,
0x01ae, 0x01b7, 0x01f6, 0x01f7, 0x0220, 0x023a, 0x023d, 0x023e, 0x0243,
0x0244, 0x0245, 0x037f, 0x0386, 0x038c, 0x03cf, 0x03f4, 0x03f9, 0x04c0,
0x1e9e, 0x1fec, 0x2126, 0x212a, 0x212b, 0x2132, 0x2183, 0x2c60, 0x2c62,
0x2c63, 0x2c64, 0x2c6d, 0x2c6e, 0x2c6f, 0x2c70, 0xa77d, 0xa78d, 0xa7aa,
0xa7ab, 0xa7ac, 0xa7ad, 0xa7ae, 0xa7b0, 0xa7b1, 0xa7b2, 0xa7b3};
constexpr int kNumToLowerSingles = ARRAYSIZE(kToLowerSingles);
constexpr int kToLowerSinglesOffsets[] = {
-199, -121, 210, 206, 1, 79, 202, 203, 1,
207, 211, 209, 1, 211, 213, 214, 218, 218,
218, 219, -97, -56, -130, 10795, -163, 10792, -195,
69, 71, 116, 38, 64, 8, -60, -7, 15,
-7615, -7, -7517, -8383, -8262, 28, 1, 1, -10743,
-3814, -10727, -10780, -10749, -10783, -10782, -35332, -42280, -42308,
-42319, -42315, -42305, -42308, -42258, -42282, -42261, 928};
constexpr int kNumToLowerSinglesOffsets = ARRAYSIZE(kToLowerSinglesOffsets);
constexpr int kToLowerRangesStart[] = {
0x0041, 0x0100, 0x0189, 0x01a0, 0x01b1, 0x01b3, 0x0388, 0x038e, 0x0391,
0x03d8, 0x03fd, 0x0400, 0x0410, 0x0460, 0x0531, 0x10a0, 0x13a0, 0x13f0,
0x1e00, 0x1f08, 0x1fba, 0x1fc8, 0x1fd8, 0x1fda, 0x1fe8, 0x1fea, 0x1ff8,
0x1ffa, 0x2c00, 0x2c67, 0x2c7e, 0x2c80, 0xff21, 0x10400, 0x10c80, 0x118a0};
constexpr int kNumToLowerRangesStart = ARRAYSIZE(kToLowerRangesStart);
constexpr int kToLowerRangesEnd[] = {
0x00de, 0x0187, 0x019f, 0x01af, 0x01b2, 0x0386, 0x038c, 0x038f, 0x03cf,
0x03fa, 0x03ff, 0x040f, 0x042f, 0x052e, 0x0556, 0x10cd, 0x13ef, 0x13f5,
0x1efe, 0x1fb9, 0x1fbb, 0x1fcb, 0x1fd9, 0x1fdb, 0x1fe9, 0x1fec, 0x1ff9,
0x2183, 0x2c64, 0x2c75, 0x2c7f, 0xa7b6, 0xff3a, 0x104d3, 0x10cb2, 0x118bf};
constexpr int kNumToLowerRangesEnd = ARRAYSIZE(kToLowerRangesEnd);
constexpr int kToLowerRangesOffsets[] = {
32, 1, 205, 1, 217, 1, 37, 63, 32, 1, -130, 80,
32, 1, 48, 7264, 38864, 8, 1, -8, -74, -86, -8, -100,
-8, -112, -128, -126, 48, 1, -10815, 1, 32, 40, 64, 32};
constexpr int kNumToLowerRangesOffsets = ARRAYSIZE(kToLowerRangesOffsets);
#undef ARRAYSIZE
static_assert(kNumOpeningBrackets == kNumClosingBrackets,
"mismatching number of opening and closing brackets");
static_assert(kNumUpperRanges1Start == kNumUpperRanges1End,
"number of uppercase stride 1 range starts/ends doesn't match");
static_assert(kNumUpperRanges2Start == kNumUpperRanges2End,
"number of uppercase stride 2 range starts/ends doesn't match");
static_assert(kNumToLowerSingles == kNumToLowerSinglesOffsets,
"number of to lower singles and offsets doesn't match");
static_assert(kNumToLowerRangesStart == kNumToLowerRangesEnd,
"mismatching number of range starts/ends for to lower ranges");
static_assert(kNumToLowerRangesStart == kNumToLowerRangesOffsets,
"number of to lower ranges and offsets doesn't match");
constexpr int kNoMatch = -1;
// Returns the index of the element in the array that matched the given
// codepoint, or kNoMatch if the element didn't exist.
// The input array must be in sorted order.
int GetMatchIndex(const char32* array, int array_length, char32 c) {
const char32* end = array + array_length;
const auto find_it = std::lower_bound(array, end, c);
if (find_it != end && *find_it == c) {
return find_it - array;
} else {
return kNoMatch;
}
}
// Returns the index of the range in the array that overlapped the given
// codepoint, or kNoMatch if no such range existed.
// The input array must be in sorted order.
int GetOverlappingRangeIndex(const char32* arr, int arr_length,
int range_length, char32 c) {
const char32* end = arr + arr_length;
const auto find_it = std::lower_bound(arr, end, c);
if (find_it == end) {
return kNoMatch;
}
// The end is inclusive, we so subtract one less than the range length.
const char32 range_end = *find_it;
const char32 range_start = range_end - (range_length - 1);
if (c < range_start || range_end < c) {
return kNoMatch;
} else {
return find_it - arr;
}
}
// As above, but with explicit codepoint start and end indices for the range.
// The input array must be in sorted order.
int GetOverlappingRangeIndex(const char32* start_arr, const char32* end_arr,
int arr_length, int stride, char32 c) {
const char32* end_arr_end = end_arr + arr_length;
const auto find_it = std::lower_bound(end_arr, end_arr_end, c);
if (find_it == end_arr_end) {
return kNoMatch;
}
// Find the corresponding start.
const int range_index = find_it - end_arr;
const char32 range_start = start_arr[range_index];
const char32 range_end = *find_it;
if (c < range_start || range_end < c) {
return kNoMatch;
}
if ((c - range_start) % stride == 0) {
return range_index;
} else {
return kNoMatch;
}
}
} // anonymous namespace
UniLib::UniLib() {
TC3_LOG(FATAL) << "Java ICU UniLib must be initialized with a JniCache.";
}
UniLib::UniLib(const std::shared_ptr<JniCache>& jni_cache)
: jni_cache_(jni_cache) {}
bool UniLib::IsOpeningBracket(char32 codepoint) const {
return GetMatchIndex(kOpeningBrackets, kNumOpeningBrackets, codepoint) >= 0;
}
bool UniLib::IsClosingBracket(char32 codepoint) const {
return GetMatchIndex(kClosingBrackets, kNumClosingBrackets, codepoint) >= 0;
}
bool UniLib::IsWhitespace(char32 codepoint) const {
return GetMatchIndex(kWhitespaces, kNumWhitespaces, codepoint) >= 0;
}
bool UniLib::IsDigit(char32 codepoint) const {
return GetOverlappingRangeIndex(kDecimalDigitRangesEnd,
kNumDecimalDigitRangesEnd,
/*range_length=*/10, codepoint) >= 0;
}
bool UniLib::IsUpper(char32 codepoint) const {
if (GetMatchIndex(kUpperSingles, kNumUpperSingles, codepoint) >= 0) {
return true;
} else if (GetOverlappingRangeIndex(kUpperRanges1Start, kUpperRanges1End,
kNumUpperRanges1Start, /*stride=*/1,
codepoint) >= 0) {
return true;
} else if (GetOverlappingRangeIndex(kUpperRanges2Start, kUpperRanges2End,
kNumUpperRanges2Start, /*stride=*/2,
codepoint) >= 0) {
return true;
} else {
return false;
}
}
char32 UniLib::ToLower(char32 codepoint) const {
// Make sure we still produce output even if the method is called for a
// codepoint that's not an uppercase character.
if (!IsUpper(codepoint)) {
return codepoint;
}
const int singles_idx =
GetMatchIndex(kToLowerSingles, kNumToLowerSingles, codepoint);
if (singles_idx >= 0) {
return codepoint + kToLowerSinglesOffsets[singles_idx];
}
const int ranges_idx =
GetOverlappingRangeIndex(kToLowerRangesStart, kToLowerRangesEnd,
kNumToLowerRangesStart, /*stride=*/1, codepoint);
if (ranges_idx >= 0) {
return codepoint + kToLowerRangesOffsets[ranges_idx];
}
return codepoint;
}
char32 UniLib::GetPairedBracket(char32 codepoint) const {
const int open_offset =
GetMatchIndex(kOpeningBrackets, kNumOpeningBrackets, codepoint);
if (open_offset >= 0) {
return kClosingBrackets[open_offset];
}
const int close_offset =
GetMatchIndex(kClosingBrackets, kNumClosingBrackets, codepoint);
if (close_offset >= 0) {
return kOpeningBrackets[close_offset];
}
return codepoint;
}
// -----------------------------------------------------------------------------
// Implementations that call out to JVM. Behold the beauty.
// -----------------------------------------------------------------------------
bool UniLib::ParseInt32(const UnicodeText& text, int* result) const {
if (jni_cache_) {
JNIEnv* env = jni_cache_->GetEnv();
const ScopedLocalRef<jstring> text_java =
jni_cache_->ConvertToJavaString(text);
jint res = env->CallStaticIntMethod(jni_cache_->integer_class.get(),
jni_cache_->integer_parse_int,
text_java.get());
if (jni_cache_->ExceptionCheckAndClear()) {
return false;
}
*result = res;
return true;
}
return false;
}
std::unique_ptr<UniLib::RegexPattern> UniLib::CreateRegexPattern(
const UnicodeText& regex) const {
return std::unique_ptr<UniLib::RegexPattern>(
new UniLib::RegexPattern(jni_cache_.get(), regex));
}
UniLib::RegexPattern::RegexPattern(const JniCache* jni_cache,
const UnicodeText& regex)
: jni_cache_(jni_cache),
pattern_(nullptr, jni_cache ? jni_cache->jvm : nullptr) {
if (jni_cache_) {
JNIEnv* jenv = jni_cache_->GetEnv();
const ScopedLocalRef<jstring> regex_java =
jni_cache->ConvertToJavaString(regex);
pattern_ = MakeGlobalRef(jenv->CallStaticObjectMethod(
jni_cache_->pattern_class.get(),
jni_cache_->pattern_compile, regex_java.get()),
jenv, jni_cache_->jvm);
}
}
constexpr int UniLib::RegexMatcher::kError;
constexpr int UniLib::RegexMatcher::kNoError;
std::unique_ptr<UniLib::RegexMatcher> UniLib::RegexPattern::Matcher(
const UnicodeText& context) const {
if (jni_cache_) {
JNIEnv* env = jni_cache_->GetEnv();
const jstring context_java =
jni_cache_->ConvertToJavaString(context).release();
if (!context_java) {
return nullptr;
}
const jobject matcher = env->CallObjectMethod(
pattern_.get(), jni_cache_->pattern_matcher, context_java);
if (jni_cache_->ExceptionCheckAndClear() || !matcher) {
return nullptr;
}
return std::unique_ptr<UniLib::RegexMatcher>(new RegexMatcher(
jni_cache_, MakeGlobalRef(matcher, env, jni_cache_->jvm),
MakeGlobalRef(context_java, env, jni_cache_->jvm)));
} else {
// NOTE: A valid object needs to be created here to pass the interface
// tests.
return std::unique_ptr<UniLib::RegexMatcher>(
new RegexMatcher(jni_cache_, nullptr, nullptr));
}
}
UniLib::RegexMatcher::RegexMatcher(const JniCache* jni_cache,
ScopedGlobalRef<jobject> matcher,
ScopedGlobalRef<jstring> text)
: jni_cache_(jni_cache),
matcher_(std::move(matcher)),
text_(std::move(text)) {}
bool UniLib::RegexMatcher::Matches(int* status) const {
if (jni_cache_) {
*status = kNoError;
const bool result = jni_cache_->GetEnv()->CallBooleanMethod(
matcher_.get(), jni_cache_->matcher_matches);
if (jni_cache_->ExceptionCheckAndClear()) {
*status = kError;
return false;
}
return result;
} else {
*status = kError;
return false;
}
}
bool UniLib::RegexMatcher::ApproximatelyMatches(int* status) {
*status = kNoError;
jni_cache_->GetEnv()->CallObjectMethod(matcher_.get(),
jni_cache_->matcher_reset);
if (jni_cache_->ExceptionCheckAndClear()) {
*status = kError;
return kError;
}
if (!Find(status) || *status != kNoError) {
return false;
}
const int found_start = jni_cache_->GetEnv()->CallIntMethod(
matcher_.get(), jni_cache_->matcher_start_idx, 0);
if (jni_cache_->ExceptionCheckAndClear()) {
*status = kError;
return kError;
}
const int found_end = jni_cache_->GetEnv()->CallIntMethod(
matcher_.get(), jni_cache_->matcher_end_idx, 0);
if (jni_cache_->ExceptionCheckAndClear()) {
*status = kError;
return kError;
}
int context_length_bmp = jni_cache_->GetEnv()->CallIntMethod(
text_.get(), jni_cache_->string_length);
if (jni_cache_->ExceptionCheckAndClear()) {
*status = kError;
return false;
}
if (found_start != 0 || found_end != context_length_bmp) {
return false;
}
return true;
}
bool UniLib::RegexMatcher::UpdateLastFindOffset() const {
if (!last_find_offset_dirty_) {
return true;
}
const int find_offset = jni_cache_->GetEnv()->CallIntMethod(
matcher_.get(), jni_cache_->matcher_start_idx, 0);
if (jni_cache_->ExceptionCheckAndClear()) {
return false;
}
const int codepoint_count = jni_cache_->GetEnv()->CallIntMethod(
text_.get(), jni_cache_->string_code_point_count, last_find_offset_,
find_offset);
if (jni_cache_->ExceptionCheckAndClear()) {
return false;
}
last_find_offset_codepoints_ += codepoint_count;
last_find_offset_ = find_offset;
last_find_offset_dirty_ = false;
return true;
}
bool UniLib::RegexMatcher::Find(int* status) {
if (jni_cache_) {
const bool result = jni_cache_->GetEnv()->CallBooleanMethod(
matcher_.get(), jni_cache_->matcher_find);
if (jni_cache_->ExceptionCheckAndClear()) {
*status = kError;
return false;
}
last_find_offset_dirty_ = true;
*status = kNoError;
return result;
} else {
*status = kError;
return false;
}
}
int UniLib::RegexMatcher::Start(int* status) const {
return Start(/*group_idx=*/0, status);
}
int UniLib::RegexMatcher::Start(int group_idx, int* status) const {
if (jni_cache_) {
*status = kNoError;
if (!UpdateLastFindOffset()) {
*status = kError;
return kError;
}
const int java_index = jni_cache_->GetEnv()->CallIntMethod(
matcher_.get(), jni_cache_->matcher_start_idx, group_idx);
if (jni_cache_->ExceptionCheckAndClear()) {
*status = kError;
return kError;
}
// If the group didn't participate in the match the index is -1.
if (java_index == -1) {
return -1;
}
const int unicode_index = jni_cache_->GetEnv()->CallIntMethod(
text_.get(), jni_cache_->string_code_point_count, last_find_offset_,
java_index);
if (jni_cache_->ExceptionCheckAndClear()) {
*status = kError;
return kError;
}
return unicode_index + last_find_offset_codepoints_;
} else {
*status = kError;
return kError;
}
}
int UniLib::RegexMatcher::End(int* status) const {
return End(/*group_idx=*/0, status);
}
int UniLib::RegexMatcher::End(int group_idx, int* status) const {
if (jni_cache_) {
*status = kNoError;
if (!UpdateLastFindOffset()) {
*status = kError;
return kError;
}
const int java_index = jni_cache_->GetEnv()->CallIntMethod(
matcher_.get(), jni_cache_->matcher_end_idx, group_idx);
if (jni_cache_->ExceptionCheckAndClear()) {
*status = kError;
return kError;
}
// If the group didn't participate in the match the index is -1.
if (java_index == -1) {
return -1;
}
const int unicode_index = jni_cache_->GetEnv()->CallIntMethod(
text_.get(), jni_cache_->string_code_point_count, last_find_offset_,
java_index);
if (jni_cache_->ExceptionCheckAndClear()) {
*status = kError;
return kError;
}
return unicode_index + last_find_offset_codepoints_;
} else {
*status = kError;
return kError;
}
}
UnicodeText UniLib::RegexMatcher::Group(int* status) const {
if (jni_cache_) {
JNIEnv* jenv = jni_cache_->GetEnv();
const ScopedLocalRef<jstring> java_result(
reinterpret_cast<jstring>(
jenv->CallObjectMethod(matcher_.get(), jni_cache_->matcher_group)),
jenv);
if (jni_cache_->ExceptionCheckAndClear() || !java_result) {
*status = kError;
return UTF8ToUnicodeText("", /*do_copy=*/false);
}
std::string result;
if (!JStringToUtf8String(jenv, java_result.get(), &result)) {
*status = kError;
return UTF8ToUnicodeText("", /*do_copy=*/false);
}
*status = kNoError;
return UTF8ToUnicodeText(result, /*do_copy=*/true);
} else {
*status = kError;
return UTF8ToUnicodeText("", /*do_copy=*/false);
}
}
UnicodeText UniLib::RegexMatcher::Group(int group_idx, int* status) const {
if (jni_cache_) {
JNIEnv* jenv = jni_cache_->GetEnv();
const ScopedLocalRef<jstring> java_result(
reinterpret_cast<jstring>(jenv->CallObjectMethod(
matcher_.get(), jni_cache_->matcher_group_idx, group_idx)),
jenv);
if (jni_cache_->ExceptionCheckAndClear()) {
*status = kError;
TC3_LOG(ERROR) << "Exception occurred";
return UTF8ToUnicodeText("", /*do_copy=*/false);
}
// java_result is nullptr when the group did not participate in the match.
// For these cases other UniLib implementations return empty string, and
// the participation can be checked by checking if Start() == -1.
if (!java_result) {
*status = kNoError;
return UTF8ToUnicodeText("", /*do_copy=*/false);
}
std::string result;
if (!JStringToUtf8String(jenv, java_result.get(), &result)) {
*status = kError;
return UTF8ToUnicodeText("", /*do_copy=*/false);
}
*status = kNoError;
return UTF8ToUnicodeText(result, /*do_copy=*/true);
} else {
*status = kError;
return UTF8ToUnicodeText("", /*do_copy=*/false);
}
}
constexpr int UniLib::BreakIterator::kDone;
UniLib::BreakIterator::BreakIterator(const JniCache* jni_cache,
const UnicodeText& text)
: jni_cache_(jni_cache),
text_(nullptr, jni_cache ? jni_cache->jvm : nullptr),
iterator_(nullptr, jni_cache ? jni_cache->jvm : nullptr),
last_break_index_(0),
last_unicode_index_(0) {
if (jni_cache_) {
JNIEnv* jenv = jni_cache_->GetEnv();
text_ = MakeGlobalRef(jni_cache_->ConvertToJavaString(text).release(), jenv,
jni_cache->jvm);
if (!text_) {
return;
}
iterator_ = MakeGlobalRef(
jenv->CallStaticObjectMethod(jni_cache->breakiterator_class.get(),
jni_cache->breakiterator_getwordinstance,
jni_cache->locale_us.get()),
jenv, jni_cache->jvm);
if (!iterator_) {
return;
}
jenv->CallVoidMethod(iterator_.get(), jni_cache->breakiterator_settext,
text_.get());
}
}
int UniLib::BreakIterator::Next() {
if (jni_cache_) {
const int break_index = jni_cache_->GetEnv()->CallIntMethod(
iterator_.get(), jni_cache_->breakiterator_next);
if (jni_cache_->ExceptionCheckAndClear() ||
break_index == BreakIterator::kDone) {
return BreakIterator::kDone;
}
const int token_unicode_length = jni_cache_->GetEnv()->CallIntMethod(
text_.get(), jni_cache_->string_code_point_count, last_break_index_,
break_index);
if (jni_cache_->ExceptionCheckAndClear()) {
return BreakIterator::kDone;
}
last_break_index_ = break_index;
return last_unicode_index_ += token_unicode_length;
}
return BreakIterator::kDone;
}
std::unique_ptr<UniLib::BreakIterator> UniLib::CreateBreakIterator(
const UnicodeText& text) const {
return std::unique_ptr<UniLib::BreakIterator>(
new UniLib::BreakIterator(jni_cache_.get(), text));
}
} // namespace libtextclassifier3