blob: 741c2ab97547d88ab48e1367a586cbdf73c20bc8 [file] [log] [blame]
/******************************************************************************
*
* Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/**
*******************************************************************************
* @file
* ihevc_itrans.c
*
* @brief
* Contains function definitions for single stage inverse transform
*
* @author
* 100470
*
* @par List of Functions:
* - ihevc_itrans_4x4_ttype1()
* - ihevc_itrans_4x4()
* - ihevc_itrans_8x8()
* - ihevc_itrans_16x16()
* - ihevc_itrans_32x32()
*
* @remarks
* None
*
*******************************************************************************
*/
#include <stdio.h>
#include <string.h>
#include "ihevc_typedefs.h"
#include "ihevc_macros.h"
#include "ihevc_platform_macros.h"
#include "ihevc_defs.h"
#include "ihevc_trans_tables.h"
#include "ihevc_func_selector.h"
#include "ihevc_trans_macros.h"
#define NON_OPTIMIZED 1
/**
*******************************************************************************
*
* @brief
* This function performs Single stage Inverse transform type 1 (DST) for
* 4x4 input block
*
* @par Description:
* Performs single stage 4x4 inverse transform type 1 by utilizing the
* symmetry of transformation matrix and reducing number of multiplications
* wherever possible but keeping the number of operations
* (addition,multiplication and shift)same
*
* @param[in] pi2_src
* Input 4x4 coefficients
*
* @param[out] pi2_dst
* Output 4x4 block
*
* @param[in] src_strd
* Input stride
*
* @param[in] dst_strd
* Output Stride
*
* @param[in] i4_shift
* Output shift
*
* @param[in] zero_cols
* Zero columns in pi2_src
*
* @returns Void
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_itrans_4x4_ttype1(WORD16 *pi2_src,
WORD16 *pi2_dst,
WORD32 src_strd,
WORD32 dst_strd,
WORD32 i4_shift,
WORD32 zero_cols)
{
WORD32 i, c[4];
WORD32 add;
add = 1 << (i4_shift - 1);
for(i = 0; i < TRANS_SIZE_4; i++)
{
/* Checking for Zero Cols */
if((zero_cols & 1) == 1)
{
memset(pi2_dst, 0, TRANS_SIZE_4 * sizeof(WORD16));
}
else
{
// Intermediate Variables
c[0] = pi2_src[0] + pi2_src[2 * src_strd];
c[1] = pi2_src[2 * src_strd] + pi2_src[3 * src_strd];
c[2] = pi2_src[0] - pi2_src[3 * src_strd];
c[3] = 74 * pi2_src[src_strd];
pi2_dst[0] =
CLIP_S16((29 * c[0] + 55 * c[1] + c[3] + add) >> i4_shift);
pi2_dst[1] =
CLIP_S16((55 * c[2] - 29 * c[1] + c[3] + add) >> i4_shift);
pi2_dst[2] =
CLIP_S16((74 * (pi2_src[0] - pi2_src[2 * src_strd] + pi2_src[3 * src_strd]) + add) >> i4_shift);
pi2_dst[3] =
CLIP_S16((55 * c[0] + 29 * c[2] - c[3] + add) >> i4_shift);
}
pi2_src++;
pi2_dst += dst_strd;
zero_cols = zero_cols >> 1;
}
}
/**
*******************************************************************************
*
* @brief
* This function performs Single stage Inverse transform for 4x4 input
* block
*
* @par Description:
* Performs single stage 4x4 inverse transform by utilizing the symmetry of
* transformation matrix and reducing number of multiplications wherever
* possible but keeping the number of operations(addition,multiplication and
* shift) same
*
* @param[in] pi2_src
* Input 4x4 coefficients
*
* @param[out] pi2_dst
* Output 4x4 block
*
* @param[in] src_strd
* Input stride
*
* @param[in] dst_strd
* Output Stride
*
* @param[in] i4_shift
* Output shift
*
* @param[in] zero_cols
* Zero columns in pi2_src
*
* @returns Void
*
* @remarks
* None
*
*******************************************************************************
*/
#if NON_OPTIMIZED
void ihevc_itrans_4x4(WORD16 *pi2_src,
WORD16 *pi2_dst,
WORD32 src_strd,
WORD32 dst_strd,
WORD32 i4_shift,
WORD32 zero_cols)
{
WORD32 j;
WORD32 e[2], o[2];
WORD32 add;
add = 1 << (i4_shift - 1);
for(j = 0; j < TRANS_SIZE_4; j++)
{
/* Checking for Zero Cols */
if((zero_cols & 1) == 1)
{
memset(pi2_dst, 0, TRANS_SIZE_4 * sizeof(WORD16));
}
else
{
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
o[0] = g_ai2_ihevc_trans_4[1][0] * pi2_src[src_strd]
+ g_ai2_ihevc_trans_4[3][0] * pi2_src[3 * src_strd];
o[1] = g_ai2_ihevc_trans_4[1][1] * pi2_src[src_strd]
+ g_ai2_ihevc_trans_4[3][1] * pi2_src[3 * src_strd];
e[0] = g_ai2_ihevc_trans_4[0][0] * pi2_src[0]
+ g_ai2_ihevc_trans_4[2][0] * pi2_src[2 * src_strd];
e[1] = g_ai2_ihevc_trans_4[0][1] * pi2_src[0]
+ g_ai2_ihevc_trans_4[2][1] * pi2_src[2 * src_strd];
pi2_dst[0] =
CLIP_S16(((e[0] + o[0] + add) >> i4_shift));
pi2_dst[1] =
CLIP_S16(((e[1] + o[1] + add) >> i4_shift));
pi2_dst[2] =
CLIP_S16(((e[1] - o[1] + add) >> i4_shift));
pi2_dst[3] =
CLIP_S16(((e[0] - o[0] + add) >> i4_shift));
}
pi2_src++;
pi2_dst += dst_strd;
zero_cols = zero_cols >> 1;
}
}
#else
void ihevc_itrans_4x4(WORD16 *pi2_src,
WORD16 *pi2_dst,
WORD32 src_strd,
WORD32 dst_strd,
WORD32 i4_shift,
WORD32 zero_cols)
{
WORD32 j;
WORD32 e[2], o[2];
WORD32 add;
add = 1 << (i4_shift - 1);
/***************************************************************************/
/* Transform Matrix 4x4 */
/* 0 1 2 3 */
/* 0 { 64, 64, 64, 64}, */
/* 1 { 83, 36,-36,-83}, */
/* 2 { 64,-64,-64, 64}, */
/* 3 { 36,-83, 83,-36} */
/***************************************************************************/
for(j = 0; j < TRANS_SIZE_4; j++)
{
WORD32 temp;
/* Checking for Zero Cols */
if((zero_cols & 1) == 1)
{
memset(pi2_dst, 0, TRANS_SIZE_4 * sizeof(WORD16));
}
else
{
/* Common operation in o[0] and o[1] */
temp = (pi2_src[src_strd] + pi2_src[3 * src_strd]) * 36;
o[0] = temp + 47 * pi2_src[src_strd];
o[1] = temp - 119 * pi2_src[3 * src_strd];
e[0] = (pi2_src[0] + pi2_src[2 * src_strd]) << 6;
e[1] = (pi2_src[0] - pi2_src[2 * src_strd]) << 6;
pi2_dst[0] =
CLIP_S16(((e[0] + o[0] + add) >> i4_shift));
pi2_dst[1] =
CLIP_S16(((e[1] + o[1] + add) >> i4_shift));
pi2_dst[2] =
CLIP_S16(((e[1] - o[1] + add) >> i4_shift));
pi2_dst[3] =
CLIP_S16(((e[0] - o[0] + add) >> i4_shift));
}
pi2_src++;
pi2_dst += dst_strd;
zero_cols = zero_cols >> 1;
}
}
#endif
/**
*******************************************************************************
*
* @brief
* This function performs Single stage Inverse transform for 8x8 input
* block
*
* @par Description:
* Performs single stage 8x8 inverse transform by utilizing the symmetry of
* transformation matrix and reducing number of multiplications wherever
* possible but keeping the number of operations(addition,multiplication and
* shift) same
*
* @param[in] pi2_src
* Input 8x8 coefficients
*
* @param[out] pi2_dst
* Output 8x8 block
*
* @param[in] src_strd
* Input stride
*
* @param[in] dst_strd
* Output Stride
*
* @param[in] i4_shift
* Output shift
*
* @param[in] zero_cols
* Zero columns in pi2_src
*
* @returns Void
*
* @remarks
* None
*
*******************************************************************************
*/
#if NON_OPTIMIZED
void ihevc_itrans_8x8(WORD16 *pi2_src,
WORD16 *pi2_dst,
WORD32 src_strd,
WORD32 dst_strd,
WORD32 i4_shift,
WORD32 zero_cols)
{
WORD32 j, k;
WORD32 e[4], o[4];
WORD32 ee[2], eo[2];
WORD32 add;
add = 1 << (i4_shift - 1);
for(j = 0; j < TRANS_SIZE_8; j++)
{
/* Checking for Zero Cols */
if((zero_cols & 1) == 1)
{
memset(pi2_dst, 0, TRANS_SIZE_8 * sizeof(WORD16));
}
else
{
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
for(k = 0; k < 4; k++)
{
o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_src[src_strd]
+ g_ai2_ihevc_trans_8[3][k]
* pi2_src[3 * src_strd]
+ g_ai2_ihevc_trans_8[5][k]
* pi2_src[5 * src_strd]
+ g_ai2_ihevc_trans_8[7][k]
* pi2_src[7 * src_strd];
}
eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_src[2 * src_strd]
+ g_ai2_ihevc_trans_8[6][0] * pi2_src[6 * src_strd];
eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_src[2 * src_strd]
+ g_ai2_ihevc_trans_8[6][1] * pi2_src[6 * src_strd];
ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_src[0]
+ g_ai2_ihevc_trans_8[4][0] * pi2_src[4 * src_strd];
ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_src[0]
+ g_ai2_ihevc_trans_8[4][1] * pi2_src[4 * src_strd];
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
e[0] = ee[0] + eo[0];
e[3] = ee[0] - eo[0];
e[1] = ee[1] + eo[1];
e[2] = ee[1] - eo[1];
for(k = 0; k < 4; k++)
{
pi2_dst[k] =
CLIP_S16(((e[k] + o[k] + add) >> i4_shift));
pi2_dst[k + 4] =
CLIP_S16(((e[3 - k] - o[3 - k] + add) >> i4_shift));
}
}
pi2_src++;
pi2_dst += dst_strd;
zero_cols = zero_cols >> 1;
}
}
#else
void ihevc_itrans_8x8(WORD16 *pi2_src,
WORD16 *pi2_dst,
WORD32 src_strd,
WORD32 dst_strd,
WORD32 i4_shift,
WORD32 zero_cols)
{
/* Transform Matrix 8x8 */
/* 0 1 2 3 4 5 6 7 */
/* 0 - 64 64 64 64 64 64 64 64 */
/* 1 - 89 75 50 18 -18 -50 -75 -89 */
/* 2 - 83 36 -36 -83 -83 -36 36 83 */
/* 3 - 75 -18 -89 -50 50 89 18 -75 */
/* 4 - 64 -64 -64 64 64 -64 -64 64 */
/* 5 - 50 -89 18 75 -75 -18 89 -50 */
/* 6 - 36 -83 83 -36 -36 83 -83 36 */
/* 7 - 18 -50 75 -89 89 -75 50 -18 */
/* 0th and 4th row will have no multiplications */
/* 2nd and 6th row has only two coefff multiplies */
/* 1st, 3rd, 5th and 7th rows have o mirror symmetry */
WORD32 j, k;
WORD32 temp1, temp2;
WORD32 e[4], o[4];
WORD32 ee[2], eo[2];
WORD32 add;
add = 1 << (i4_shift - 1);
for(j = 0; j < TRANS_SIZE_8; j++)
{
/* Checking for Zero Cols */
if((zero_cols & 1) == 1)
{
memset(pi2_dst, 0, TRANS_SIZE_8 * sizeof(WORD16));
}
else
{
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
/*
o[0] = 89 *pi2_src[8] + 75 *pi2_src[3*8] + 50 *pi2_src[5*8] + 18 *pi2_src[7*8];
o[1] = 75 *pi2_src[8] + -18 *pi2_src[3*8] + -89 *pi2_src[5*8] + -50 *pi2_src[7*8];
o[2] = 50 *pi2_src[8] + -89 *pi2_src[3*8] + 18 *pi2_src[5*8] + 75 *pi2_src[7*8];
o[3] = 18 *pi2_src[8] + -50 *pi2_src[3*8] + 75 *pi2_src[5*8] + -89 *pi2_src[7*8];
*/
/* Optimization: 4 mul + 2 add ---> 3 mul + 3 add */
/*
temp1 = (pi2_src[8 ] + pi2_src[3*8]) * 75;
temp2 = (pi2_src[5*8] + pi2_src[7*8]) * 50;
o[0] = temp1 + 14 * pi2_src[8 ] + temp2 - 32 * pi2_src[7*8];
o[1] = temp1 - 93 * pi2_src[3*8] - temp2 - 39 * pi2_src[5*8];
*/
temp1 = (pi2_src[src_strd] + pi2_src[3 * src_strd]) * 75;
temp2 = (pi2_src[5 * src_strd] + pi2_src[7 * src_strd]) * 50;
o[0] = temp1 + 14 * pi2_src[src_strd] + temp2
- (pi2_src[7 * src_strd] << 5);
o[1] = temp1 - 93 * pi2_src[3 * src_strd] - temp2
- 39 * pi2_src[5 * src_strd];
/* Optimization: 4 mul + 2 add ---> 3 mul + 3 add */
/*
temp1 = (pi2_src[8 ] - pi2_src[3*8]) * 50;
temp2 = (pi2_src[5*8] + pi2_src[7*8]) * 75;
o[2] = temp1 - 39 * pi2_src[3*8] + temp2 - 57 * pi2_src[5*8];
o[3] = temp1 - 32 * pi2_src[8 ] + temp2 - 164 * pi2_src[7*8];
*/
temp1 = (pi2_src[src_strd] - pi2_src[3 * src_strd]) * 50;
temp2 = (pi2_src[5 * src_strd] + pi2_src[7 * src_strd]) * 75;
o[2] = temp1 - 39 * pi2_src[3 * src_strd] + temp2
- 57 * pi2_src[5 * src_strd];
o[3] = temp1 - (pi2_src[src_strd] << 5) + temp2
- 164 * pi2_src[7 * src_strd];
/*
eo[0] = 83 *pi2_src[ 2*8 ] + 36 *pi2_src[ 6*8 ];
eo[1] = 36 *pi2_src[ 2*8 ] + -83 *pi2_src[ 6*8 ];
ee[0] = 64 *pi2_src[ 0 ] + 64 *pi2_src[ 4*8 ];
ee[1] = 64 *pi2_src[ 0 ] + -64 *pi2_src[ 4*8 ];
*/
/* Optimization: 4 mul + 2 add ---> 3 mul + 3 add */
temp1 = (pi2_src[2 * src_strd] + pi2_src[6 * src_strd]) * 36;
eo[0] = temp1 + 47 * pi2_src[2 * src_strd];
eo[1] = temp1 - 119 * pi2_src[6 * src_strd];
/* Optimization: 4 mul + 2 add ---> 2 i4_shift + 2 add */
ee[0] = (pi2_src[0] + pi2_src[4 * src_strd]) << 6;
ee[1] = (pi2_src[0] - pi2_src[4 * src_strd]) << 6;
e[0] = ee[0] + eo[0];
e[3] = ee[0] - eo[0];
e[1] = ee[1] + eo[1];
e[2] = ee[1] - eo[1];
for(k = 0; k < 4; k++)
{
pi2_dst[k] =
CLIP_S16(((e[k] + o[k] + add) >> i4_shift));
pi2_dst[k + 4] =
CLIP_S16(((e[3 - k] - o[3 - k] + add) >> i4_shift));
}
}
pi2_src++;
pi2_dst += dst_strd;
zero_cols = zero_cols >> 1;
}
}
#endif
/**
*******************************************************************************
*
* @brief
* This function performs Single stage Inverse transform for 16x16 input
* block
*
* @par Description:
* Performs single stage 16x16 inverse transform by utilizing the symmetry
* of transformation matrix and reducing number of multiplications wherever
* possible but keeping the number of operations (addition,multiplication
* and shift) same
*
* @param[in] pi2_src
* Input 16x16 coefficients
*
* @param[out] pi2_dst
* Output 16x16 block
*
* @param[in] src_strd
* Input stride
*
* @param[in] dst_strd
* Output Stride
*
* @param[in] i4_shift
* Output shift
*
* @param[in] zero_cols
* Zero columns in pi2_src
*
* @returns Void
*
* @remarks
* None
*
*******************************************************************************
*/
#if NON_OPTIMIZED
void ihevc_itrans_16x16(WORD16 *pi2_src,
WORD16 *pi2_dst,
WORD32 src_strd,
WORD32 dst_strd,
WORD32 i4_shift,
WORD32 zero_cols)
{
WORD32 j, k;
WORD32 e[8], o[8];
WORD32 ee[4], eo[4];
WORD32 eee[2], eeo[2];
WORD32 add;
add = 1 << (i4_shift - 1);
for(j = 0; j < TRANS_SIZE_16; j++)
{
/* Checking for Zero Cols */
if((zero_cols & 1) == 1)
{
memset(pi2_dst, 0, TRANS_SIZE_16 * sizeof(WORD16));
}
else
{
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
for(k = 0; k < 8; k++)
{
o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_src[src_strd]
+ g_ai2_ihevc_trans_16[3][k]
* pi2_src[3 * src_strd]
+ g_ai2_ihevc_trans_16[5][k]
* pi2_src[5 * src_strd]
+ g_ai2_ihevc_trans_16[7][k]
* pi2_src[7 * src_strd]
+ g_ai2_ihevc_trans_16[9][k]
* pi2_src[9 * src_strd]
+ g_ai2_ihevc_trans_16[11][k]
* pi2_src[11 * src_strd]
+ g_ai2_ihevc_trans_16[13][k]
* pi2_src[13 * src_strd]
+ g_ai2_ihevc_trans_16[15][k]
* pi2_src[15 * src_strd];
}
for(k = 0; k < 4; k++)
{
eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_src[2 * src_strd]
+ g_ai2_ihevc_trans_16[6][k]
* pi2_src[6 * src_strd]
+ g_ai2_ihevc_trans_16[10][k]
* pi2_src[10 * src_strd]
+ g_ai2_ihevc_trans_16[14][k]
* pi2_src[14 * src_strd];
}
eeo[0] = g_ai2_ihevc_trans_16[4][0] * pi2_src[4 * src_strd]
+ g_ai2_ihevc_trans_16[12][0]
* pi2_src[12 * src_strd];
eee[0] =
g_ai2_ihevc_trans_16[0][0] * pi2_src[0]
+ g_ai2_ihevc_trans_16[8][0]
* pi2_src[8
* src_strd];
eeo[1] = g_ai2_ihevc_trans_16[4][1] * pi2_src[4 * src_strd]
+ g_ai2_ihevc_trans_16[12][1]
* pi2_src[12 * src_strd];
eee[1] =
g_ai2_ihevc_trans_16[0][1] * pi2_src[0]
+ g_ai2_ihevc_trans_16[8][1]
* pi2_src[8
* src_strd];
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
for(k = 0; k < 2; k++)
{
ee[k] = eee[k] + eeo[k];
ee[k + 2] = eee[1 - k] - eeo[1 - k];
}
for(k = 0; k < 4; k++)
{
e[k] = ee[k] + eo[k];
e[k + 4] = ee[3 - k] - eo[3 - k];
}
for(k = 0; k < 8; k++)
{
pi2_dst[k] =
CLIP_S16(((e[k] + o[k] + add) >> i4_shift));
pi2_dst[k + 8] =
CLIP_S16(((e[7 - k] - o[7 - k] + add) >> i4_shift));
}
}
pi2_src++;
pi2_dst += dst_strd;
zero_cols = zero_cols >> 1;
}
}
#else
void ihevc_itrans_16x16(WORD16 *pi2_src,
WORD16 *pi2_dst,
WORD32 src_strd,
WORD32 dst_strd,
WORD32 i4_shift,
WORD32 zero_cols)
{
WORD32 j, k;
WORD32 e[8], o[8];
WORD32 ee[4], eo[4];
WORD32 eee[2], eeo[2];
WORD32 add;
WORD32 temp1, temp2;
add = 1 << (i4_shift - 1);
/***************************************************************************/
/* Transform Matrix 16x16 */
/* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
/* 0 { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64}, */
/* 1 { 90, 87, 80, 70, 57, 43, 25, 9, -9,-25,-43,-57,-70,-80,-87,-90}, */
/* 2 { 89, 75, 50, 18,-18,-50,-75,-89,-89,-75,-50,-18, 18, 50, 75, 89}, */
/* 3 { 87, 57, 9,-43,-80,-90,-70,-25, 25, 70, 90, 80, 43, -9,-57,-87}, */
/* 4 { 83, 36,-36,-83,-83,-36, 36, 83, 83, 36,-36,-83,-83,-36, 36, 83}, */
/* 5 { 80, 9,-70,-87,-25, 57, 90, 43,-43,-90,-57, 25, 87, 70, -9,-80}, */
/* 6 { 75,-18,-89,-50, 50, 89, 18,-75,-75, 18, 89, 50,-50,-89,-18, 75}, */
/* 7 { 70,-43,-87, 9, 90, 25,-80,-57, 57, 80,-25,-90, -9, 87, 43,-70}, */
/* 8 { 64,-64,-64, 64, 64,-64,-64, 64, 64,-64,-64, 64, 64,-64,-64, 64}, */
/* 9 { 57,-80,-25, 90, -9,-87, 43, 70,-70,-43, 87, 9,-90, 25, 80,-57}, */
/* 10 { 50,-89, 18, 75,-75,-18, 89,-50,-50, 89,-18,-75, 75, 18,-89, 50}, */
/* 11 { 43,-90, 57, 25,-87, 70, 9,-80, 80, -9,-70, 87,-25,-57, 90,-43}, */
/* 12 { 36,-83, 83,-36,-36, 83,-83, 36, 36,-83, 83,-36,-36, 83,-83, 36}, */
/* 13 { 25,-70, 90,-80, 43, 9,-57, 87,-87, 57, -9,-43, 80,-90, 70,-25}, */
/* 14 { 18,-50, 75,-89, 89,-75, 50,-18,-18, 50,-75, 89,-89, 75,-50, 18}, */
/* 15 { 9,-25, 43,-57, 70,-80, 87,-90, 90,-87, 80,-70, 57,-43, 25, -9} */
/***************************************************************************/
for(j = 0; j < TRANS_SIZE_16; j++)
{
/* Checking for Zero Cols */
if((zero_cols & 1) == 1)
{
memset(pi2_dst, 0, TRANS_SIZE_16 * sizeof(WORD16));
}
else
{
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
{
/*
o[k] = g_ai2_ihevc_trans_16[ 1][k]*pi2_src[ src_strd ] + g_ai2_ihevc_trans_16[ 3][k]*pi2_src[ 3*src_strd ] + g_ai2_ihevc_trans_16[ 5][k]*pi2_src[ 5*src_strd ] + g_ai2_ihevc_trans_16[ 7][k]*pi2_src[ 7*src_strd ] +
g_ai2_ihevc_trans_16[ 9][k]*pi2_src[ 9*src_strd ] + g_ai2_ihevc_trans_16[11][k]*pi2_src[11*src_strd ] + g_ai2_ihevc_trans_16[13][k]*pi2_src[13*src_strd ] + g_ai2_ihevc_trans_16[15][k]*pi2_src[15*src_strd ];
*/
o[0] = 90 * pi2_src[src_strd] + 87 * pi2_src[3 * src_strd]
+ 80 * pi2_src[5 * src_strd]
+ 70 * pi2_src[7 * src_strd]
+ 57 * pi2_src[9 * src_strd]
+ 43 * pi2_src[11 * src_strd]
+ 25 * pi2_src[13 * src_strd]
+ 9 * pi2_src[15 * src_strd];
o[1] = 87 * pi2_src[src_strd] + 57 * pi2_src[3 * src_strd]
+ 9 * pi2_src[5 * src_strd]
+ -43 * pi2_src[7 * src_strd]
+ -80 * pi2_src[9 * src_strd]
+ -90 * pi2_src[11 * src_strd]
+ -70 * pi2_src[13 * src_strd]
+ -25 * pi2_src[15 * src_strd];
o[2] = 80 * pi2_src[src_strd] + 9 * pi2_src[3 * src_strd]
+ -70 * pi2_src[5 * src_strd]
+ -87 * pi2_src[7 * src_strd]
+ -25 * pi2_src[9 * src_strd]
+ 57 * pi2_src[11 * src_strd]
+ 90 * pi2_src[13 * src_strd]
+ 43 * pi2_src[15 * src_strd];
o[3] = 70 * pi2_src[src_strd] + -43 * pi2_src[3 * src_strd]
+ -87 * pi2_src[5 * src_strd]
+ 9 * pi2_src[7 * src_strd]
+ 90 * pi2_src[9 * src_strd]
+ 25 * pi2_src[11 * src_strd]
+ -80 * pi2_src[13 * src_strd]
+ -57 * pi2_src[15 * src_strd];
o[4] = 57 * pi2_src[src_strd] + -80 * pi2_src[3 * src_strd]
+ -25 * pi2_src[5 * src_strd]
+ 90 * pi2_src[7 * src_strd]
+ -9 * pi2_src[9 * src_strd]
+ -87 * pi2_src[11 * src_strd]
+ 43 * pi2_src[13 * src_strd]
+ 70 * pi2_src[15 * src_strd];
o[5] = 43 * pi2_src[src_strd] + -90 * pi2_src[3 * src_strd]
+ 57 * pi2_src[5 * src_strd]
+ 25 * pi2_src[7 * src_strd]
+ -87 * pi2_src[9 * src_strd]
+ 70 * pi2_src[11 * src_strd]
+ 9 * pi2_src[13 * src_strd]
+ -80 * pi2_src[15 * src_strd];
o[6] = 25 * pi2_src[src_strd] + -70 * pi2_src[3 * src_strd]
+ 90 * pi2_src[5 * src_strd]
+ -80 * pi2_src[7 * src_strd]
+ 43 * pi2_src[9 * src_strd]
+ 9 * pi2_src[11 * src_strd]
+ -57 * pi2_src[13 * src_strd]
+ 87 * pi2_src[15 * src_strd];
o[7] = 9 * pi2_src[src_strd] + -25 * pi2_src[3 * src_strd]
+ 43 * pi2_src[5 * src_strd]
+ -57 * pi2_src[7 * src_strd]
+ 70 * pi2_src[9 * src_strd]
+ -80 * pi2_src[11 * src_strd]
+ 87 * pi2_src[13 * src_strd]
+ -90 * pi2_src[15 * src_strd];
}
{
temp1 = (pi2_src[2 * src_strd] + pi2_src[6 * src_strd]) * 75;
temp2 = (pi2_src[10 * src_strd] + pi2_src[14 * src_strd]) * 50;
eo[0] = temp1 + 14 * pi2_src[2 * src_strd] + temp2
- (pi2_src[14 * src_strd] << 5);
eo[1] = temp1 - 93 * pi2_src[6 * src_strd] - temp2
- 39 * pi2_src[10 * src_strd];
temp1 = (pi2_src[2 * src_strd] - pi2_src[6 * src_strd]) * 50;
temp2 = (pi2_src[10 * src_strd] + pi2_src[14 * src_strd]) * 75;
eo[2] = temp1 - 39 * pi2_src[6 * src_strd] + temp2
- 57 * pi2_src[10 * src_strd];
eo[3] = temp1 - (pi2_src[2 * src_strd] << 5) + temp2
- 164 * pi2_src[14 * src_strd];
}
temp1 = (pi2_src[4 * src_strd] + pi2_src[12 * src_strd]) * 36;
eeo[0] = temp1 + 47 * pi2_src[4 * src_strd];
eeo[1] = temp1 - 119 * pi2_src[12 * src_strd];
eee[0] = (pi2_src[0] + pi2_src[8 * src_strd]) << 6;
eee[1] = (pi2_src[0] - pi2_src[8 * src_strd]) << 6;
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
for(k = 0; k < 2; k++)
{
ee[k] = eee[k] + eeo[k];
ee[k + 2] = eee[1 - k] - eeo[1 - k];
}
for(k = 0; k < 4; k++)
{
e[k] = ee[k] + eo[k];
e[k + 4] = ee[3 - k] - eo[3 - k];
}
for(k = 0; k < 8; k++)
{
pi2_dst[k] =
CLIP_S16(((e[k] + o[k] + add) >> i4_shift));
pi2_dst[k + 8] =
CLIP_S16(((e[7 - k] - o[7 - k] + add) >> i4_shift));
}
}
pi2_src++;
pi2_dst += dst_strd;
zero_cols = zero_cols >> 1;
}
}
#endif
/**
*******************************************************************************
*
* @brief
* This function performs Single stage Inverse transform for 32x32 input
* block
*
* @par Description:
* Performs single stage 32x32 inverse transform by utilizing the symmetry
* of transformation matrix and reducing number of multiplications wherever
* possible but keeping the number of operations (addition,multiplication
* and shift) same
*
* @param[in] pi2_src
* Input 32x32 coefficients
*
* @param[out] pi2_dst
* Output 32x32 block
*
* @param[in] src_strd
* Input stride
*
* @param[in] dst_strd
* Output Stride
*
* @param[in] i4_shift
* Output shift
*
* @param[in] zero_cols
* Zero columns in pi2_src
*
* @returns Void
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_itrans_32x32(WORD16 *pi2_src,
WORD16 *pi2_dst,
WORD32 src_strd,
WORD32 dst_strd,
WORD32 i4_shift,
WORD32 zero_cols)
{
WORD32 j, k;
WORD32 e[16], o[16];
WORD32 ee[8], eo[8];
WORD32 eee[4], eeo[4];
WORD32 eeee[2], eeeo[2];
WORD32 add;
add = 1 << (i4_shift - 1);
for(j = 0; j < TRANS_SIZE_32; j++)
{
/* Checking for Zero Cols */
if((zero_cols & 1) == 1)
{
memset(pi2_dst, 0, TRANS_SIZE_32 * sizeof(WORD16));
}
else
{
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
for(k = 0; k < 16; k++)
{
o[k] = g_ai2_ihevc_trans_32[1][k] * pi2_src[src_strd]
+ g_ai2_ihevc_trans_32[3][k]
* pi2_src[3 * src_strd]
+ g_ai2_ihevc_trans_32[5][k]
* pi2_src[5 * src_strd]
+ g_ai2_ihevc_trans_32[7][k]
* pi2_src[7 * src_strd]
+ g_ai2_ihevc_trans_32[9][k]
* pi2_src[9 * src_strd]
+ g_ai2_ihevc_trans_32[11][k]
* pi2_src[11 * src_strd]
+ g_ai2_ihevc_trans_32[13][k]
* pi2_src[13 * src_strd]
+ g_ai2_ihevc_trans_32[15][k]
* pi2_src[15 * src_strd]
+ g_ai2_ihevc_trans_32[17][k]
* pi2_src[17 * src_strd]
+ g_ai2_ihevc_trans_32[19][k]
* pi2_src[19 * src_strd]
+ g_ai2_ihevc_trans_32[21][k]
* pi2_src[21 * src_strd]
+ g_ai2_ihevc_trans_32[23][k]
* pi2_src[23 * src_strd]
+ g_ai2_ihevc_trans_32[25][k]
* pi2_src[25 * src_strd]
+ g_ai2_ihevc_trans_32[27][k]
* pi2_src[27 * src_strd]
+ g_ai2_ihevc_trans_32[29][k]
* pi2_src[29 * src_strd]
+ g_ai2_ihevc_trans_32[31][k]
* pi2_src[31 * src_strd];
}
for(k = 0; k < 8; k++)
{
eo[k] = g_ai2_ihevc_trans_32[2][k] * pi2_src[2 * src_strd]
+ g_ai2_ihevc_trans_32[6][k]
* pi2_src[6 * src_strd]
+ g_ai2_ihevc_trans_32[10][k]
* pi2_src[10 * src_strd]
+ g_ai2_ihevc_trans_32[14][k]
* pi2_src[14 * src_strd]
+ g_ai2_ihevc_trans_32[18][k]
* pi2_src[18 * src_strd]
+ g_ai2_ihevc_trans_32[22][k]
* pi2_src[22 * src_strd]
+ g_ai2_ihevc_trans_32[26][k]
* pi2_src[26 * src_strd]
+ g_ai2_ihevc_trans_32[30][k]
* pi2_src[30 * src_strd];
}
for(k = 0; k < 4; k++)
{
eeo[k] = g_ai2_ihevc_trans_32[4][k] * pi2_src[4 * src_strd]
+ g_ai2_ihevc_trans_32[12][k]
* pi2_src[12 * src_strd]
+ g_ai2_ihevc_trans_32[20][k]
* pi2_src[20 * src_strd]
+ g_ai2_ihevc_trans_32[28][k]
* pi2_src[28 * src_strd];
}
eeeo[0] = g_ai2_ihevc_trans_32[8][0] * pi2_src[8 * src_strd]
+ g_ai2_ihevc_trans_32[24][0]
* pi2_src[24 * src_strd];
eeeo[1] = g_ai2_ihevc_trans_32[8][1] * pi2_src[8 * src_strd]
+ g_ai2_ihevc_trans_32[24][1]
* pi2_src[24 * src_strd];
eeee[0] = g_ai2_ihevc_trans_32[0][0] * pi2_src[0]
+ g_ai2_ihevc_trans_32[16][0]
* pi2_src[16 * src_strd];
eeee[1] = g_ai2_ihevc_trans_32[0][1] * pi2_src[0]
+ g_ai2_ihevc_trans_32[16][1]
* pi2_src[16 * src_strd];
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
eee[0] = eeee[0] + eeeo[0];
eee[3] = eeee[0] - eeeo[0];
eee[1] = eeee[1] + eeeo[1];
eee[2] = eeee[1] - eeeo[1];
for(k = 0; k < 4; k++)
{
ee[k] = eee[k] + eeo[k];
ee[k + 4] = eee[3 - k] - eeo[3 - k];
}
for(k = 0; k < 8; k++)
{
e[k] = ee[k] + eo[k];
e[k + 8] = ee[7 - k] - eo[7 - k];
}
for(k = 0; k < 16; k++)
{
pi2_dst[k] =
CLIP_S16(((e[k] + o[k] + add) >> i4_shift));
pi2_dst[k + 16] =
CLIP_S16(((e[15 - k] - o[15 - k] + add) >> i4_shift));
}
}
pi2_src++;
pi2_dst += dst_strd;
zero_cols = zero_cols >> 1;
}
}