blob: abb219a7677d9951166bd76612f3c47d7c68f8c0 [file] [log] [blame]
/******************************************************************************
*
* Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/**
*******************************************************************************
* @file
* ihevc_intra_pred_filters.c
*
* @brief
* Contains function Definition for intra prediction interpolation filters
*
*
* @author
* Srinivas T
*
* @par List of Functions:
* - ihevc_intra_pred_luma_planar()
* - ihevc_intra_pred_luma_dc()
* - ihevc_intra_pred_luma_horz()
* - ihevc_intra_pred_luma_ver()
* - ihevc_intra_pred_luma_mode2()
* - ihevc_intra_pred_luma_mode_18_34()
* - ihevc_intra_pred_luma_mode_3_to_9()
* - ihevc_intra_pred_luma_mode_11_to_17()
* - ihevc_intra_pred_luma_mode_19_to_25()
* - ihevc_intra_pred_luma_mode_27_to_33()
* - ihevc_intra_pred_luma_ref_substitution()
*
* @remarks
* None
*
*******************************************************************************
*/
/*****************************************************************************/
/* File Includes */
/*****************************************************************************/
#include <assert.h>
#include "ihevc_typedefs.h"
#include "ihevc_intra_pred.h"
#include "ihevc_macros.h"
#include "ihevc_func_selector.h"
#include "ihevc_platform_macros.h"
#include "ihevc_common_tables.h"
#include "ihevc_defs.h"
#include "ihevc_mem_fns.h"
#include "ihevc_debug.h"
/****************************************************************************/
/* Constant Macros */
/****************************************************************************/
#define MAX_CU_SIZE 64
#define BIT_DEPTH 8
#define T32_4NT 128
#define T16_4NT 64
/****************************************************************************/
/* Function Macros */
/****************************************************************************/
#define GET_BITS(y,x) ((y) & (1 << x)) && (1 << x)
/*****************************************************************************/
/* global tables Definition */
/*****************************************************************************/
/*****************************************************************************/
/* Function Definition */
/*****************************************************************************/
/**
*******************************************************************************
*
* @brief
* Intra prediction interpolation filter for pu1_ref substitution
*
*
* @par Description:
* Reference substitution process for samples unavailable for prediction
* Refer to section 8.4.4.2.2
*
* @param[in] pu1_top_left
* UWORD8 pointer to the top-left
*
* @param[in] pu1_top
* UWORD8 pointer to the top
*
* @param[in] pu1_left
* UWORD8 pointer to the left
*
* @param[in] src_strd
* WORD32 Source stride
*
* @param[in] nbr_flags
* WORD32 neighbor availability flags
*
* @param[in] nt
* WORD32 transform Block size
*
* @param[in] dst_strd
* WORD32 Destination stride
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_luma_ref_subst_all_avlble(UWORD8 *pu1_top_left,
UWORD8 *pu1_top,
UWORD8 *pu1_left,
WORD32 src_strd,
WORD32 nt,
WORD32 nbr_flags,
UWORD8 *pu1_dst,
WORD32 dst_strd)
{
WORD32 i;
WORD32 two_nt = 2 * nt;
UNUSED(nbr_flags);
UNUSED(dst_strd);
/* Neighbor Flag Structure*/
/* MSB ---> LSB */
/* Top-Left | Top-Right | Top | Left | Bottom-Left
1 4 4 4 4
*/
ASSERT((nbr_flags == 0x11188) || (nbr_flags == 0x133CC) || (nbr_flags == 0x1FFFF));
{
if(nt == 4)
{
/* 1 bit extraction for all the neighboring blocks */
/* Else fill the corresponding samples */
pu1_dst[two_nt] = *pu1_top_left;
//if(left)
{
for(i = 0; i < nt; i++)
pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd];
}
// if(bot_left)
{
for(i = nt; i < two_nt; i++)
pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd];
}
// if(top)
{
ihevc_memcpy(&pu1_dst[two_nt + 1], pu1_top, nt);
}
// if(tp_right)
{
ihevc_memcpy(&pu1_dst[two_nt + 1 + nt], pu1_top + nt, nt);
}
}
else
{
/* Else fill the corresponding samples */
ASSERT((nt == 8) || (nt == 16) || (nt == 32));
pu1_dst[two_nt] = *pu1_top_left;
for(i = 0; i < nt; i++)
pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd];
for(i = nt; i < two_nt; i++)
pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd];
ihevc_memcpy_mul_8(&pu1_dst[two_nt + 1], pu1_top, nt);
ihevc_memcpy_mul_8(&pu1_dst[two_nt + 1 + nt], pu1_top + nt, nt);
}
}
}
void ihevc_intra_pred_luma_ref_substitution(UWORD8 *pu1_top_left,
UWORD8 *pu1_top,
UWORD8 *pu1_left,
WORD32 src_strd,
WORD32 nt,
WORD32 nbr_flags,
UWORD8 *pu1_dst,
WORD32 dst_strd)
{
UWORD8 pu1_ref;
WORD32 dc_val, i;
WORD32 total_samples = (4 * nt) + 1;
WORD32 two_nt = 2 * nt;
WORD32 three_nt = 3 * nt;
WORD32 get_bits;
WORD32 next;
WORD32 bot_left, left, top, tp_right, tp_left;
WORD32 idx, nbr_id_from_bl, frwd_nbr_flag;
UNUSED(dst_strd);
/*dc_val = 1 << (BIT_DEPTH - 1);*/
dc_val = 1 << (8 - 1);
/* Neighbor Flag Structure*/
/* MSB ---> LSB */
/* Top-Left | Top-Right | Top | Left | Bottom-Left
1 4 4 4 4
*/
/* If no neighbor flags are present, fill the neighbor samples with DC value */
if(nbr_flags == 0)
{
for(i = 0; i < total_samples; i++)
{
pu1_dst[i] = dc_val;
}
}
else
{
if(nt <= 8)
{
/* 1 bit extraction for all the neighboring blocks */
tp_left = (nbr_flags & 0x10000) >> 16;
bot_left = (nbr_flags & 0x8) >> 3;
left = (nbr_flags & 0x80) >> 7;
top = (nbr_flags & 0x100) >> 8;
tp_right = (nbr_flags & 0x1000) >> 12;
/* Else fill the corresponding samples */
if(tp_left)
pu1_dst[two_nt] = *pu1_top_left;
else
pu1_dst[two_nt] = 0;
if(left)
{
for(i = 0; i < nt; i++)
pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd];
}
else
{
ihevc_memset(&pu1_dst[two_nt - 1 - (nt - 1)], 0, nt);
}
if(bot_left)
{
for(i = nt; i < two_nt; i++)
pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd];
}
else
{
ihevc_memset(&pu1_dst[two_nt - 1 - (two_nt - 1)], 0, nt);
}
if(top)
{
ihevc_memcpy(&pu1_dst[two_nt + 1], pu1_top, nt);
}
else
{
ihevc_memset(&pu1_dst[two_nt + 1], 0, nt);
}
if(tp_right)
{
ihevc_memcpy(&pu1_dst[two_nt + 1 + nt], pu1_top + nt, nt);
}
else
{
ihevc_memset(&pu1_dst[two_nt + 1 + nt], 0, nt);
}
next = 1;
/* If bottom -left is not available, reverse substitution process*/
if(bot_left == 0)
{
WORD32 a_nbr_flag[5];
a_nbr_flag[0] = bot_left;
a_nbr_flag[1] = left;
a_nbr_flag[2] = tp_left;
a_nbr_flag[3] = top;
a_nbr_flag[4] = tp_right;
/* Check for the 1st available sample from bottom-left*/
while(!a_nbr_flag[next])
next++;
/* If Left, top-left are available*/
if(next <= 2)
{
idx = nt * next;
pu1_ref = pu1_dst[idx];
for(i = 0; i < idx; i++)
pu1_dst[i] = pu1_ref;
}
else /* If top, top-right are available */
{
/* Idx is changed to copy 1 pixel value for top-left ,if top-left is not available*/
idx = (nt * (next - 1)) + 1;
pu1_ref = pu1_dst[idx];
for(i = 0; i < idx; i++)
pu1_dst[i] = pu1_ref;
}
}
/* Forward Substitution Process */
/* If left is Unavailable, copy the last bottom-left value */
if(left == 0)
{
ihevc_memset(&pu1_dst[nt], pu1_dst[nt - 1], nt);
}
/* If top-left is Unavailable, copy the last left value */
if(tp_left == 0)
pu1_dst[two_nt] = pu1_dst[two_nt - 1];
/* If top is Unavailable, copy the last top-left value */
if(top == 0)
{
ihevc_memset(&pu1_dst[two_nt + 1], pu1_dst[two_nt], nt);
}
/* If to right is Unavailable, copy the last top value */
if(tp_right == 0)
{
ihevc_memset(&pu1_dst[three_nt + 1], pu1_dst[three_nt], nt);
}
}
if(nt == 16)
{
WORD32 nbr_flags_temp = 0;
nbr_flags_temp = ((nbr_flags & 0xC) >> 2) + ((nbr_flags & 0xC0) >> 4)
+ ((nbr_flags & 0x300) >> 4)
+ ((nbr_flags & 0x3000) >> 6)
+ ((nbr_flags & 0x10000) >> 8);
/* Else fill the corresponding samples */
if(nbr_flags & 0x10000)
pu1_dst[two_nt] = *pu1_top_left;
else
pu1_dst[two_nt] = 0;
if(nbr_flags & 0xC0)
{
for(i = 0; i < nt; i++)
pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd];
}
else
{
ihevc_memset_mul_8(&pu1_dst[two_nt - 1 - (nt - 1)], 0, nt);
}
/* Bottom - left availability is checked for every 8x8 TU position and set accordingly */
{
if(nbr_flags & 0x8)
{
for(i = nt; i < (nt + 8); i++)
pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd];
}
else
{
ihevc_memset_mul_8(&pu1_dst[nt - 8], 0, 8);
}
if(nbr_flags & 0x4)
{
for(i = (nt + 8); i < two_nt; i++)
pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd];
}
else
{
ihevc_memset_mul_8(&pu1_dst[0], 0, 8);
}
}
if(nbr_flags & 0x300)
{
ihevc_memcpy_mul_8(&pu1_dst[two_nt + 1], pu1_top, nt);
}
else
{
ihevc_memset_mul_8(&pu1_dst[two_nt + 1], 0, nt);
}
if(nbr_flags & 0x3000)
{
ihevc_memcpy_mul_8(&pu1_dst[two_nt + 1 + nt], pu1_top + nt, nt);
}
else
{
ihevc_memset_mul_8(&pu1_dst[two_nt + 1 + nt], 0, nt);
}
/* compute trailing zeors based on nbr_flag for substitution process of below left see section .*/
/* as each bit in nbr flags corresponds to 8 pels for bot_left, left, top and topright but 1 pel for topleft */
{
nbr_id_from_bl = look_up_trailing_zeros(nbr_flags_temp & 0XF) * 8; /* for below left and left */
if(nbr_id_from_bl == 64)
nbr_id_from_bl = 32;
if(nbr_id_from_bl == 32)
{
/* for top left : 1 pel per nbr bit */
if(!((nbr_flags_temp >> 8) & 0x1))
{
nbr_id_from_bl++;
nbr_id_from_bl += look_up_trailing_zeros((nbr_flags_temp >> 4) & 0xF) * 8; /* top and top right; 8 pels per nbr bit */
//nbr_id_from_bl += idx * 8;
}
}
/* Reverse Substitution Process*/
if(nbr_id_from_bl)
{
/* Replicate the bottom-left and subsequent unavailable pixels with the 1st available pixel above */
pu1_ref = pu1_dst[nbr_id_from_bl];
for(i = (nbr_id_from_bl - 1); i >= 0; i--)
{
pu1_dst[i] = pu1_ref;
}
}
}
/* for the loop of 4*Nt+1 pixels (excluding pixels computed from reverse substitution) */
while(nbr_id_from_bl < ((T16_4NT)+1))
{
/* To Obtain the next unavailable idx flag after reverse neighbor substitution */
/* Devide by 8 to obtain the original index */
frwd_nbr_flag = (nbr_id_from_bl >> 3); /*+ (nbr_id_from_bl & 0x1);*/
/* The Top-left flag is at the last bit location of nbr_flags*/
if(nbr_id_from_bl == (T16_4NT / 2))
{
get_bits = GET_BITS(nbr_flags_temp, 8);
/* only pel substitution for TL */
if(!get_bits)
pu1_dst[nbr_id_from_bl] = pu1_dst[nbr_id_from_bl - 1];
}
else
{
get_bits = GET_BITS(nbr_flags_temp, frwd_nbr_flag);
if(!get_bits)
{
/* 8 pel substitution (other than TL) */
pu1_ref = pu1_dst[nbr_id_from_bl - 1];
ihevc_memset_mul_8(pu1_dst + nbr_id_from_bl, pu1_ref, 8);
}
}
nbr_id_from_bl += (nbr_id_from_bl == (T16_4NT / 2)) ? 1 : 8;
}
}
if(nt == 32)
{
/* Else fill the corresponding samples */
if(nbr_flags & 0x10000)
pu1_dst[two_nt] = *pu1_top_left;
else
pu1_dst[two_nt] = 0;
if(nbr_flags & 0xF0)
{
for(i = 0; i < nt; i++)
pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd];
}
else
{
ihevc_memset_mul_8(&pu1_dst[two_nt - 1 - (nt - 1)], 0, nt);
}
/* Bottom - left availability is checked for every 8x8 TU position and set accordingly */
{
if(nbr_flags & 0x8)
{
for(i = nt; i < (nt + 8); i++)
pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd];
}
else
{
ihevc_memset_mul_8(&pu1_dst[24], 0, 8);
}
if(nbr_flags & 0x4)
{
for(i = (nt + 8); i < (nt + 16); i++)
pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd];
}
else
{
ihevc_memset_mul_8(&pu1_dst[16], 0, 8);
}
if(nbr_flags & 0x2)
{
for(i = (nt + 16); i < (nt + 24); i++)
pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd];
}
else
{
ihevc_memset_mul_8(&pu1_dst[8], 0, 8);
}
if(nbr_flags & 0x1)
{
for(i = (nt + 24); i < (two_nt); i++)
pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd];
}
else
{
ihevc_memset_mul_8(&pu1_dst[0], 0, 8);
}
}
if(nbr_flags & 0xF00)
{
ihevc_memcpy_mul_8(&pu1_dst[two_nt + 1], pu1_top, nt);
}
else
{
ihevc_memset_mul_8(&pu1_dst[two_nt + 1], 0, nt);
}
if(nbr_flags & 0xF000)
{
ihevc_memcpy_mul_8(&pu1_dst[two_nt + 1 + nt], pu1_top + nt, nt);
}
else
{
ihevc_memset_mul_8(&pu1_dst[two_nt + 1 + nt], 0, nt);
}
/* compute trailing ones based on mbr_flag for substitution process of below left see section .*/
/* as each bit in nbr flags corresponds to 8 pels for bot_left, left, top and topright but 1 pel for topleft */
{
nbr_id_from_bl = look_up_trailing_zeros((nbr_flags & 0XFF)) * 8; /* for below left and left */
if(nbr_id_from_bl == 64)
{
/* for top left : 1 pel per nbr bit */
if(!((nbr_flags >> 16) & 0x1))
{
/* top left not available */
nbr_id_from_bl++;
/* top and top right; 8 pels per nbr bit */
nbr_id_from_bl += look_up_trailing_zeros((nbr_flags >> 8) & 0xFF) * 8;
}
}
/* Reverse Substitution Process*/
if(nbr_id_from_bl)
{
/* Replicate the bottom-left and subsequent unavailable pixels with the 1st available pixel above */
pu1_ref = pu1_dst[nbr_id_from_bl];
for(i = (nbr_id_from_bl - 1); i >= 0; i--)
pu1_dst[i] = pu1_ref;
}
}
/* for the loop of 4*Nt+1 pixels (excluding pixels computed from reverse substitution) */
while(nbr_id_from_bl < ((T32_4NT)+1))
{
/* To Obtain the next unavailable idx flag after reverse neighbor substitution */
/* Devide by 8 to obtain the original index */
frwd_nbr_flag = (nbr_id_from_bl >> 3); /*+ (nbr_id_from_bl & 0x1);*/
/* The Top-left flag is at the last bit location of nbr_flags*/
if(nbr_id_from_bl == (T32_4NT / 2))
{
get_bits = GET_BITS(nbr_flags, 16);
/* only pel substitution for TL */
if(!get_bits)
pu1_dst[nbr_id_from_bl] = pu1_dst[nbr_id_from_bl - 1];
}
else
{
get_bits = GET_BITS(nbr_flags, frwd_nbr_flag);
if(!get_bits)
{
/* 8 pel substitution (other than TL) */
pu1_ref = pu1_dst[nbr_id_from_bl - 1];
ihevc_memset_mul_8(&pu1_dst[nbr_id_from_bl], pu1_ref, 8);
}
}
nbr_id_from_bl += (nbr_id_from_bl == (T32_4NT / 2)) ? 1 : 8;
}
}
}
}
/**
*******************************************************************************
*
* @brief
* Intra prediction interpolation filter for ref_filtering
*
*
* @par Description:
* Reference DC filtering for neighboring samples dependent on TU size and
* mode Refer to section 8.4.4.2.3 in the standard
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[out] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] nt
* integer Transform Block size
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_ref_filtering(UWORD8 *pu1_src,
WORD32 nt,
UWORD8 *pu1_dst,
WORD32 mode,
WORD32 strong_intra_smoothing_enable_flag)
{
WORD32 filter_flag;
WORD32 i; /* Generic indexing variable */
WORD32 four_nt = 4 * nt;
UWORD8 au1_flt[(4 * MAX_CU_SIZE) + 1];
WORD32 bi_linear_int_flag = 0;
WORD32 abs_cond_left_flag = 0;
WORD32 abs_cond_top_flag = 0;
/*WORD32 dc_val = 1 << (BIT_DEPTH - 5);*/
WORD32 dc_val = 1 << (8 - 5);
//WORD32 strong_intra_smoothing_enable_flag = 1;
filter_flag = gau1_intra_pred_ref_filter[mode] & (1 << (CTZ(nt) - 2));
if(0 == filter_flag)
{
if(pu1_src == pu1_dst)
{
return;
}
else
{
for(i = 0; i < (four_nt + 1); i++)
pu1_dst[i] = pu1_src[i];
}
}
else
{
/* If strong intra smoothin is enabled and transform size is 32 */
if((1 == strong_intra_smoothing_enable_flag) && (32 == nt))
{
/* Strong Intra Filtering */
abs_cond_top_flag = (ABS(pu1_src[2 * nt] + pu1_src[4 * nt]
- (2 * pu1_src[3 * nt]))) < dc_val;
abs_cond_left_flag = (ABS(pu1_src[2 * nt] + pu1_src[0]
- (2 * pu1_src[nt]))) < dc_val;
bi_linear_int_flag = ((1 == abs_cond_left_flag)
&& (1 == abs_cond_top_flag));
}
/* Extremities Untouched*/
au1_flt[0] = pu1_src[0];
au1_flt[4 * nt] = pu1_src[4 * nt];
/* Strong filtering of reference samples */
if(1 == bi_linear_int_flag)
{
au1_flt[2 * nt] = pu1_src[2 * nt];
for(i = 1; i < (2 * nt); i++)
au1_flt[i] = (((2 * nt) - i) * pu1_src[0] + i * pu1_src[2 * nt] + 32) >> 6;
for(i = 1; i < (2 * nt); i++)
au1_flt[i + (2 * nt)] = (((2 * nt) - i) * pu1_src[2 * nt] + i * pu1_src[4 * nt] + 32) >> 6;
}
else
{
/* Perform bilinear filtering of Reference Samples */
for(i = 0; i < (four_nt - 1); i++)
{
au1_flt[i + 1] = (pu1_src[i] + 2 * pu1_src[i + 1]
+ pu1_src[i + 2] + 2) >> 2;
}
}
for(i = 0; i < (four_nt + 1); i++)
pu1_dst[i] = au1_flt[i];
}
}
/**
*******************************************************************************
*
* @brief
* Intra prediction interpolation filter for luma planar
*
* @par Description:
* Planar Intraprediction with reference neighboring samples location
* pointed by 'pu1_ref' to the TU block location pointed by 'pu1_dst' Refer
* to section 8.4.4.2.4 in the standard
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[out] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] src_strd
* integer source stride
*
* @param[in] dst_strd
* integer destination stride
*
* @param[in] nt
* integer Transform Block size
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_luma_planar(UWORD8 *pu1_ref,
WORD32 src_strd,
UWORD8 *pu1_dst,
WORD32 dst_strd,
WORD32 nt,
WORD32 mode)
{
WORD32 row, col;
WORD32 log2nt = 5;
WORD32 two_nt, three_nt;
UNUSED(src_strd);
UNUSED(mode);
switch(nt)
{
case 32:
log2nt = 5;
break;
case 16:
log2nt = 4;
break;
case 8:
log2nt = 3;
break;
case 4:
log2nt = 2;
break;
default:
break;
}
two_nt = 2 * nt;
three_nt = 3 * nt;
/* Planar filtering */
for(row = 0; row < nt; row++)
{
for(col = 0; col < nt; col++)
{
pu1_dst[row * dst_strd + col] = ((nt - 1 - col)
* pu1_ref[two_nt - 1 - row]
+ (col + 1) * pu1_ref[three_nt + 1]
+ (nt - 1 - row) * pu1_ref[two_nt + 1 + col]
+ (row + 1) * pu1_ref[nt - 1] + nt) >> (log2nt + 1);
}
}
}
/**
*******************************************************************************
*
* @brief
* Intra prediction interpolation filter for luma dc
*
* @par Description:
* Intraprediction for DC mode with reference neighboring samples location
* pointed by 'pu1_ref' to the TU block location pointed by 'pu1_dst' Refer
* to section 8.4.4.2.5 in the standard
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[out] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] src_strd
* integer source stride
*
* @param[in] dst_strd
* integer destination stride
*
* @param[in] nt
* integer Transform Block size
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_luma_dc(UWORD8 *pu1_ref,
WORD32 src_strd,
UWORD8 *pu1_dst,
WORD32 dst_strd,
WORD32 nt,
WORD32 mode)
{
WORD32 acc_dc;
WORD32 dc_val, two_dc_val, three_dc_val;
WORD32 i;
WORD32 row, col;
WORD32 log2nt = 5;
WORD32 two_nt, three_nt;
UNUSED(mode);
UNUSED(src_strd);
switch(nt)
{
case 32:
log2nt = 5;
break;
case 16:
log2nt = 4;
break;
case 8:
log2nt = 3;
break;
case 4:
log2nt = 2;
break;
default:
break;
}
two_nt = 2 * nt;
three_nt = 3 * nt;
acc_dc = 0;
/* Calculate DC value for the transform block */
for(i = nt; i < two_nt; i++)
acc_dc += pu1_ref[i];
for(i = (two_nt + 1); i <= three_nt; i++)
acc_dc += pu1_ref[i];
dc_val = (acc_dc + nt) >> (log2nt + 1);
two_dc_val = 2 * dc_val;
three_dc_val = 3 * dc_val;
if(nt == 32)
{
for(row = 0; row < nt; row++)
for(col = 0; col < nt; col++)
pu1_dst[(row * dst_strd) + col] = dc_val;
}
else
{
/* DC filtering for the first top row and first left column */
pu1_dst[0] = ((pu1_ref[two_nt - 1] + two_dc_val + pu1_ref[two_nt + 1] + 2)
>> 2);
for(col = 1; col < nt; col++)
pu1_dst[col] = (pu1_ref[two_nt + 1 + col] + three_dc_val + 2) >> 2;
for(row = 1; row < nt; row++)
pu1_dst[row * dst_strd] = (pu1_ref[two_nt - 1 - row] + three_dc_val + 2)
>> 2;
/* Fill the remaining rows with DC value*/
for(row = 1; row < nt; row++)
for(col = 1; col < nt; col++)
pu1_dst[(row * dst_strd) + col] = dc_val;
}
}
/**
*******************************************************************************
*
* @brief
* Intra prediction interpolation filter for horizontal luma variable.
*
* @par Description:
* Horizontal intraprediction(mode 10) with reference samples location
* pointed by 'pu1_ref' to the TU block location pointed by 'pu1_dst' Refer
* to section 8.4.4.2.6 in the standard (Special case)
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[out] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] src_strd
* integer source stride
*
* @param[in] dst_strd
* integer destination stride
*
* @param[in] nt
* integer Transform Block size
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_luma_horz(UWORD8 *pu1_ref,
WORD32 src_strd,
UWORD8 *pu1_dst,
WORD32 dst_strd,
WORD32 nt,
WORD32 mode)
{
WORD32 row, col;
WORD32 two_nt;
WORD16 s2_predpixel;
UNUSED(mode);
UNUSED(src_strd);
two_nt = 2 * nt;
if(nt == 32)
{
for(row = 0; row < nt; row++)
for(col = 0; col < nt; col++)
pu1_dst[(row * dst_strd) + col] = pu1_ref[two_nt - 1 - row];
}
else
{
/*Filtering done for the 1st row */
for(col = 0; col < nt; col++)
{
s2_predpixel = pu1_ref[two_nt - 1]
+ ((pu1_ref[two_nt + 1 + col] - pu1_ref[two_nt]) >> 1);
pu1_dst[col] = CLIP_U8(s2_predpixel);
}
/* Replication to next rows*/
for(row = 1; row < nt; row++)
for(col = 0; col < nt; col++)
pu1_dst[(row * dst_strd) + col] = pu1_ref[two_nt - 1 - row];
}
}
/**
*******************************************************************************
*
* @brief
* Intra prediction interpolation filter for vertical luma variable.
*
* @par Description:
* Horizontal intraprediction with reference neighboring samples location
* pointed by 'pu1_ref' to the TU block location pointed by 'pu1_dst' Refer
* to section 8.4.4.2.6 in the standard (Special case)
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[out] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] src_strd
* integer source stride
*
* @param[in] dst_strd
* integer destination stride
*
* @param[in] nt
* integer Transform Block size
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_luma_ver(UWORD8 *pu1_ref,
WORD32 src_strd,
UWORD8 *pu1_dst,
WORD32 dst_strd,
WORD32 nt,
WORD32 mode)
{
WORD32 row, col;
WORD16 s2_predpixel;
WORD32 two_nt = 2 * nt;
UNUSED(mode);
UNUSED(src_strd);
if(nt == 32)
{
/* Replication to next columns*/
for(row = 0; row < nt; row++)
for(col = 0; col < nt; col++)
pu1_dst[(row * dst_strd) + col] = pu1_ref[two_nt + 1 + col];
}
else
{
/*Filtering done for the 1st column */
for(row = 0; row < nt; row++)
{
s2_predpixel = pu1_ref[two_nt + 1]
+ ((pu1_ref[two_nt - 1 - row] - pu1_ref[two_nt]) >> 1);
pu1_dst[row * dst_strd] = CLIP_U8(s2_predpixel);
}
/* Replication to next columns*/
for(row = 0; row < nt; row++)
for(col = 1; col < nt; col++)
pu1_dst[(row * dst_strd) + col] = pu1_ref[two_nt + 1 + col];
}
}
/**
*******************************************************************************
*
* @brief
* Intra prediction interpolation filter for luma mode2.
*
* @par Description:
* Intraprediction for mode 2 (sw angle) with reference neighboring samples
* location pointed by 'pu1_ref' to the TU block location pointed by
* 'pu1_dst' Refer to section 8.4.4.2.6 in the standard
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[out] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] src_strd
* integer source stride
*
* @param[in] dst_strd
* integer destination stride
*
* @param[in] nt
* integer Transform Block size
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_luma_mode2(UWORD8 *pu1_ref,
WORD32 src_strd,
UWORD8 *pu1_dst,
WORD32 dst_strd,
WORD32 nt,
WORD32 mode)
{
WORD32 row, col;
WORD32 two_nt = 2 * nt;
WORD32 intra_pred_ang = 32;
WORD32 idx = 0;
UNUSED(mode);
UNUSED(src_strd);
/* For the angle 45, replication is done from the corresponding angle */
/* intra_pred_ang = tan(angle) in q5 format */
for(col = 0; col < nt; col++)
{
idx = ((col + 1) * intra_pred_ang) >> 5; /* Use idx++ */
for(row = 0; row < nt; row++)
pu1_dst[col + (row * dst_strd)] = pu1_ref[two_nt - row - idx - 1];
}
}
/**
*******************************************************************************
*
* @brief
* Intra prediction interpolation filter for luma mode 18 & mode 34.
*
* @par Description:
* Intraprediction for mode 34 (ne angle) and mode 18 (nw angle) with
* reference neighboring samples location pointed by 'pu1_ref' to the TU
* block location pointed by 'pu1_dst'
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[out] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] src_strd
* integer source stride
*
* @param[in] dst_strd
* integer destination stride
*
* @param[in] nt
* integer Transform Block size
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_luma_mode_18_34(UWORD8 *pu1_ref,
WORD32 src_strd,
UWORD8 *pu1_dst,
WORD32 dst_strd,
WORD32 nt,
WORD32 mode)
{
WORD32 row, col;
WORD32 intra_pred_ang;
WORD32 idx = 0;
WORD32 two_nt = 2 * nt;
UNUSED(src_strd);
intra_pred_ang = 32; /*Default value*/
/* For mode 18, angle is -45degree */
if(mode == 18)
intra_pred_ang = -32;
/* For mode 34, angle is 45degree */
else if(mode == 34)
intra_pred_ang = 32;
/* For the angle 45 and -45, replication is done from the corresponding angle */
/* No interpolation is done for 45 degree*/
for(row = 0; row < nt; row++)
{
idx = ((row + 1) * intra_pred_ang) >> 5;
#if OPT
if(mode == 18)
idx--;
if(mode == 34)
idx++;
#endif
for(col = 0; col < nt; col++)
pu1_dst[col + (row * dst_strd)] = pu1_ref[two_nt + col + idx + 1];
}
}
/**
*******************************************************************************
*
* @brief
* Intra prediction interpolation filter for luma mode 3 to mode 9
*
* @par Description:
* Intraprediction for mode 3 to 9 (positive angle, horizontal mode ) with
* reference neighboring samples location pointed by 'pu1_ref' to the TU
* block location pointed by 'pu1_dst'
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[out] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] src_strd
* integer source stride
*
* @param[in] dst_strd
* integer destination stride
*
* @param[in] nt
* integer Transform Block size
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_luma_mode_3_to_9(UWORD8 *pu1_ref,
WORD32 src_strd,
UWORD8 *pu1_dst,
WORD32 dst_strd,
WORD32 nt,
WORD32 mode)
{
WORD32 row, col;
WORD32 two_nt = 2 * nt;
WORD32 intra_pred_ang;
WORD32 idx, ref_main_idx;
WORD32 pos, fract;
UNUSED(src_strd);
/* Intra Pred Angle according to the mode */
intra_pred_ang = gai4_ihevc_ang_table[mode];
/* For the angles other then 45 degree, interpolation btw 2 neighboring */
/* samples dependent on distance to obtain destination sample */
for(col = 0; col < nt; col++)
{
pos = ((col + 1) * intra_pred_ang);
idx = pos >> 5;
fract = pos & (31);
// Do linear filtering
for(row = 0; row < nt; row++)
{
ref_main_idx = two_nt - row - idx - 1;
pu1_dst[col + (row * dst_strd)] = (((32 - fract)
* pu1_ref[ref_main_idx]
+ fract * pu1_ref[ref_main_idx - 1] + 16) >> 5);
}
}
}
/**
*******************************************************************************
*
* @brief
* Intra prediction interpolation filter for luma mode 11 to mode 17
*
* @par Description:
* Intraprediction for mode 11 to 17 (negative angle, horizontal mode )
* with reference neighboring samples location pointed by 'pu1_ref' to the
* TU block location pointed by 'pu1_dst'
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[out] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] src_strd
* integer source stride
*
* @param[in] dst_strd
* integer destination stride
*
* @param[in] nt
* integer Transform Block size
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_luma_mode_11_to_17(UWORD8 *pu1_ref,
WORD32 src_strd,
UWORD8 *pu1_dst,
WORD32 dst_strd,
WORD32 nt,
WORD32 mode)
{
/* This function and ihevc_intra_pred_luma_mode_19_to_25 are same except*/
/* for ref main & side samples assignment,can be combined for */
/* optimzation*/
WORD32 row, col, k;
WORD32 two_nt;
WORD32 intra_pred_ang, inv_ang, inv_ang_sum;
WORD32 idx, ref_main_idx, ref_idx;
WORD32 pos, fract;
UWORD8 ref_temp[2 * MAX_CU_SIZE + 1];
UWORD8 *ref_main;
UNUSED(src_strd);
inv_ang_sum = 128;
two_nt = 2 * nt;
intra_pred_ang = gai4_ihevc_ang_table[mode];
inv_ang = gai4_ihevc_inv_ang_table[mode - 11];
/* Intermediate reference samples for negative angle modes */
/* This have to be removed during optimization*/
/* For horizontal modes, (ref main = ref left) (ref side = ref above) */
ref_main = ref_temp + nt - 1;
for(k = 0; k < nt + 1; k++)
ref_temp[k + nt - 1] = pu1_ref[two_nt - k];
ref_main = ref_temp + nt - 1;
ref_idx = (nt * intra_pred_ang) >> 5;
/* SIMD Optimization can be done using look-up table for the loop */
/* For negative angled derive the main reference samples from side */
/* reference samples refer to section 8.4.4.2.6 */
for(k = -1; k > ref_idx; k--)
{
inv_ang_sum += inv_ang;
ref_main[k] = pu1_ref[two_nt + (inv_ang_sum >> 8)];
}
/* For the angles other then 45 degree, interpolation btw 2 neighboring */
/* samples dependent on distance to obtain destination sample */
for(col = 0; col < nt; col++)
{
pos = ((col + 1) * intra_pred_ang);
idx = pos >> 5;
fract = pos & (31);
// Do linear filtering
for(row = 0; row < nt; row++)
{
ref_main_idx = row + idx + 1;
pu1_dst[col + (dst_strd * row)] = (UWORD8)(((32 - fract)
* ref_main[ref_main_idx]
+ fract * ref_main[ref_main_idx + 1] + 16) >> 5);
}
}
}
/**
*******************************************************************************
*
* @brief
* Intra prediction interpolation filter for luma mode 19 to mode 25
*
* @par Description:
* Intraprediction for mode 19 to 25 (negative angle, vertical mode ) with
* reference neighboring samples location pointed by 'pu1_ref' to the TU
* block location pointed by 'pu1_dst'
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[out] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] src_strd
* integer source stride
*
* @param[in] dst_strd
* integer destination stride
*
* @param[in] nt
* integer Transform Block size
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_luma_mode_19_to_25(UWORD8 *pu1_ref,
WORD32 src_strd,
UWORD8 *pu1_dst,
WORD32 dst_strd,
WORD32 nt,
WORD32 mode)
{
WORD32 row, col, k;
WORD32 two_nt, intra_pred_ang, idx;
WORD32 inv_ang, inv_ang_sum, pos, fract;
WORD32 ref_main_idx, ref_idx;
UWORD8 ref_temp[(2 * MAX_CU_SIZE) + 1];
UWORD8 *ref_main;
UNUSED(src_strd);
two_nt = 2 * nt;
intra_pred_ang = gai4_ihevc_ang_table[mode];
inv_ang = gai4_ihevc_inv_ang_table[mode - 12];
/* Intermediate reference samples for negative angle modes */
/* This have to be removed during optimization*/
/* For horizontal modes, (ref main = ref above) (ref side = ref left) */
ref_main = ref_temp + nt - 1;
for(k = 0; k < (nt + 1); k++)
ref_temp[k + nt - 1] = pu1_ref[two_nt + k];
ref_idx = (nt * intra_pred_ang) >> 5;
inv_ang_sum = 128;
/* SIMD Optimization can be done using look-up table for the loop */
/* For negative angled derive the main reference samples from side */
/* reference samples refer to section 8.4.4.2.6 */
for(k = -1; k > ref_idx; k--)
{
inv_ang_sum += inv_ang;
ref_main[k] = pu1_ref[two_nt - (inv_ang_sum >> 8)];
}
for(row = 0; row < nt; row++)
{
pos = ((row + 1) * intra_pred_ang);
idx = pos >> 5;
fract = pos & (31);
// Do linear filtering
for(col = 0; col < nt; col++)
{
ref_main_idx = col + idx + 1;
pu1_dst[(row * dst_strd) + col] = (UWORD8)(((32 - fract)
* ref_main[ref_main_idx]
+ fract * ref_main[ref_main_idx + 1] + 16) >> 5);
}
}
}
/**
*******************************************************************************
*
* @brief
* Intra prediction interpolation filter for luma mode 27 to mode 33
*
* @par Description:
* Intraprediction for mode 27 to 33 (positive angle, vertical mode ) with
* reference neighboring samples location pointed by 'pu1_ref' to the TU
* block location pointed by 'pu1_dst'
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[out] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] src_strd
* integer source stride
*
* @param[in] dst_strd
* integer destination stride
*
* @param[in] nt
* integer Transform Block size
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_luma_mode_27_to_33(UWORD8 *pu1_ref,
WORD32 src_strd,
UWORD8 *pu1_dst,
WORD32 dst_strd,
WORD32 nt,
WORD32 mode)
{
WORD32 row, col;
WORD32 two_nt, pos, fract;
WORD32 intra_pred_ang;
WORD32 idx, ref_main_idx;
UNUSED(src_strd);
two_nt = 2 * nt;
intra_pred_ang = gai4_ihevc_ang_table[mode];
for(row = 0; row < nt; row++)
{
pos = ((row + 1) * intra_pred_ang);
idx = pos >> 5;
fract = pos & (31);
// Do linear filtering
for(col = 0; col < nt; col++)
{
ref_main_idx = two_nt + col + idx + 1;
pu1_dst[col + (row * dst_strd)] = (((32 - fract)
* pu1_ref[ref_main_idx]
+ fract * pu1_ref[ref_main_idx + 1] + 16) >> 5);
}
}
}