blob: 8b3c99242afb207f4661ea9e901f8ece495d7da3 [file] [log] [blame]
/******************************************************************************
*
* Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/**
*******************************************************************************
* @file
* ihevc_chroma_intra_pred_filters.c
*
* @brief
* Contains function Definition for intra prediction interpolation filters
*
*
* @author
* Ittiam
*
* @par List of Functions:
* ihevc_intra_pred_chroma_planar()
*
* ihevc_intra_pred_chroma_dc()
*
* ihevc_intra_pred_chroma_horz()
*
* ihevc_intra_pred_chroma_ver()
*
* ihevc_intra_pred_chroma_mode2()
*
* ihevc_intra_pred_chroma_mode_18_34()
*
* ihevc_intra_pred_chroma_mode_3_to_9()
*
* ihevc_intra_pred_chroma_mode_11_to_17()
*
* ihevc_intra_pred_chroma_mode_19_to_25()
*
* ihevc_intra_pred_chroma_mode_27_to_33()
*
* ihevc_intra_pred_chroma_ref_substitution()
*
*
* @remarks
* None
*
*******************************************************************************
*/
/*****************************************************************************/
/* File Includes */
/*****************************************************************************/
#include "ihevc_typedefs.h"
#include "ihevc_macros.h"
#include "ihevc_func_selector.h"
#include "ihevc_platform_macros.h"
#include "ihevc_intra_pred.h"
#include "ihevc_mem_fns.h"
#include "ihevc_chroma_intra_pred.h"
#include "ihevc_common_tables.h"
/****************************************************************************/
/* Constant Macros */
/****************************************************************************/
#define MAX_CU_SIZE 64
#define BIT_DEPTH 8
#define T32_4NT 128
#define T16_4NT 64
#define T16C_4NT 64
#define T8C_4NT 32
/****************************************************************************/
/* Function Macros */
/****************************************************************************/
#define GET_BIT(y,x) ((y) & (1 << x)) && (1 << x)
/*****************************************************************************/
/* Function Definition */
/*****************************************************************************/
/**
*******************************************************************************
*
* @brief
* Reference substitution process for samples unavailable for prediction
* Refer to section 8.4.4.2.2
*
* @par Description:
*
*
* @param[in] pu1_top_left
* UWORD8 pointer to the top-left
*
* @param[in] pu1_top
* UWORD8 pointer to the top
*
* @param[in] pu1_left
* UWORD8 pointer to the left
*
* @param[in] src_strd
* WORD32 Source stride
*
* @param[in] nbr_flags
* WORD32 neighbor availability flags
*
* @param[in] nt
* WORD32 transform Block size
*
* @param[in] dst_strd
* WORD32 Destination stride
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_chroma_ref_substitution(UWORD8 *pu1_top_left,
UWORD8 *pu1_top,
UWORD8 *pu1_left,
WORD32 src_strd,
WORD32 nt,
WORD32 nbr_flags,
UWORD8 *pu1_dst,
WORD32 dst_strd)
{
UWORD8 pu1_ref_u, pu1_ref_v;
WORD32 dc_val, i, j;
WORD32 total_samples = (4 * nt) + 1;
WORD32 get_bits;
WORD32 next;
WORD32 bot_left, left, top, tp_right, tp_left;
WORD32 idx, nbr_id_from_bl, frwd_nbr_flag;
WORD32 a_nbr_flag[5];
UNUSED(dst_strd);
/* Neighbor Flag Structure*/
/* WORD32 nbr_flags MSB-->LSB TOP LEFT | TOP-RIGHT | TOP | LEFT | BOTTOM LEFT*/
/* (1 bit) (4 bits) (4 bits) (4 bits) (4 bits) */
if(nbr_flags == 0)
{
/* If no neighbor flags are present, fill the neighbor samples with DC value */
/*dc_val = 1 << (BIT_DEPTH - 1);*/
dc_val = 1 << (8 - 1);
for(i = 0; i < (2 * total_samples); i++)
{
pu1_dst[i] = dc_val;
}
}
else
{
/* Else fill the corresponding samples */
/* Check for the neighbors availibility */
tp_left = (nbr_flags & 0x10000);
tp_right = (nbr_flags & 0x0f000);
top = (nbr_flags & 0x00f00);
left = (nbr_flags & 0x000f0);
bot_left = (nbr_flags & 0x0000f);
/* Fill nbrs depending on avalibility */
/* Top -Left nbrs */
if(0 != tp_left)
{
pu1_dst[(4 * nt)] = *pu1_top_left; // U top-left sample
pu1_dst[(4 * nt) + 1] = *(pu1_top_left + 1); // V top-left sample
}
/* Left nbrs */
if(0 != left)
{
for(i = 0, j = 0; i < (2 * nt); i += 2)
{
pu1_dst[(4 * nt) - 2 - i] = pu1_left[j * src_strd]; // U left samples
pu1_dst[(4 * nt) - 1 - i] = pu1_left[(j * src_strd) + 1]; // V left samples
j++;
}
}
/* Bottom - Left nbrs */
if(0 != bot_left)
{
for(i = (2 * nt), j = nt; i < (4 * nt); i += 2)
{
pu1_dst[(4 * nt) - 2 - i] = pu1_left[j * src_strd]; // U left samples
pu1_dst[(4 * nt) - 1 - i] = pu1_left[(j * src_strd) + 1]; // V left samples
j++;
}
}
/* Top nbrs */
if(0 != top)
{
ihevc_memcpy_mul_8(&pu1_dst[(4 * nt) + 2], pu1_top, 2 * nt);
// U-V interleaved Top-top right samples
}
/* Top - Right nbrs */
if(0 != tp_right)
{
ihevc_memcpy_mul_8(&pu1_dst[(4 * nt) + 2 + 2 * nt], pu1_top + 2 * nt, 2 * nt);
// U-V interleaved Top-top right samples
}
if(nt == 4)
{
/* 1 bit extraction for all the neighboring blocks */
tp_left = (nbr_flags & 0x10000) >> 16;
bot_left = (nbr_flags & 0x8) >> 3;
left = (nbr_flags & 0x80) >> 7;
top = (nbr_flags & 0x100) >> 8;
tp_right = (nbr_flags & 0x1000) >> 12;
next = 1;
a_nbr_flag[0] = bot_left;
a_nbr_flag[1] = left;
a_nbr_flag[2] = tp_left;
a_nbr_flag[3] = top;
a_nbr_flag[4] = tp_right;
/* If bottom -left is not available, reverse substitution process*/
if(bot_left == 0)
{
/* Check for the 1st available sample from bottom-left*/
while(!a_nbr_flag[next])
next++;
/* If Left, top-left are available*/
if(next <= 2)
{
UWORD16 *pu2_dst;
idx = (nt * next);
pu2_dst = (UWORD16 *)&pu1_dst[2 * idx];
ihevc_memset_16bit((UWORD16 *)pu1_dst, pu2_dst[0], idx);
}
else /* If top, top-right are available */
{
UWORD16 *pu2_dst;
/* Idx is changed to copy 1 pixel value for top-left ,if top-left is not available*/
idx = (nt * (next - 1)) + 1;
pu2_dst = (UWORD16 *)&pu1_dst[2 * idx];
ihevc_memset_16bit((UWORD16 *)pu1_dst, pu2_dst[0], idx);
}
}
if(left == 0)
{
UWORD16 *pu2_dst = (UWORD16 *)&pu1_dst[(2 * nt) - 2];
ihevc_memset_16bit((UWORD16 *)&pu1_dst[(2 * nt)], pu2_dst[0], nt);
}
if(tp_left == 0)
{
pu1_dst[4 * nt] = pu1_dst[(4 * nt) - 2];
pu1_dst[(4 * nt) + 1] = pu1_dst[(4 * nt) - 1];
}
if(top == 0)
{
UWORD16 *pu2_dst = (UWORD16 *)&pu1_dst[(4 * nt)];
ihevc_memset_16bit((UWORD16 *)&pu1_dst[(4 * nt) + 2], pu2_dst[0], nt);
}
if(tp_right == 0)
{
UWORD16 *pu2_dst = (UWORD16 *)&pu1_dst[(6 * nt)];
ihevc_memset_16bit((UWORD16 *)&pu1_dst[(6 * nt) + 2], pu2_dst[0], nt);
}
}
else if(nt == 8)
{
WORD32 nbr_flags_temp = 0;
nbr_flags_temp = ((nbr_flags & 0xC) >> 2) + ((nbr_flags & 0xC0) >> 4)
+ ((nbr_flags & 0x300) >> 4)
+ ((nbr_flags & 0x3000) >> 6)
+ ((nbr_flags & 0x10000) >> 8);
/* compute trailing zeors based on nbr_flag for substitution process of below left see section .*/
/* as each bit in nbr flags corresponds to 8 pels for bot_left, left, top and topright but 1 pel for topleft */
{
nbr_id_from_bl = look_up_trailing_zeros(nbr_flags_temp & 0XF) * 4; /* for bottom left and left */
if(nbr_id_from_bl == 32)
nbr_id_from_bl = 16;
if(nbr_id_from_bl == 16)
{
/* for top left : 1 pel per nbr bit */
if(!((nbr_flags_temp >> 8) & 0x1))
{
nbr_id_from_bl++;
nbr_id_from_bl += look_up_trailing_zeros((nbr_flags_temp >> 4) & 0xF) * 4; /* top and top right; 8 pels per nbr bit */
}
}
/* Reverse Substitution Process*/
if(nbr_id_from_bl)
{
/* Replicate the bottom-left and subsequent unavailable pixels with the 1st available pixel above */
pu1_ref_u = pu1_dst[2 * nbr_id_from_bl];
pu1_ref_v = pu1_dst[(2 * nbr_id_from_bl) + 1];
for(i = 2 * (nbr_id_from_bl - 1); i >= 0; i -= 2)
{
pu1_dst[i] = pu1_ref_u;
pu1_dst[i + 1] = pu1_ref_v;
}
}
}
/* for the loop of 4*Nt+1 pixels (excluding pixels computed from reverse substitution) */
while(nbr_id_from_bl < ((T8C_4NT)+1))
{
/* To Obtain the next unavailable idx flag after reverse neighbor substitution */
/* Divide by 8 to obtain the original index */
frwd_nbr_flag = (nbr_id_from_bl >> 2); /*+ (nbr_id_from_bl & 0x1);*/
/* The Top-left flag is at the last bit location of nbr_flags*/
if(nbr_id_from_bl == (T8C_4NT / 2))
{
get_bits = GET_BIT(nbr_flags_temp, 8);
/* only pel substitution for TL */
if(!get_bits)
{
pu1_dst[2 * nbr_id_from_bl] = pu1_dst[(2 * nbr_id_from_bl) - 2];
pu1_dst[(2 * nbr_id_from_bl) + 1] = pu1_dst[(2 * nbr_id_from_bl) - 1];
}
}
else
{
get_bits = GET_BIT(nbr_flags_temp, frwd_nbr_flag);
if(!get_bits)
{
UWORD16 *pu2_dst;
/* 8 pel substitution (other than TL) */
pu2_dst = (UWORD16 *)&pu1_dst[(2 * nbr_id_from_bl) - 2];
ihevc_memset_16bit((UWORD16 *)(pu1_dst + (2 * nbr_id_from_bl)), pu2_dst[0], 4);
}
}
nbr_id_from_bl += (nbr_id_from_bl == (T8C_4NT / 2)) ? 1 : 4;
}
}
else if(nt == 16)
{
/* compute trailing ones based on mbr_flag for substitution process of below left see section .*/
/* as each bit in nbr flags corresponds to 4 pels for bot_left, left, top and topright but 1 pel for topleft */
{
nbr_id_from_bl = look_up_trailing_zeros((nbr_flags & 0XFF)) * 4; /* for bottom left and left */
if(nbr_id_from_bl == 32)
{
/* for top left : 1 pel per nbr bit */
if(!((nbr_flags >> 16) & 0x1))
{
/* top left not available */
nbr_id_from_bl++;
/* top and top right; 4 pels per nbr bit */
nbr_id_from_bl += look_up_trailing_zeros((nbr_flags >> 8) & 0xFF) * 4;
}
}
/* Reverse Substitution Process*/
if(nbr_id_from_bl)
{
/* Replicate the bottom-left and subsequent unavailable pixels with the 1st available pixel above */
pu1_ref_u = pu1_dst[2 * nbr_id_from_bl];
pu1_ref_v = pu1_dst[2 * nbr_id_from_bl + 1];
for(i = (2 * (nbr_id_from_bl - 1)); i >= 0; i -= 2)
{
pu1_dst[i] = pu1_ref_u;
pu1_dst[i + 1] = pu1_ref_v;
}
}
}
/* for the loop of 4*Nt+1 pixels (excluding pixels computed from reverse substitution) */
while(nbr_id_from_bl < ((T16C_4NT)+1))
{
/* To Obtain the next unavailable idx flag after reverse neighbor substitution */
/* Devide by 4 to obtain the original index */
frwd_nbr_flag = (nbr_id_from_bl >> 2); /*+ (nbr_id_from_bl & 0x1);*/
/* The Top-left flag is at the last bit location of nbr_flags*/
if(nbr_id_from_bl == (T16C_4NT / 2))
{
get_bits = GET_BIT(nbr_flags, 16);
/* only pel substitution for TL */
if(!get_bits)
{
pu1_dst[2 * nbr_id_from_bl] = pu1_dst[(2 * nbr_id_from_bl) - 2];
pu1_dst[(2 * nbr_id_from_bl) + 1] = pu1_dst[(2 * nbr_id_from_bl) - 1];
}
}
else
{
get_bits = GET_BIT(nbr_flags, frwd_nbr_flag);
if(!get_bits)
{
UWORD16 *pu2_dst;
/* 4 pel substitution (other than TL) */
pu2_dst = (UWORD16 *)&pu1_dst[(2 * nbr_id_from_bl) - 2];
ihevc_memset_16bit((UWORD16 *)(pu1_dst + (2 * nbr_id_from_bl)), pu2_dst[0], 4);
}
}
nbr_id_from_bl += (nbr_id_from_bl == (T16C_4NT / 2)) ? 1 : 4;
}
}
}
}
/**
*******************************************************************************
*
* @brief
* Planar Intraprediction with reference neighboring samples location
* pointed by 'pu1_ref' to the TU block location pointed by 'pu1_dst' Refer
* to section 8.4.4.2.4 in the standard
*
* @par Description:
*
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[in] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] src_strd
* integer source stride
*
* @param[in] dst_strd
* integer destination stride
*
* @param[in] nt
* integer Transform Block size
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_chroma_planar(UWORD8 *pu1_ref,
WORD32 src_strd,
UWORD8 *pu1_dst,
WORD32 dst_strd,
WORD32 nt,
WORD32 mode)
{
WORD32 row, col;
WORD32 log2nt = 5;
WORD32 two_nt, three_nt;
UNUSED(src_strd);
UNUSED(mode);
switch(nt)
{
case 16:
log2nt = 4;
break;
case 8:
log2nt = 3;
break;
case 4:
log2nt = 2;
break;
default:
break;
}
two_nt = 2 * nt;
three_nt = 3 * nt;
/* Planar filtering */
for(row = 0; row < nt; row++)
{
for(col = 0; col < (2 * nt); col += 2)
{
pu1_dst[row * dst_strd + col] = ((nt - 1 - col / 2)
* pu1_ref[2 * (two_nt - 1 - row)]
+ (col / 2 + 1) * pu1_ref[2 * (three_nt + 1)]
+ (nt - 1 - row) * pu1_ref[2 * (two_nt + 1) + col]
+ (row + 1) * pu1_ref[2 * (nt - 1)] + nt) >> (log2nt + 1);
pu1_dst[row * dst_strd + col + 1] = ((nt - 1 - col / 2)
* pu1_ref[2 * (two_nt - 1 - row) + 1]
+ (col / 2 + 1) * pu1_ref[2 * (three_nt + 1) + 1]
+ (nt - 1 - row) * pu1_ref[2 * (two_nt + 1) + col + 1]
+ (row + 1) * pu1_ref[2 * (nt - 1) + 1] + nt) >> (log2nt + 1);
}
}
}
/**
*******************************************************************************
*
* @brief
* Intraprediction for DC mode with reference neighboring samples location
* pointed by 'pu1_ref' to the TU block location pointed by 'pu1_dst' Refer
* to section 8.4.4.2.5 in the standard
*
* @par Description:
*
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[in] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] src_strd
* integer source stride
*
* @param[in] dst_strd
* integer destination stride
*
* @param[in] nt
* integer Transform Block size (Chroma)
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_chroma_dc(UWORD8 *pu1_ref,
WORD32 src_strd,
UWORD8 *pu1_dst,
WORD32 dst_strd,
WORD32 nt,
WORD32 mode)
{
WORD32 acc_dc_u, acc_dc_v;
WORD32 dc_val_u, dc_val_v;
WORD32 i;
WORD32 row, col;
WORD32 log2nt = 5;
UNUSED(mode);
UNUSED(src_strd);
switch(nt)
{
case 32:
log2nt = 5;
break;
case 16:
log2nt = 4;
break;
case 8:
log2nt = 3;
break;
case 4:
log2nt = 2;
break;
default:
break;
}
acc_dc_u = 0;
acc_dc_v = 0;
/* Calculate DC value for the transform block */
for(i = (2 * nt); i < (4 * nt); i += 2)
{
acc_dc_u += pu1_ref[i];
acc_dc_v += pu1_ref[i + 1];
}
for(i = ((4 * nt) + 2); i < ((6 * nt) + 2); i += 2)
{
acc_dc_u += pu1_ref[i];
acc_dc_v += pu1_ref[i + 1];
}
dc_val_u = (acc_dc_u + nt) >> (log2nt + 1);
dc_val_v = (acc_dc_v + nt) >> (log2nt + 1);
/* Fill the remaining rows with DC value*/
for(row = 0; row < nt; row++)
{
for(col = 0; col < (2 * nt); col += 2)
{
pu1_dst[(row * dst_strd) + col] = dc_val_u;
pu1_dst[(row * dst_strd) + col + 1] = dc_val_v;
}
}
}
/**
*******************************************************************************
*
* @brief
* Horizontal intraprediction(mode 10) with reference samples location
* pointed by 'pu1_ref' to the TU block location pointed by 'pu1_dst' Refer
* to section 8.4.4.2.6 in the standard (Special case)
*
* @par Description:
*
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[in] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] src_strd
* integer source stride
*
* @param[in] dst_strd
* integer destination stride
*
* @param[in] nt
* integer Transform Block size
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_chroma_horz(UWORD8 *pu1_ref,
WORD32 src_strd,
UWORD8 *pu1_dst,
WORD32 dst_strd,
WORD32 nt,
WORD32 mode)
{
WORD32 row, col;
UNUSED(mode);
UNUSED(src_strd);
/* Replication to next rows*/
for(row = 0; row < nt; row++)
{
for(col = 0; col < (2 * nt); col += 2)
{
pu1_dst[(row * dst_strd) + col] = pu1_ref[(4 * nt) - 2 - 2 * row];
pu1_dst[(row * dst_strd) + col + 1] = pu1_ref[(4 * nt) - 1 - 2 * row];
}
}
}
/**
*******************************************************************************
*
* @brief
* Horizontal intraprediction with reference neighboring samples location
* pointed by 'pu1_ref' to the TU block location pointed by 'pu1_dst' Refer
* to section 8.4.4.2.6 in the standard (Special case)
*
* @par Description:
*
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[in] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] src_strd
* integer source stride
*
* @param[in] dst_strd
* integer destination stride
*
* @param[in] nt
* integer Transform Block size
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_chroma_ver(UWORD8 *pu1_ref,
WORD32 src_strd,
UWORD8 *pu1_dst,
WORD32 dst_strd,
WORD32 nt,
WORD32 mode)
{
WORD32 row, col;
UNUSED(mode);
UNUSED(src_strd);
/* Replication to next columns*/
for(row = 0; row < nt; row++)
{
for(col = 0; col < (2 * nt); col += 2)
{
pu1_dst[(row * dst_strd) + col] = pu1_ref[(4 * nt) + 2 + col];
pu1_dst[(row * dst_strd) + col + 1] = pu1_ref[(4 * nt) + 3 + col];
}
}
}
/**
*******************************************************************************
*
* @brief
* Intraprediction for mode 2 (sw angle) with reference neighboring samples
* location pointed by 'pu1_ref' to the TU block location pointed by
* 'pu1_dst' Refer to section 8.4.4.2.6 in the standard
*
* @par Description:
*
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[in] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] src_strd
* integer source stride
*
* @param[in] dst_strd
* integer destination stride
*
* @param[in] nt
* integer Transform Block size
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_chroma_mode2(UWORD8 *pu1_ref,
WORD32 src_strd,
UWORD8 *pu1_dst,
WORD32 dst_strd,
WORD32 nt,
WORD32 mode)
{
WORD32 row, col;
WORD32 intra_pred_ang = 32;
WORD32 idx_u, idx_v;
UNUSED(src_strd);
UNUSED(mode);
/* For the angle 45, replication is done from the corresponding angle */
/* intra_pred_ang = tan(angle) in q5 format */
for(col = 0; col < (2 * nt); col += 2)
{
idx_u = ((col + 1) * intra_pred_ang) >> 5; /* Use idx++ */
idx_v = (((col + 1) + 1) * intra_pred_ang) >> 5; /* Use idx++ */
for(row = 0; row < nt; row++)
{
pu1_dst[col + (row * dst_strd)] = pu1_ref[(4 * nt) - 2 * row - idx_u - 3];
pu1_dst[(col + 1) + (row * dst_strd)] = pu1_ref[(4 * nt) - 2 * row - idx_v - 1];
}
}
}
/**
*******************************************************************************
*
* @brief
* Intraprediction for mode 34 (ne angle) and mode 18 (nw angle) with
* reference neighboring samples location pointed by 'pu1_ref' to the TU
* block location pointed by 'pu1_dst'
*
* @par Description:
*
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[in] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] src_strd
* integer source stride
*
* @param[in] dst_strd
* integer destination stride
*
* @param[in] nt
* integer Transform Block size
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_chroma_mode_18_34(UWORD8 *pu1_ref,
WORD32 src_strd,
UWORD8 *pu1_dst,
WORD32 dst_strd,
WORD32 nt,
WORD32 mode)
{
WORD32 row, col;
WORD32 intra_pred_ang;
WORD32 idx = 0;
UNUSED(src_strd);
intra_pred_ang = 32; /*Default value*/
/* For mode 18, angle is -45degree */
if(mode == 18)
intra_pred_ang = -32;
/* For mode 34, angle is 45degree */
else if(mode == 34)
intra_pred_ang = 32;
/* For the angle 45 and -45, replication is done from the corresponding angle */
/* No interpolation is done for 45 degree*/
for(row = 0; row < nt; row++)
{
idx = ((row + 1) * intra_pred_ang) >> 5;
for(col = 0; col < (2 * nt); col += 2)
{
pu1_dst[col + (row * dst_strd)] = pu1_ref[(4 * nt) + col + 2 * idx + 2];
pu1_dst[(col + 1) + (row * dst_strd)] = pu1_ref[(4 * nt) + (col + 1) + 2 * idx + 2];
}
}
}
/**
*******************************************************************************
*
* @brief
* Intraprediction for mode 3 to 9 (positive angle, horizontal mode ) with
* reference neighboring samples location pointed by 'pu1_ref' to the TU
* block location pointed by 'pu1_dst'
*
* @par Description:
*
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[in] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] src_strd
* integer source stride
*
* @param[in] dst_strd
* integer destination stride
*
* @param[in] nt
* integer Transform Block size
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_chroma_mode_3_to_9(UWORD8 *pu1_ref,
WORD32 src_strd,
UWORD8 *pu1_dst,
WORD32 dst_strd,
WORD32 nt,
WORD32 mode)
{
WORD32 row, col;
WORD32 intra_pred_ang;
WORD32 idx_u, ref_main_idx_u;
WORD32 idx_v, ref_main_idx_v;
WORD32 pos_u, fract_u;
WORD32 pos_v, fract_v;
UNUSED(src_strd);
/* Intra Pred Angle according to the mode */
intra_pred_ang = gai4_ihevc_ang_table[mode];
/* For the angles other then 45 degree, interpolation btw 2 neighboring */
/* samples dependent on distance to obtain destination sample */
for(col = 0; col < (2 * nt); col += 2)
{
pos_u = ((col / 2 + 1) * intra_pred_ang);
pos_v = ((col / 2 + 1) * intra_pred_ang);
idx_u = pos_u >> 5;
fract_u = pos_u & (31);
idx_v = pos_v >> 5;
fract_v = pos_v & (31);
// Do linear filtering
for(row = 0; row < nt; row++)
{
ref_main_idx_u = (4 * nt) - 2 * row - 2 * idx_u - 2;
ref_main_idx_v = (4 * nt) - 2 * row - 2 * idx_v - 1;
pu1_dst[col + (row * dst_strd)] = (((32 - fract_u)
* pu1_ref[ref_main_idx_u]
+ fract_u * pu1_ref[ref_main_idx_u - 2] + 16) >> 5);
pu1_dst[(col + 1) + (row * dst_strd)] = (((32 - fract_v)
* pu1_ref[ref_main_idx_v]
+ fract_v * pu1_ref[ref_main_idx_v - 2] + 16) >> 5);
}
}
}
/**
*******************************************************************************
*
* @brief
* Intraprediction for mode 11 to 17 (negative angle, horizontal mode )
* with reference neighboring samples location pointed by 'pu1_ref' to the
* TU block location pointed by 'pu1_dst'
*
* @par Description:
*
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[in] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] src_strd
* integer source stride
*
* @param[in] dst_strd
* integer destination stride
*
* @param[in] nt
* integer Transform Block size
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_chroma_mode_11_to_17(UWORD8 *pu1_ref,
WORD32 src_strd,
UWORD8 *pu1_dst,
WORD32 dst_strd,
WORD32 nt,
WORD32 mode)
{
/* This function and ihevc_intra_pred_CHROMA_mode_19_to_25 are same except*/
/* for ref main & side samples assignment,can be combined for */
/* optimzation*/
WORD32 row, col, k;
WORD32 intra_pred_ang, inv_ang, inv_ang_sum;
WORD32 idx_u, idx_v, ref_main_idx_u, ref_main_idx_v, ref_idx;
WORD32 pos_u, pos_v, fract_u, fract_v;
UWORD8 ref_temp[2 * MAX_CU_SIZE + 2];
UWORD8 *ref_main;
UNUSED(src_strd);
inv_ang_sum = 128;
intra_pred_ang = gai4_ihevc_ang_table[mode];
inv_ang = gai4_ihevc_inv_ang_table[mode - 11];
/* Intermediate reference samples for negative angle modes */
/* This have to be removed during optimization*/
/* For horizontal modes, (ref main = ref left) (ref side = ref above) */
ref_main = ref_temp + 2 * nt;
for(k = 0; k < (2 * (nt + 1)); k += 2)
{
ref_temp[k + (2 * (nt - 1))] = pu1_ref[(4 * nt) - k];
ref_temp[k + 1 + (2 * (nt - 1))] = pu1_ref[(4 * nt) - k + 1];
}
ref_main = ref_temp + (2 * (nt - 1));
ref_idx = (nt * intra_pred_ang) >> 5;
/* SIMD Optimization can be done using look-up table for the loop */
/* For negative angled derive the main reference samples from side */
/* reference samples refer to section 8.4.4.2.6 */
for(k = -2; k > (2 * ref_idx); k -= 2)
{
inv_ang_sum += inv_ang;
ref_main[k] = pu1_ref[(4 * nt) + ((inv_ang_sum >> 8) << 1)];
ref_main[k + 1] = pu1_ref[((4 * nt) + 1) + ((inv_ang_sum >> 8) << 1)];
}
/* For the angles other then 45 degree, interpolation btw 2 neighboring */
/* samples dependent on distance to obtain destination sample */
for(col = 0; col < (2 * nt); col += 2)
{
pos_u = ((col / 2 + 1) * intra_pred_ang);
pos_v = ((col / 2 + 1) * intra_pred_ang);
idx_u = pos_u >> 5;
idx_v = pos_v >> 5;
fract_u = pos_u & (31);
fract_v = pos_v & (31);
// Do linear filtering
for(row = 0; row < nt; row++)
{
ref_main_idx_u = 2 * (row + idx_u + 1);
ref_main_idx_v = 2 * (row + idx_v + 1) + 1;
pu1_dst[col + (dst_strd * row)] = (UWORD8)(((32 - fract_u)
* ref_main[ref_main_idx_u]
+ fract_u * ref_main[ref_main_idx_u + 2] + 16) >> 5);
pu1_dst[(col + 1) + (dst_strd * row)] = (UWORD8)(((32 - fract_v)
* ref_main[ref_main_idx_v]
+ fract_v * ref_main[ref_main_idx_v + 2] + 16) >> 5);
}
}
}
/**
*******************************************************************************
*
* @brief
* Intraprediction for mode 19 to 25 (negative angle, vertical mode ) with
* reference neighboring samples location pointed by 'pu1_ref' to the TU
* block location pointed by 'pu1_dst'
*
* @par Description:
*
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[in] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] src_strd
* integer source stride
*
* @param[in] dst_strd
* integer destination stride
*
* @param[in] nt
* integer Transform Block size
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_chroma_mode_19_to_25(UWORD8 *pu1_ref,
WORD32 src_strd,
UWORD8 *pu1_dst,
WORD32 dst_strd,
WORD32 nt,
WORD32 mode)
{
WORD32 row, col, k;
WORD32 intra_pred_ang, idx;
WORD32 inv_ang, inv_ang_sum, pos, fract;
WORD32 ref_main_idx_u, ref_main_idx_v, ref_idx;
UWORD8 ref_temp[(2 * MAX_CU_SIZE) + 2];
UWORD8 *ref_main;
UNUSED(src_strd);
intra_pred_ang = gai4_ihevc_ang_table_chroma[mode];
inv_ang = gai4_ihevc_inv_ang_table_chroma[mode - 12];
/* Intermediate reference samples for negative angle modes */
/* This have to be removed during optimization*/
/* For horizontal modes, (ref main = ref above) (ref side = ref left) */
ref_main = ref_temp + 2 * nt;
for(k = 0; k < (2 * (nt + 1)); k += 2)
{
ref_temp[k + (2 * (nt - 1))] = pu1_ref[(4 * nt) + k];
ref_temp[k + 1 + (2 * (nt - 1))] = pu1_ref[(4 * nt) + k + 1];
}
ref_idx = (nt * intra_pred_ang) >> 5;
inv_ang_sum = 128;
ref_main = ref_temp + (2 * (nt - 1));
/* SIMD Optimization can be done using look-up table for the loop */
/* For negative angled derive the main reference samples from side */
/* reference samples refer to section 8.4.4.2.6 */
for(k = -2; k > (2 * ref_idx); k -= 2)
{
inv_ang_sum += inv_ang;
ref_main[k] = pu1_ref[(4 * nt) - (inv_ang_sum >> 8) * 2];
ref_main[k + 1] = pu1_ref[((4 * nt) + 1) - (inv_ang_sum >> 8) * 2];
}
for(row = 0; row < nt; row++)
{
pos = ((row + 1) * intra_pred_ang);
idx = pos >> 5;
fract = pos & (31);
// Do linear filtering
for(col = 0; col < (2 * nt); col += 2)
{
ref_main_idx_u = col + 2 * idx + 2;
ref_main_idx_v = (col + 1) + 2 * idx + 2;
pu1_dst[(row * dst_strd) + col] = (UWORD8)(((32 - fract)
* ref_main[ref_main_idx_u]
+ fract * ref_main[ref_main_idx_u + 2] + 16) >> 5);
pu1_dst[(row * dst_strd) + (col + 1)] = (UWORD8)(((32 - fract)
* ref_main[ref_main_idx_v]
+ fract * ref_main[ref_main_idx_v + 2] + 16) >> 5);
}
}
}
/**
*******************************************************************************
*
* @brief
* Intraprediction for mode 27 to 33 (positive angle, vertical mode ) with
* reference neighboring samples location pointed by 'pu1_ref' to the TU
* block location pointed by 'pu1_dst'
*
* @par Description:
*
*
* @param[in] pu1_src
* UWORD8 pointer to the source
*
* @param[in] pu1_dst
* UWORD8 pointer to the destination
*
* @param[in] src_strd
* integer source stride
*
* @param[in] dst_strd
* integer destination stride
*
* @param[in] nt
* integer Transform Block size
*
* @param[in] mode
* integer intraprediction mode
*
* @returns
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_intra_pred_chroma_mode_27_to_33(UWORD8 *pu1_ref,
WORD32 src_strd,
UWORD8 *pu1_dst,
WORD32 dst_strd,
WORD32 nt,
WORD32 mode)
{
WORD32 row, col;
WORD32 pos, fract;
WORD32 intra_pred_ang;
WORD32 idx, ref_main_idx_u, ref_main_idx_v;
UNUSED(src_strd);
intra_pred_ang = gai4_ihevc_ang_table_chroma[mode];
for(row = 0; row < nt; row++)
{
pos = ((row + 1) * intra_pred_ang);
idx = pos >> 5;
fract = pos & (31);
// Do linear filtering
for(col = 0; col < (2 * nt); col += 2)
{
ref_main_idx_u = (4 * nt) + col + 2 * idx + 2;
ref_main_idx_v = (4 * nt) + (col + 1) + 2 * idx + 2;
pu1_dst[col + (row * dst_strd)] = (((32 - fract)
* pu1_ref[ref_main_idx_u]
+ fract * pu1_ref[ref_main_idx_u + 2] + 16) >> 5);
pu1_dst[(col + 1) + (row * dst_strd)] = (((32 - fract)
* pu1_ref[ref_main_idx_v]
+ fract * pu1_ref[ref_main_idx_v + 2] + 16) >> 5);
}
}
}