blob: d916ce4b52decd5228f308fb50408fa4d7344551 [file] [log] [blame]
/*
* Copyright 2019 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cppbor.h"
#include <inttypes.h>
#include <openssl/sha.h>
#include <cstdint>
#include "cppbor_parse.h"
using std::string;
using std::vector;
#ifndef __TRUSTY__
#include <android-base/logging.h>
#define LOG_TAG "CppBor"
#else
#define CHECK(x) (void)(x)
#endif
namespace cppbor {
namespace {
template <typename T, typename Iterator, typename = std::enable_if<std::is_unsigned<T>::value>>
Iterator writeBigEndian(T value, Iterator pos) {
for (unsigned i = 0; i < sizeof(value); ++i) {
*pos++ = static_cast<uint8_t>(value >> (8 * (sizeof(value) - 1)));
value = static_cast<T>(value << 8);
}
return pos;
}
template <typename T, typename = std::enable_if<std::is_unsigned<T>::value>>
void writeBigEndian(T value, std::function<void(uint8_t)>& cb) {
for (unsigned i = 0; i < sizeof(value); ++i) {
cb(static_cast<uint8_t>(value >> (8 * (sizeof(value) - 1))));
value = static_cast<T>(value << 8);
}
}
bool cborAreAllElementsNonCompound(const Item* compoundItem) {
if (compoundItem->type() == ARRAY) {
const Array* array = compoundItem->asArray();
for (size_t n = 0; n < array->size(); n++) {
const Item* entry = (*array)[n].get();
switch (entry->type()) {
case ARRAY:
case MAP:
return false;
default:
break;
}
}
} else {
const Map* map = compoundItem->asMap();
for (auto& [keyEntry, valueEntry] : *map) {
switch (keyEntry->type()) {
case ARRAY:
case MAP:
return false;
default:
break;
}
switch (valueEntry->type()) {
case ARRAY:
case MAP:
return false;
default:
break;
}
}
}
return true;
}
bool prettyPrintInternal(const Item* item, string& out, size_t indent, size_t maxBStrSize,
const vector<string>& mapKeysToNotPrint) {
if (!item) {
out.append("<NULL>");
return false;
}
char buf[80];
string indentString(indent, ' ');
size_t tagCount = item->semanticTagCount();
while (tagCount > 0) {
--tagCount;
snprintf(buf, sizeof(buf), "tag %" PRIu64 " ", item->semanticTag(tagCount));
out.append(buf);
}
switch (item->type()) {
case SEMANTIC:
// Handled above.
break;
case UINT:
snprintf(buf, sizeof(buf), "%" PRIu64, item->asUint()->unsignedValue());
out.append(buf);
break;
case NINT:
snprintf(buf, sizeof(buf), "%" PRId64, item->asNint()->value());
out.append(buf);
break;
case BSTR: {
const uint8_t* valueData;
size_t valueSize;
const Bstr* bstr = item->asBstr();
if (bstr != nullptr) {
const vector<uint8_t>& value = bstr->value();
valueData = value.data();
valueSize = value.size();
} else {
const ViewBstr* viewBstr = item->asViewBstr();
assert(viewBstr != nullptr);
valueData = viewBstr->view().data();
valueSize = viewBstr->view().size();
}
if (valueSize > maxBStrSize) {
unsigned char digest[SHA_DIGEST_LENGTH];
SHA_CTX ctx;
SHA1_Init(&ctx);
SHA1_Update(&ctx, valueData, valueSize);
SHA1_Final(digest, &ctx);
char buf2[SHA_DIGEST_LENGTH * 2 + 1];
for (size_t n = 0; n < SHA_DIGEST_LENGTH; n++) {
snprintf(buf2 + n * 2, 3, "%02x", digest[n]);
}
snprintf(buf, sizeof(buf), "<bstr size=%zd sha1=%s>", valueSize, buf2);
out.append(buf);
} else {
out.append("{");
for (size_t n = 0; n < valueSize; n++) {
if (n > 0) {
out.append(", ");
}
snprintf(buf, sizeof(buf), "0x%02x", valueData[n]);
out.append(buf);
}
out.append("}");
}
} break;
case TSTR:
out.append("'");
{
// TODO: escape "'" characters
if (item->asTstr() != nullptr) {
out.append(item->asTstr()->value().c_str());
} else {
const ViewTstr* viewTstr = item->asViewTstr();
assert(viewTstr != nullptr);
out.append(viewTstr->view());
}
}
out.append("'");
break;
case ARRAY: {
const Array* array = item->asArray();
if (array->size() == 0) {
out.append("[]");
} else if (cborAreAllElementsNonCompound(array)) {
out.append("[");
for (size_t n = 0; n < array->size(); n++) {
if (!prettyPrintInternal((*array)[n].get(), out, indent + 2, maxBStrSize,
mapKeysToNotPrint)) {
return false;
}
out.append(", ");
}
out.append("]");
} else {
out.append("[\n" + indentString);
for (size_t n = 0; n < array->size(); n++) {
out.append(" ");
if (!prettyPrintInternal((*array)[n].get(), out, indent + 2, maxBStrSize,
mapKeysToNotPrint)) {
return false;
}
out.append(",\n" + indentString);
}
out.append("]");
}
} break;
case MAP: {
const Map* map = item->asMap();
if (map->size() == 0) {
out.append("{}");
} else {
out.append("{\n" + indentString);
for (auto& [map_key, map_value] : *map) {
out.append(" ");
if (!prettyPrintInternal(map_key.get(), out, indent + 2, maxBStrSize,
mapKeysToNotPrint)) {
return false;
}
out.append(" : ");
if (map_key->type() == TSTR &&
std::find(mapKeysToNotPrint.begin(), mapKeysToNotPrint.end(),
map_key->asTstr()->value()) != mapKeysToNotPrint.end()) {
out.append("<not printed>");
} else {
if (!prettyPrintInternal(map_value.get(), out, indent + 2, maxBStrSize,
mapKeysToNotPrint)) {
return false;
}
}
out.append(",\n" + indentString);
}
out.append("}");
}
} break;
case SIMPLE:
const Bool* asBool = item->asSimple()->asBool();
const Null* asNull = item->asSimple()->asNull();
if (asBool != nullptr) {
out.append(asBool->value() ? "true" : "false");
} else if (asNull != nullptr) {
out.append("null");
} else {
#ifndef __TRUSTY__
LOG(ERROR) << "Only boolean/null is implemented for SIMPLE";
#endif // __TRUSTY__
return false;
}
break;
}
return true;
}
} // namespace
size_t headerSize(uint64_t addlInfo) {
if (addlInfo < ONE_BYTE_LENGTH) return 1;
if (addlInfo <= std::numeric_limits<uint8_t>::max()) return 2;
if (addlInfo <= std::numeric_limits<uint16_t>::max()) return 3;
if (addlInfo <= std::numeric_limits<uint32_t>::max()) return 5;
return 9;
}
uint8_t* encodeHeader(MajorType type, uint64_t addlInfo, uint8_t* pos, const uint8_t* end) {
size_t sz = headerSize(addlInfo);
if (end - pos < static_cast<ssize_t>(sz)) return nullptr;
switch (sz) {
case 1:
*pos++ = type | static_cast<uint8_t>(addlInfo);
return pos;
case 2:
*pos++ = type | static_cast<MajorType>(ONE_BYTE_LENGTH);
*pos++ = static_cast<uint8_t>(addlInfo);
return pos;
case 3:
*pos++ = type | static_cast<MajorType>(TWO_BYTE_LENGTH);
return writeBigEndian(static_cast<uint16_t>(addlInfo), pos);
case 5:
*pos++ = type | static_cast<MajorType>(FOUR_BYTE_LENGTH);
return writeBigEndian(static_cast<uint32_t>(addlInfo), pos);
case 9:
*pos++ = type | static_cast<MajorType>(EIGHT_BYTE_LENGTH);
return writeBigEndian(addlInfo, pos);
default:
CHECK(false); // Impossible to get here.
return nullptr;
}
}
void encodeHeader(MajorType type, uint64_t addlInfo, EncodeCallback encodeCallback) {
size_t sz = headerSize(addlInfo);
switch (sz) {
case 1:
encodeCallback(type | static_cast<uint8_t>(addlInfo));
break;
case 2:
encodeCallback(type | static_cast<MajorType>(ONE_BYTE_LENGTH));
encodeCallback(static_cast<uint8_t>(addlInfo));
break;
case 3:
encodeCallback(type | static_cast<MajorType>(TWO_BYTE_LENGTH));
writeBigEndian(static_cast<uint16_t>(addlInfo), encodeCallback);
break;
case 5:
encodeCallback(type | static_cast<MajorType>(FOUR_BYTE_LENGTH));
writeBigEndian(static_cast<uint32_t>(addlInfo), encodeCallback);
break;
case 9:
encodeCallback(type | static_cast<MajorType>(EIGHT_BYTE_LENGTH));
writeBigEndian(addlInfo, encodeCallback);
break;
default:
CHECK(false); // Impossible to get here.
}
}
bool Item::operator==(const Item& other) const& {
if (type() != other.type()) return false;
switch (type()) {
case UINT:
return *asUint() == *(other.asUint());
case NINT:
return *asNint() == *(other.asNint());
case BSTR:
if (asBstr() != nullptr && other.asBstr() != nullptr) {
return *asBstr() == *(other.asBstr());
}
if (asViewBstr() != nullptr && other.asViewBstr() != nullptr) {
return *asViewBstr() == *(other.asViewBstr());
}
// Interesting corner case: comparing a Bstr and ViewBstr with
// identical contents. The function currently returns false for
// this case.
// TODO: if it should return true, this needs a deep comparison
return false;
case TSTR:
if (asTstr() != nullptr && other.asTstr() != nullptr) {
return *asTstr() == *(other.asTstr());
}
if (asViewTstr() != nullptr && other.asViewTstr() != nullptr) {
return *asViewTstr() == *(other.asViewTstr());
}
// Same corner case as Bstr
return false;
case ARRAY:
return *asArray() == *(other.asArray());
case MAP:
return *asMap() == *(other.asMap());
case SIMPLE:
return *asSimple() == *(other.asSimple());
case SEMANTIC:
return *asSemanticTag() == *(other.asSemanticTag());
default:
CHECK(false); // Impossible to get here.
return false;
}
}
Nint::Nint(int64_t v) : mValue(v) {
CHECK(v < 0);
}
bool Simple::operator==(const Simple& other) const& {
if (simpleType() != other.simpleType()) return false;
switch (simpleType()) {
case BOOLEAN:
return *asBool() == *(other.asBool());
case NULL_T:
return true;
default:
CHECK(false); // Impossible to get here.
return false;
}
}
uint8_t* Bstr::encode(uint8_t* pos, const uint8_t* end) const {
pos = encodeHeader(mValue.size(), pos, end);
if (!pos || end - pos < static_cast<ptrdiff_t>(mValue.size())) return nullptr;
return std::copy(mValue.begin(), mValue.end(), pos);
}
void Bstr::encodeValue(EncodeCallback encodeCallback) const {
for (auto c : mValue) {
encodeCallback(c);
}
}
uint8_t* ViewBstr::encode(uint8_t* pos, const uint8_t* end) const {
pos = encodeHeader(mView.size(), pos, end);
if (!pos || end - pos < static_cast<ptrdiff_t>(mView.size())) return nullptr;
return std::copy(mView.begin(), mView.end(), pos);
}
void ViewBstr::encodeValue(EncodeCallback encodeCallback) const {
for (auto c : mView) {
encodeCallback(static_cast<uint8_t>(c));
}
}
uint8_t* Tstr::encode(uint8_t* pos, const uint8_t* end) const {
pos = encodeHeader(mValue.size(), pos, end);
if (!pos || end - pos < static_cast<ptrdiff_t>(mValue.size())) return nullptr;
return std::copy(mValue.begin(), mValue.end(), pos);
}
void Tstr::encodeValue(EncodeCallback encodeCallback) const {
for (auto c : mValue) {
encodeCallback(static_cast<uint8_t>(c));
}
}
uint8_t* ViewTstr::encode(uint8_t* pos, const uint8_t* end) const {
pos = encodeHeader(mView.size(), pos, end);
if (!pos || end - pos < static_cast<ptrdiff_t>(mView.size())) return nullptr;
return std::copy(mView.begin(), mView.end(), pos);
}
void ViewTstr::encodeValue(EncodeCallback encodeCallback) const {
for (auto c : mView) {
encodeCallback(static_cast<uint8_t>(c));
}
}
bool Array::operator==(const Array& other) const& {
return size() == other.size()
// Can't use vector::operator== because the contents are pointers. std::equal lets us
// provide a predicate that does the dereferencing.
&& std::equal(mEntries.begin(), mEntries.end(), other.mEntries.begin(),
[](auto& a, auto& b) -> bool { return *a == *b; });
}
uint8_t* Array::encode(uint8_t* pos, const uint8_t* end) const {
pos = encodeHeader(size(), pos, end);
if (!pos) return nullptr;
for (auto& entry : mEntries) {
pos = entry->encode(pos, end);
if (!pos) return nullptr;
}
return pos;
}
void Array::encode(EncodeCallback encodeCallback) const {
encodeHeader(size(), encodeCallback);
for (auto& entry : mEntries) {
entry->encode(encodeCallback);
}
}
std::unique_ptr<Item> Array::clone() const {
auto res = std::make_unique<Array>();
for (size_t i = 0; i < mEntries.size(); i++) {
res->add(mEntries[i]->clone());
}
return res;
}
bool Map::operator==(const Map& other) const& {
return size() == other.size()
// Can't use vector::operator== because the contents are pairs of pointers. std::equal
// lets us provide a predicate that does the dereferencing.
&& std::equal(begin(), end(), other.begin(), [](auto& a, auto& b) {
return *a.first == *b.first && *a.second == *b.second;
});
}
uint8_t* Map::encode(uint8_t* pos, const uint8_t* end) const {
pos = encodeHeader(size(), pos, end);
if (!pos) return nullptr;
for (auto& entry : mEntries) {
pos = entry.first->encode(pos, end);
if (!pos) return nullptr;
pos = entry.second->encode(pos, end);
if (!pos) return nullptr;
}
return pos;
}
void Map::encode(EncodeCallback encodeCallback) const {
encodeHeader(size(), encodeCallback);
for (auto& entry : mEntries) {
entry.first->encode(encodeCallback);
entry.second->encode(encodeCallback);
}
}
bool Map::keyLess(const Item* a, const Item* b) {
// CBOR map canonicalization rules are:
// 1. If two keys have different lengths, the shorter one sorts earlier.
if (a->encodedSize() < b->encodedSize()) return true;
if (a->encodedSize() > b->encodedSize()) return false;
// 2. If two keys have the same length, the one with the lower value in (byte-wise) lexical
// order sorts earlier. This requires encoding both items.
auto encodedA = a->encode();
auto encodedB = b->encode();
return std::lexicographical_compare(encodedA.begin(), encodedA.end(), //
encodedB.begin(), encodedB.end());
}
void recursivelyCanonicalize(std::unique_ptr<Item>& item) {
switch (item->type()) {
case UINT:
case NINT:
case BSTR:
case TSTR:
case SIMPLE:
return;
case ARRAY:
std::for_each(item->asArray()->begin(), item->asArray()->end(),
recursivelyCanonicalize);
return;
case MAP:
item->asMap()->canonicalize(true /* recurse */);
return;
case SEMANTIC:
// This can't happen. SemanticTags delegate their type() method to the contained Item's
// type.
assert(false);
return;
}
}
Map& Map::canonicalize(bool recurse) & {
if (recurse) {
for (auto& entry : mEntries) {
recursivelyCanonicalize(entry.first);
recursivelyCanonicalize(entry.second);
}
}
if (size() < 2 || mCanonicalized) {
// Trivially or already canonical; do nothing.
return *this;
}
std::sort(begin(), end(),
[](auto& a, auto& b) { return keyLess(a.first.get(), b.first.get()); });
mCanonicalized = true;
return *this;
}
std::unique_ptr<Item> Map::clone() const {
auto res = std::make_unique<Map>();
for (auto& [key, value] : *this) {
res->add(key->clone(), value->clone());
}
res->mCanonicalized = mCanonicalized;
return res;
}
std::unique_ptr<Item> SemanticTag::clone() const {
return std::make_unique<SemanticTag>(mValue, mTaggedItem->clone());
}
uint8_t* SemanticTag::encode(uint8_t* pos, const uint8_t* end) const {
// Can't use the encodeHeader() method that calls type() to get the major type, since that will
// return the tagged Item's type.
pos = ::cppbor::encodeHeader(kMajorType, mValue, pos, end);
if (!pos) return nullptr;
return mTaggedItem->encode(pos, end);
}
void SemanticTag::encode(EncodeCallback encodeCallback) const {
// Can't use the encodeHeader() method that calls type() to get the major type, since that will
// return the tagged Item's type.
::cppbor::encodeHeader(kMajorType, mValue, encodeCallback);
mTaggedItem->encode(encodeCallback);
}
size_t SemanticTag::semanticTagCount() const {
size_t levelCount = 1; // Count this level.
const SemanticTag* cur = this;
while (cur->mTaggedItem && (cur = cur->mTaggedItem->asSemanticTag()) != nullptr) ++levelCount;
return levelCount;
}
uint64_t SemanticTag::semanticTag(size_t nesting) const {
// Getting the value of a specific nested tag is a bit tricky, because we start with the outer
// tag and don't know how many are inside. We count the number of nesting levels to find out
// how many there are in total, then to get the one we want we have to walk down levelCount -
// nesting steps.
size_t levelCount = semanticTagCount();
if (nesting >= levelCount) return 0;
levelCount -= nesting;
const SemanticTag* cur = this;
while (--levelCount > 0) cur = cur->mTaggedItem->asSemanticTag();
return cur->mValue;
}
string prettyPrint(const Item* item, size_t maxBStrSize, const vector<string>& mapKeysToNotPrint) {
string out;
prettyPrintInternal(item, out, 0, maxBStrSize, mapKeysToNotPrint);
return out;
}
string prettyPrint(const vector<uint8_t>& encodedCbor, size_t maxBStrSize,
const vector<string>& mapKeysToNotPrint) {
auto [item, _, message] = parse(encodedCbor);
if (item == nullptr) {
#ifndef __TRUSTY__
LOG(ERROR) << "Data to pretty print is not valid CBOR: " << message;
#endif // __TRUSTY__
return "";
}
return prettyPrint(item.get(), maxBStrSize, mapKeysToNotPrint);
}
} // namespace cppbor