bpf: explicitly define BPF_FUNC_xxx integer values

Historically enum bpf_func_id's BPF_FUNC_xxx enumerators relied on
implicit sequential values being assigned by compiler. This is
convenient, as new BPF helpers are always added at the very end, but it
also has its downsides, some of them being:

  - with over 200 helpers now it's very hard to know what's each helper's ID,
    which is often important to know when working with BPF assembly (e.g.,
    by dumping raw bpf assembly instructions with llvm-objdump -d
    command). it's possible to work around this by looking into vmlinux.h,
    dumping /sys/btf/kernel/vmlinux, looking at libbpf-provided
    bpf_helper_defs.h, etc. But it always feels like an unnecessary step
    and one should be able to quickly figure this out from UAPI header.

  - when backporting and cherry-picking only some BPF helpers onto older
    kernels it's important to be able to skip some enum values for helpers
    that weren't backported, but preserve absolute integer IDs to keep BPF
    helper IDs stable so that BPF programs stay portable across upstream
    and backported kernels.

While neither problem is insurmountable, they come up frequently enough
and are annoying enough to warrant improving the situation. And for the
backporting the problem can easily go unnoticed for a while, especially
if backport is done with people not very familiar with BPF subsystem overall.

Anyways, it's easy to fix this by making sure that __BPF_FUNC_MAPPER
macro provides explicit helper IDs. Unfortunately that would potentially
break existing users that use UAPI-exposed __BPF_FUNC_MAPPER and are
expected to pass macro that accepts only symbolic helper identifier
(e.g., map_lookup_elem for bpf_map_lookup_elem() helper).

As such, we need to introduce a new macro (___BPF_FUNC_MAPPER) which
would specify both identifier and integer ID, but in such a way as to
allow existing __BPF_FUNC_MAPPER be expressed in terms of new
___BPF_FUNC_MAPPER macro. And that's what this patch is doing. To avoid
duplication and allow __BPF_FUNC_MAPPER stay *exactly* the same,
___BPF_FUNC_MAPPER accepts arbitrary "context" arguments, which can be
used to pass any extra macros, arguments, and whatnot. In our case we
use this to pass original user-provided macro that expects single
argument and __BPF_FUNC_MAPPER is using it's own three-argument
__BPF_FUNC_MAPPER_APPLY intermediate macro to impedance-match new and
old "callback" macros.

Once we resolve this, we use new ___BPF_FUNC_MAPPER to define enum
bpf_func_id with explicit values. The other users of __BPF_FUNC_MAPPER
in kernel (namely in kernel/bpf/disasm.c) are kept exactly the same both
as demonstration that backwards compat works, but also to avoid
unnecessary code churn.

Note that new ___BPF_FUNC_MAPPER() doesn't forcefully insert comma
between values, as that might not be appropriate in all possible cases
where ___BPF_FUNC_MAPPER might be used by users. This doesn't reduce
usability, as it's trivial to insert that comma inside "callback" macro.

To validate all the manually specified IDs are exactly right, we used
BTF to compare before and after values:

  $ bpftool btf dump file ~/linux-build/default/vmlinux | rg bpf_func_id -A 211 > after.txt
  $ git stash # stach UAPI changes
  $ make -j90
  ... re-building kernel without UAPI changes ...
  $ bpftool btf dump file ~/linux-build/default/vmlinux | rg bpf_func_id -A 211 > before.txt
  $ diff -u before.txt after.txt
  --- before.txt  2022-10-05 10:48:18.119195916 -0700
  +++ after.txt   2022-10-05 10:46:49.446615025 -0700
  @@ -1,4 +1,4 @@
  -[14576] ENUM 'bpf_func_id' encoding=UNSIGNED size=4 vlen=211
  +[9560] ENUM 'bpf_func_id' encoding=UNSIGNED size=4 vlen=211
          'BPF_FUNC_unspec' val=0
          'BPF_FUNC_map_lookup_elem' val=1
          'BPF_FUNC_map_update_elem' val=2

As can be seen from diff above, the only thing that changed was resulting BTF
type ID of ENUM bpf_func_id, not any of the enumerators, their names or integer
values.

The only other place that needed fixing was scripts/bpf_doc.py used to generate
man pages and bpf_helper_defs.h header for libbpf and selftests. That script is
tightly-coupled to exact shape of ___BPF_FUNC_MAPPER macro definition, so had
to be trivially adapted.

Cc: Quentin Monnet <quentin@isovalent.com>
Reported-by: Andrea Terzolo <andrea.terzolo@polito.it>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Quentin Monnet <quentin@isovalent.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/r/20221006042452.2089843-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
1 file changed
tree: 63fa98f0f3c5d989d76bc1bf9c638f5c0e9134b0
  1. .github/
  2. assets/
  3. ci/
  4. docs/
  5. fuzz/
  6. include/
  7. scripts/
  8. src/
  9. .lgtm.yml
  10. .readthedocs.yaml
  11. BPF-CHECKPOINT-COMMIT
  12. CHECKPOINT-COMMIT
  13. LICENSE
  14. LICENSE.BSD-2-Clause
  15. LICENSE.LGPL-2.1
  16. README.md
README.md

libbpf Github Actions Builds & Tests Total alerts Coverity OSS-Fuzz Status

This is the official home of the libbpf library.

Please use this Github repository for building and packaging libbpf and when using it in your projects through Git submodule.

Libbpf authoritative source code is developed as part of bpf-next Linux source tree under tools/lib/bpf subdirectory and is periodically synced to Github. As such, all the libbpf changes should be sent to BPF mailing list, please don't open PRs here unless you are changing Github-specific parts of libbpf (e.g., Github-specific Makefile).

Libbpf and general BPF usage questions

Libbpf documentation can be found here. It's an ongoing effort and has ways to go, but please take a look and consider contributing as well.

Please check out libbpf-bootstrap and the companion blog post for the examples of building BPF applications with libbpf. libbpf-tools are also a good source of the real-world libbpf-based tracing tools.

See also “BPF CO-RE reference guide” for the coverage of practical aspects of building BPF CO-RE applications and “BPF CO-RE” for general introduction into BPF portability issues and BPF CO-RE origins.

All general BPF questions, including kernel functionality, libbpf APIs and their application, should be sent to bpf@vger.kernel.org mailing list. You can subscribe to it here and search its archive here. Please search the archive before asking new questions. It very well might be that this was already addressed or answered before.

bpf@vger.kernel.org is monitored by many more people and they will happily try to help you with whatever issue you have. This repository's PRs and issues should be opened only for dealing with issues pertaining to specific way this libbpf mirror repo is set up and organized.

Building libbpf

libelf is an internal dependency of libbpf and thus it is required to link against and must be installed on the system for applications to work. pkg-config is used by default to find libelf, and the program called can be overridden with PKG_CONFIG.

If using pkg-config at build time is not desired, it can be disabled by setting NO_PKG_CONFIG=1 when calling make.

To build both static libbpf.a and shared libbpf.so:

$ cd src
$ make

To build only static libbpf.a library in directory build/ and install them together with libbpf headers in a staging directory root/:

$ cd src
$ mkdir build root
$ BUILD_STATIC_ONLY=y OBJDIR=build DESTDIR=root make install

To build both static libbpf.a and shared libbpf.so against a custom libelf dependency installed in /build/root/ and install them together with libbpf headers in a build directory /build/root/:

$ cd src
$ PKG_CONFIG_PATH=/build/root/lib64/pkgconfig DESTDIR=/build/root make install

BPF CO-RE (Compile Once – Run Everywhere)

Libbpf supports building BPF CO-RE-enabled applications, which, in contrast to BCC, do not require Clang/LLVM runtime being deployed to target servers and doesn't rely on kernel-devel headers being available.

It does rely on kernel to be built with BTF type information, though. Some major Linux distributions come with kernel BTF already built in:

  • Fedora 31+
  • RHEL 8.2+
  • OpenSUSE Tumbleweed (in the next release, as of 2020-06-04)
  • Arch Linux (from kernel 5.7.1.arch1-1)
  • Manjaro (from kernel 5.4 if compiled after 2021-06-18)
  • Ubuntu 20.10
  • Debian 11 (amd64/arm64)

If your kernel doesn‘t come with BTF built-in, you’ll need to build custom kernel. You'll need:

  • pahole 1.16+ tool (part of dwarves package), which performs DWARF to BTF conversion;
  • kernel built with CONFIG_DEBUG_INFO_BTF=y option;
  • you can check if your kernel has BTF built-in by looking for /sys/kernel/btf/vmlinux file:
$ ls -la /sys/kernel/btf/vmlinux
-r--r--r--. 1 root root 3541561 Jun  2 18:16 /sys/kernel/btf/vmlinux

To develop and build BPF programs, you'll need Clang/LLVM 10+. The following distributions have Clang/LLVM 10+ packaged by default:

  • Fedora 32+
  • Ubuntu 20.04+
  • Arch Linux
  • Ubuntu 20.10 (LLVM 11)
  • Debian 11 (LLVM 11)
  • Alpine 3.13+

Otherwise, please make sure to update it on your system.

The following resources are useful to understand what BPF CO-RE is and how to use it:

Distributions

Distributions packaging libbpf from this mirror:

Benefits of packaging from the mirror over packaging from kernel sources:

  • Consistent versioning across distributions.
  • No ties to any specific kernel, transparent handling of older kernels. Libbpf is designed to be kernel-agnostic and work across multitude of kernel versions. It has built-in mechanisms to gracefully handle older kernels, that are missing some of the features, by working around or gracefully degrading functionality. Thus libbpf is not tied to a specific kernel version and can/should be packaged and versioned independently.
  • Continuous integration testing via GitHub Actions.
  • Static code analysis via LGTM and Coverity.

Package dependencies of libbpf, package names may vary across distros:

  • zlib
  • libelf

libbpf distro packaging status

bpf-next to Github sync

All the gory details of syncing can be found in scripts/sync-kernel.sh script.

Some header files in this repo (include/linux/*.h) are reduced versions of their counterpart files at bpf-next's tools/include/linux/*.h to make compilation successful.

License

This work is dual-licensed under BSD 2-clause license and GNU LGPL v2.1 license. You can choose between one of them if you use this work.

SPDX-License-Identifier: BSD-2-Clause OR LGPL-2.1