blob: 121d75c91933fc570113f36b3ed42cf091c17bf3 [file] [log] [blame]
package jme3tools.optimize;
import com.jme3.material.Material;
import com.jme3.math.Matrix4f;
import com.jme3.math.Transform;
import com.jme3.math.Vector3f;
import com.jme3.scene.Mesh.Mode;
import com.jme3.scene.*;
import com.jme3.scene.VertexBuffer.Format;
import com.jme3.scene.VertexBuffer.Type;
import com.jme3.scene.VertexBuffer.Usage;
import com.jme3.scene.mesh.IndexBuffer;
import com.jme3.util.BufferUtils;
import com.jme3.util.IntMap.Entry;
import java.nio.Buffer;
import java.nio.FloatBuffer;
import java.nio.ShortBuffer;
import java.util.*;
import java.util.logging.Logger;
public class GeometryBatchFactory {
private static final Logger logger = Logger.getLogger(GeometryBatchFactory.class.getName());
private static void doTransformVerts(FloatBuffer inBuf, int offset, FloatBuffer outBuf, Matrix4f transform) {
Vector3f pos = new Vector3f();
// offset is given in element units
// convert to be in component units
offset *= 3;
for (int i = 0; i < inBuf.capacity() / 3; i++) {
pos.x = inBuf.get(i * 3 + 0);
pos.y = inBuf.get(i * 3 + 1);
pos.z = inBuf.get(i * 3 + 2);
transform.mult(pos, pos);
outBuf.put(offset + i * 3 + 0, pos.x);
outBuf.put(offset + i * 3 + 1, pos.y);
outBuf.put(offset + i * 3 + 2, pos.z);
}
}
private static void doTransformNorms(FloatBuffer inBuf, int offset, FloatBuffer outBuf, Matrix4f transform) {
Vector3f norm = new Vector3f();
// offset is given in element units
// convert to be in component units
offset *= 3;
for (int i = 0; i < inBuf.capacity() / 3; i++) {
norm.x = inBuf.get(i * 3 + 0);
norm.y = inBuf.get(i * 3 + 1);
norm.z = inBuf.get(i * 3 + 2);
transform.multNormal(norm, norm);
outBuf.put(offset + i * 3 + 0, norm.x);
outBuf.put(offset + i * 3 + 1, norm.y);
outBuf.put(offset + i * 3 + 2, norm.z);
}
}
private static void doTransformTangents(FloatBuffer inBuf, int offset, int components, FloatBuffer outBuf, Matrix4f transform) {
Vector3f tan = new Vector3f();
// offset is given in element units
// convert to be in component units
offset *= components;
for (int i = 0; i < inBuf.capacity() / components; i++) {
tan.x = inBuf.get(i * components + 0);
tan.y = inBuf.get(i * components + 1);
tan.z = inBuf.get(i * components + 2);
transform.multNormal(tan, tan);
outBuf.put(offset + i * components + 0, tan.x);
outBuf.put(offset + i * components + 1, tan.y);
outBuf.put(offset + i * components + 2, tan.z);
if (components == 4){
outBuf.put(offset + i * components + 3, inBuf.get(i * components + 3));
}
}
}
/**
* Merges all geometries in the collection into
* the output mesh. Creates a new material using the TextureAtlas.
*
* @param geometries
* @param outMesh
*/
public static void mergeGeometries(Collection<Geometry> geometries, Mesh outMesh) {
int[] compsForBuf = new int[VertexBuffer.Type.values().length];
Format[] formatForBuf = new Format[compsForBuf.length];
int totalVerts = 0;
int totalTris = 0;
int totalLodLevels = 0;
Mode mode = null;
for (Geometry geom : geometries) {
totalVerts += geom.getVertexCount();
totalTris += geom.getTriangleCount();
totalLodLevels = Math.min(totalLodLevels, geom.getMesh().getNumLodLevels());
Mode listMode;
int components;
switch (geom.getMesh().getMode()) {
case Points:
listMode = Mode.Points;
components = 1;
break;
case LineLoop:
case LineStrip:
case Lines:
listMode = Mode.Lines;
components = 2;
break;
case TriangleFan:
case TriangleStrip:
case Triangles:
listMode = Mode.Triangles;
components = 3;
break;
default:
throw new UnsupportedOperationException();
}
for (VertexBuffer vb : geom.getMesh().getBufferList().getArray()){
compsForBuf[vb.getBufferType().ordinal()] = vb.getNumComponents();
formatForBuf[vb.getBufferType().ordinal()] = vb.getFormat();
}
if (mode != null && mode != listMode) {
throw new UnsupportedOperationException("Cannot combine different"
+ " primitive types: " + mode + " != " + listMode);
}
mode = listMode;
compsForBuf[Type.Index.ordinal()] = components;
}
outMesh.setMode(mode);
if (totalVerts >= 65536) {
// make sure we create an UnsignedInt buffer so
// we can fit all of the meshes
formatForBuf[Type.Index.ordinal()] = Format.UnsignedInt;
} else {
formatForBuf[Type.Index.ordinal()] = Format.UnsignedShort;
}
// generate output buffers based on retrieved info
for (int i = 0; i < compsForBuf.length; i++) {
if (compsForBuf[i] == 0) {
continue;
}
Buffer data;
if (i == Type.Index.ordinal()) {
data = VertexBuffer.createBuffer(formatForBuf[i], compsForBuf[i], totalTris);
} else {
data = VertexBuffer.createBuffer(formatForBuf[i], compsForBuf[i], totalVerts);
}
VertexBuffer vb = new VertexBuffer(Type.values()[i]);
vb.setupData(Usage.Static, compsForBuf[i], formatForBuf[i], data);
outMesh.setBuffer(vb);
}
int globalVertIndex = 0;
int globalTriIndex = 0;
for (Geometry geom : geometries) {
Mesh inMesh = geom.getMesh();
geom.computeWorldMatrix();
Matrix4f worldMatrix = geom.getWorldMatrix();
int geomVertCount = inMesh.getVertexCount();
int geomTriCount = inMesh.getTriangleCount();
for (int bufType = 0; bufType < compsForBuf.length; bufType++) {
VertexBuffer inBuf = inMesh.getBuffer(Type.values()[bufType]);
VertexBuffer outBuf = outMesh.getBuffer(Type.values()[bufType]);
if (inBuf == null || outBuf == null) {
continue;
}
if (Type.Index.ordinal() == bufType) {
int components = compsForBuf[bufType];
IndexBuffer inIdx = inMesh.getIndicesAsList();
IndexBuffer outIdx = outMesh.getIndexBuffer();
for (int tri = 0; tri < geomTriCount; tri++) {
for (int comp = 0; comp < components; comp++) {
int idx = inIdx.get(tri * components + comp) + globalVertIndex;
outIdx.put((globalTriIndex + tri) * components + comp, idx);
}
}
} else if (Type.Position.ordinal() == bufType) {
FloatBuffer inPos = (FloatBuffer) inBuf.getDataReadOnly();
FloatBuffer outPos = (FloatBuffer) outBuf.getData();
doTransformVerts(inPos, globalVertIndex, outPos, worldMatrix);
} else if (Type.Normal.ordinal() == bufType) {
FloatBuffer inPos = (FloatBuffer) inBuf.getDataReadOnly();
FloatBuffer outPos = (FloatBuffer) outBuf.getData();
doTransformNorms(inPos, globalVertIndex, outPos, worldMatrix);
}else if(Type.Tangent.ordinal() == bufType){
FloatBuffer inPos = (FloatBuffer) inBuf.getDataReadOnly();
FloatBuffer outPos = (FloatBuffer) outBuf.getData();
int components = inBuf.getNumComponents();
doTransformTangents(inPos, globalVertIndex, components, outPos, worldMatrix);
} else {
inBuf.copyElements(0, outBuf, globalVertIndex, geomVertCount);
}
}
globalVertIndex += geomVertCount;
globalTriIndex += geomTriCount;
}
}
public static void makeLods(Collection<Geometry> geometries, Mesh outMesh) {
int lodLevels = 0;
int[] lodSize = null;
int index = 0;
for (Geometry g : geometries) {
if (lodLevels == 0) {
lodLevels = g.getMesh().getNumLodLevels();
}
if (lodSize == null) {
lodSize = new int[lodLevels];
}
for (int i = 0; i < lodLevels; i++) {
lodSize[i] += g.getMesh().getLodLevel(i).getData().capacity();
//if( i == 0) System.out.println(index + " " +lodSize[i]);
}
index++;
}
int[][] lodData = new int[lodLevels][];
for (int i = 0; i < lodLevels; i++) {
lodData[i] = new int[lodSize[i]];
}
VertexBuffer[] lods = new VertexBuffer[lodLevels];
int bufferPos[] = new int[lodLevels];
//int index = 0;
int numOfVertices = 0;
int curGeom = 0;
for (Geometry g : geometries) {
if (numOfVertices == 0) {
numOfVertices = g.getVertexCount();
}
for (int i = 0; i < lodLevels; i++) {
ShortBuffer buffer = (ShortBuffer) g.getMesh().getLodLevel(i).getDataReadOnly();
//System.out.println("buffer: " + buffer.capacity() + " limit: " + lodSize[i] + " " + index);
for (int j = 0; j < buffer.capacity(); j++) {
lodData[i][bufferPos[i] + j] = buffer.get() + numOfVertices * curGeom;
//bufferPos[i]++;
}
bufferPos[i] += buffer.capacity();
}
curGeom++;
}
for (int i = 0; i < lodLevels; i++) {
lods[i] = new VertexBuffer(Type.Index);
lods[i].setupData(Usage.Dynamic, 1, Format.UnsignedInt, BufferUtils.createIntBuffer(lodData[i]));
}
System.out.println(lods.length);
outMesh.setLodLevels(lods);
}
public static List<Geometry> makeBatches(Collection<Geometry> geometries) {
return makeBatches(geometries, false);
}
/**
* Batches a collection of Geometries so that all with the same material get combined.
* @param geometries The Geometries to combine
* @return A List of newly created Geometries, each with a distinct material
*/
public static List<Geometry> makeBatches(Collection<Geometry> geometries, boolean useLods) {
ArrayList<Geometry> retVal = new ArrayList<Geometry>();
HashMap<Material, List<Geometry>> matToGeom = new HashMap<Material, List<Geometry>>();
for (Geometry geom : geometries) {
List<Geometry> outList = matToGeom.get(geom.getMaterial());
if (outList == null) {
outList = new ArrayList<Geometry>();
matToGeom.put(geom.getMaterial(), outList);
}
outList.add(geom);
}
int batchNum = 0;
for (Map.Entry<Material, List<Geometry>> entry : matToGeom.entrySet()) {
Material mat = entry.getKey();
List<Geometry> geomsForMat = entry.getValue();
Mesh mesh = new Mesh();
mergeGeometries(geomsForMat, mesh);
// lods
if (useLods) {
makeLods(geomsForMat, mesh);
}
mesh.updateCounts();
mesh.updateBound();
Geometry out = new Geometry("batch[" + (batchNum++) + "]", mesh);
out.setMaterial(mat);
retVal.add(out);
}
return retVal;
}
public static void gatherGeoms(Spatial scene, List<Geometry> geoms) {
if (scene instanceof Node) {
Node node = (Node) scene;
for (Spatial child : node.getChildren()) {
gatherGeoms(child, geoms);
}
} else if (scene instanceof Geometry) {
geoms.add((Geometry) scene);
}
}
/**
* Optimizes a scene by combining Geometry with the same material.
* All Geometries found in the scene are detached from their parent and
* a new Node containing the optimized Geometries is attached.
* @param scene The scene to optimize
* @return The newly created optimized geometries attached to a node
*/
public static Spatial optimize(Node scene) {
return optimize(scene, false);
}
/**
* Optimizes a scene by combining Geometry with the same material.
* All Geometries found in the scene are detached from their parent and
* a new Node containing the optimized Geometries is attached.
* @param scene The scene to optimize
* @param useLods true if you want the resulting geometry to keep lod information
* @return The newly created optimized geometries attached to a node
*/
public static Node optimize(Node scene, boolean useLods) {
ArrayList<Geometry> geoms = new ArrayList<Geometry>();
gatherGeoms(scene, geoms);
List<Geometry> batchedGeoms = makeBatches(geoms, useLods);
for (Geometry geom : batchedGeoms) {
scene.attachChild(geom);
}
for (Iterator<Geometry> it = geoms.iterator(); it.hasNext();) {
Geometry geometry = it.next();
geometry.removeFromParent();
}
// Since the scene is returned unaltered the transform must be reset
scene.setLocalTransform(Transform.IDENTITY);
return scene;
}
public static void printMesh(Mesh mesh) {
for (int bufType = 0; bufType < Type.values().length; bufType++) {
VertexBuffer outBuf = mesh.getBuffer(Type.values()[bufType]);
if (outBuf == null) {
continue;
}
System.out.println(outBuf.getBufferType() + ": ");
for (int vert = 0; vert < outBuf.getNumElements(); vert++) {
String str = "[";
for (int comp = 0; comp < outBuf.getNumComponents(); comp++) {
Object val = outBuf.getElementComponent(vert, comp);
outBuf.setElementComponent(vert, comp, val);
val = outBuf.getElementComponent(vert, comp);
str += val;
if (comp != outBuf.getNumComponents() - 1) {
str += ", ";
}
}
str += "]";
System.out.println(str);
}
System.out.println("------");
}
}
public static void main(String[] args) {
Mesh mesh = new Mesh();
mesh.setBuffer(Type.Position, 3, new float[]{
0, 0, 0,
1, 0, 0,
1, 1, 0,
0, 1, 0
});
mesh.setBuffer(Type.Index, 2, new short[]{
0, 1,
1, 2,
2, 3,
3, 0
});
Geometry g1 = new Geometry("g1", mesh);
ArrayList<Geometry> geoms = new ArrayList<Geometry>();
geoms.add(g1);
Mesh outMesh = new Mesh();
mergeGeometries(geoms, outMesh);
printMesh(outMesh);
}
}