blob: e0a69458e6130d17f5b83f3a36b0de04f6ea608c [file] [log] [blame]
/*
* Copyright (c) 2010, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.nashorn.internal.codegen;
import static jdk.nashorn.internal.runtime.logging.DebugLogger.quote;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;
import jdk.nashorn.internal.codegen.Compiler.CompilationPhases;
import jdk.nashorn.internal.ir.Block;
import jdk.nashorn.internal.ir.FunctionNode;
import jdk.nashorn.internal.ir.LiteralNode;
import jdk.nashorn.internal.ir.Node;
import jdk.nashorn.internal.ir.Symbol;
import jdk.nashorn.internal.ir.debug.ASTWriter;
import jdk.nashorn.internal.ir.debug.PrintVisitor;
import jdk.nashorn.internal.ir.visitor.NodeVisitor;
import jdk.nashorn.internal.ir.visitor.SimpleNodeVisitor;
import jdk.nashorn.internal.runtime.CodeInstaller;
import jdk.nashorn.internal.runtime.RecompilableScriptFunctionData;
import jdk.nashorn.internal.runtime.ScriptEnvironment;
import jdk.nashorn.internal.runtime.logging.DebugLogger;
/**
* A compilation phase is a step in the processes of turning a JavaScript
* FunctionNode into bytecode. It has an optional return value.
*/
abstract class CompilationPhase {
private static final class ConstantFoldingPhase extends CompilationPhase {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
return transformFunction(fn, new FoldConstants(compiler));
}
@Override
public String toString() {
return "'Constant Folding'";
}
}
/**
* Constant folding pass Simple constant folding that will make elementary
* constructs go away
*/
static final CompilationPhase CONSTANT_FOLDING_PHASE = new ConstantFoldingPhase();
private static final class LoweringPhase extends CompilationPhase {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
return transformFunction(fn, new Lower(compiler));
}
@Override
public String toString() {
return "'Control Flow Lowering'";
}
}
/**
* Lower (Control flow pass) Finalizes the control flow. Clones blocks for
* finally constructs and similar things. Establishes termination criteria
* for nodes Guarantee return instructions to method making sure control
* flow cannot fall off the end. Replacing high level nodes with lower such
* as runtime nodes where applicable.
*/
static final CompilationPhase LOWERING_PHASE = new LoweringPhase();
private static final class ApplySpecializationPhase extends CompilationPhase {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
return transformFunction(fn, new ApplySpecialization(compiler));
}
@Override
public String toString() {
return "'Builtin Replacement'";
}
};
/**
* Phase used to transform Function.prototype.apply.
*/
static final CompilationPhase APPLY_SPECIALIZATION_PHASE = new ApplySpecializationPhase();
private static final class SplittingPhase extends CompilationPhase {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
final CompileUnit outermostCompileUnit = compiler.addCompileUnit(0L);
FunctionNode newFunctionNode;
//ensure elementTypes, postsets and presets exist for splitter and arraynodes
newFunctionNode = transformFunction(fn, new SimpleNodeVisitor() {
@Override
public LiteralNode<?> leaveLiteralNode(final LiteralNode<?> literalNode) {
return literalNode.initialize(lc);
}
});
newFunctionNode = new Splitter(compiler, newFunctionNode, outermostCompileUnit).split(newFunctionNode, true);
newFunctionNode = transformFunction(newFunctionNode, new SplitIntoFunctions(compiler));
assert newFunctionNode.getCompileUnit() == outermostCompileUnit : "fn=" + fn.getName() + ", fn.compileUnit (" + newFunctionNode.getCompileUnit() + ") != " + outermostCompileUnit;
assert newFunctionNode.isStrict() == compiler.isStrict() : "functionNode.isStrict() != compiler.isStrict() for " + quote(newFunctionNode.getName());
return newFunctionNode;
}
@Override
public String toString() {
return "'Code Splitting'";
}
};
/**
* Splitter Split the AST into several compile units based on a heuristic size calculation.
* Split IR can lead to scope information being changed.
*/
static final CompilationPhase SPLITTING_PHASE = new SplittingPhase();
private static final class ProgramPointPhase extends CompilationPhase {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
return transformFunction(fn, new ProgramPoints());
}
@Override
public String toString() {
return "'Program Point Calculation'";
}
};
static final CompilationPhase PROGRAM_POINT_PHASE = new ProgramPointPhase();
private static final class CacheAstPhase extends CompilationPhase {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
if (!compiler.isOnDemandCompilation()) {
// Only do this on initial preprocessing of the source code. For on-demand compilations from
// source, FindScopeDepths#leaveFunctionNode() calls data.setCachedAst() for the sole function
// being compiled.
transformFunction(fn, new CacheAst(compiler));
}
// NOTE: we're returning the original fn as we have destructively modified the cached functions by
// removing their bodies. This step is associating FunctionNode objects with
// RecompilableScriptFunctionData; it's not really modifying the AST.
return fn;
}
@Override
public String toString() {
return "'Cache ASTs'";
}
};
static final CompilationPhase CACHE_AST_PHASE = new CacheAstPhase();
private static final class SymbolAssignmentPhase extends CompilationPhase {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
return transformFunction(fn, new AssignSymbols(compiler));
}
@Override
public String toString() {
return "'Symbol Assignment'";
}
};
static final CompilationPhase SYMBOL_ASSIGNMENT_PHASE = new SymbolAssignmentPhase();
private static final class ScopeDepthComputationPhase extends CompilationPhase {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
return transformFunction(fn, new FindScopeDepths(compiler));
}
@Override
public String toString() {
return "'Scope Depth Computation'";
}
};
static final CompilationPhase SCOPE_DEPTH_COMPUTATION_PHASE = new ScopeDepthComputationPhase();
private static final class DeclareLocalSymbolsPhase extends CompilationPhase {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
// It's not necessary to guard the marking of symbols as locals with this "if" condition for
// correctness, it's just an optimization -- runtime type calculation is not used when the compilation
// is not an on-demand optimistic compilation, so we can skip locals marking then.
if (compiler.useOptimisticTypes() && compiler.isOnDemandCompilation()) {
fn.getBody().accept(new SimpleNodeVisitor() {
@Override
public boolean enterFunctionNode(final FunctionNode functionNode) {
// OTOH, we must not declare symbols from nested functions to be locals. As we're doing on-demand
// compilation, and we're skipping parsing the function bodies for nested functions, this
// basically only means their parameters. It'd be enough to mistakenly declare to be a local a
// symbol in the outer function named the same as one of the parameters, though.
return false;
};
@Override
public boolean enterBlock(final Block block) {
for (final Symbol symbol: block.getSymbols()) {
if (!symbol.isScope()) {
compiler.declareLocalSymbol(symbol.getName());
}
}
return true;
};
});
}
return fn;
}
@Override
public String toString() {
return "'Local Symbols Declaration'";
}
};
static final CompilationPhase DECLARE_LOCAL_SYMBOLS_PHASE = new DeclareLocalSymbolsPhase();
private static final class OptimisticTypeAssignmentPhase extends CompilationPhase {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
if (compiler.useOptimisticTypes()) {
return transformFunction(fn, new OptimisticTypesCalculator(compiler));
}
return fn;
}
@Override
public String toString() {
return "'Optimistic Type Assignment'";
}
}
static final CompilationPhase OPTIMISTIC_TYPE_ASSIGNMENT_PHASE = new OptimisticTypeAssignmentPhase();
private static final class LocalVariableTypeCalculationPhase extends CompilationPhase {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
final FunctionNode newFunctionNode = transformFunction(fn, new LocalVariableTypesCalculator(compiler));
final ScriptEnvironment senv = compiler.getScriptEnvironment();
final PrintWriter err = senv.getErr();
//TODO separate phase for the debug printouts for abstraction and clarity
if (senv._print_lower_ast || fn.getFlag(FunctionNode.IS_PRINT_LOWER_AST)) {
err.println("Lower AST for: " + quote(newFunctionNode.getName()));
err.println(new ASTWriter(newFunctionNode));
}
if (senv._print_lower_parse || fn.getFlag(FunctionNode.IS_PRINT_LOWER_PARSE)) {
err.println("Lower AST for: " + quote(newFunctionNode.getName()));
err.println(new PrintVisitor(newFunctionNode));
}
return newFunctionNode;
}
@Override
public String toString() {
return "'Local Variable Type Calculation'";
}
};
static final CompilationPhase LOCAL_VARIABLE_TYPE_CALCULATION_PHASE = new LocalVariableTypeCalculationPhase();
private static final class ReuseCompileUnitsPhase extends CompilationPhase {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
assert phases.isRestOfCompilation() : "reuse compile units currently only used for Rest-Of methods";
final Map<CompileUnit, CompileUnit> map = new HashMap<>();
final Set<CompileUnit> newUnits = CompileUnit.createCompileUnitSet();
final DebugLogger log = compiler.getLogger();
log.fine("Clearing bytecode cache");
compiler.clearBytecode();
for (final CompileUnit oldUnit : compiler.getCompileUnits()) {
assert map.get(oldUnit) == null;
final CompileUnit newUnit = createNewCompileUnit(compiler, phases);
log.fine("Creating new compile unit ", oldUnit, " => ", newUnit);
map.put(oldUnit, newUnit);
assert newUnit != null;
newUnits.add(newUnit);
}
log.fine("Replacing compile units in Compiler...");
compiler.replaceCompileUnits(newUnits);
log.fine("Done");
//replace old compile units in function nodes, if any are assigned,
//for example by running the splitter on this function node in a previous
//partial code generation
final FunctionNode newFunctionNode = transformFunction(fn, new ReplaceCompileUnits() {
@Override
CompileUnit getReplacement(final CompileUnit original) {
return map.get(original);
}
@Override
public Node leaveDefault(final Node node) {
return node.ensureUniqueLabels(lc);
}
});
return newFunctionNode;
}
@Override
public String toString() {
return "'Reuse Compile Units'";
}
}
/**
* Reuse compile units, if they are already present. We are using the same compiler
* to recompile stuff
*/
static final CompilationPhase REUSE_COMPILE_UNITS_PHASE = new ReuseCompileUnitsPhase();
private static final class ReinitializeCachedPhase extends CompilationPhase {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
final Set<CompileUnit> unitSet = CompileUnit.createCompileUnitSet();
final Map<CompileUnit, CompileUnit> unitMap = new HashMap<>();
// Ensure that the FunctionNode's compile unit is the first in the list of new units. Install phase
// will use that as the root class.
createCompileUnit(fn.getCompileUnit(), unitSet, unitMap, compiler, phases);
final FunctionNode newFn = transformFunction(fn, new ReplaceCompileUnits() {
@Override
CompileUnit getReplacement(final CompileUnit oldUnit) {
final CompileUnit existing = unitMap.get(oldUnit);
if (existing != null) {
return existing;
}
return createCompileUnit(oldUnit, unitSet, unitMap, compiler, phases);
}
@Override
public Node leaveFunctionNode(final FunctionNode fn2) {
return super.leaveFunctionNode(
// restore flags for deserialized nested function nodes
compiler.getScriptFunctionData(fn2.getId()).restoreFlags(lc, fn2));
};
});
compiler.replaceCompileUnits(unitSet);
return newFn;
}
private CompileUnit createCompileUnit(final CompileUnit oldUnit, final Set<CompileUnit> unitSet,
final Map<CompileUnit, CompileUnit> unitMap, final Compiler compiler, final CompilationPhases phases) {
final CompileUnit newUnit = createNewCompileUnit(compiler, phases);
unitMap.put(oldUnit, newUnit);
unitSet.add(newUnit);
return newUnit;
}
@Override
public String toString() {
return "'Reinitialize cached'";
}
}
static final CompilationPhase REINITIALIZE_CACHED = new ReinitializeCachedPhase();
private static final class BytecodeGenerationPhase extends CompilationPhase {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
final ScriptEnvironment senv = compiler.getScriptEnvironment();
FunctionNode newFunctionNode = fn;
//root class is special, as it is bootstrapped from createProgramFunction, thus it's skipped
//in CodeGeneration - the rest can be used as a working "is compile unit used" metric
fn.getCompileUnit().setUsed();
compiler.getLogger().fine("Starting bytecode generation for ", quote(fn.getName()), " - restOf=", phases.isRestOfCompilation());
final CodeGenerator codegen = new CodeGenerator(compiler, phases.isRestOfCompilation() ? compiler.getContinuationEntryPoints() : null);
try {
// Explicitly set BYTECODE_GENERATED here; it can not be set in case of skipping codegen for :program
// in the lazy + optimistic world. See CodeGenerator.skipFunction().
newFunctionNode = transformFunction(newFunctionNode, codegen);
codegen.generateScopeCalls();
} catch (final VerifyError e) {
if (senv._verify_code || senv._print_code) {
senv.getErr().println(e.getClass().getSimpleName() + ": " + e.getMessage());
if (senv._dump_on_error) {
e.printStackTrace(senv.getErr());
}
} else {
throw e;
}
} catch (final Throwable e) {
// Provide source file and line number being compiled when the assertion occurred
throw new AssertionError("Failed generating bytecode for " + fn.getSourceName() + ":" + codegen.getLastLineNumber(), e);
}
for (final CompileUnit compileUnit : compiler.getCompileUnits()) {
final ClassEmitter classEmitter = compileUnit.getClassEmitter();
classEmitter.end();
if (!compileUnit.isUsed()) {
compiler.getLogger().fine("Skipping unused compile unit ", compileUnit);
continue;
}
final byte[] bytecode = classEmitter.toByteArray();
assert bytecode != null;
final String className = compileUnit.getUnitClassName();
compiler.addClass(className, bytecode); //classes are only added to the bytecode map if compile unit is used
CompileUnit.increaseEmitCount();
// should we verify the generated code?
if (senv._verify_code) {
compiler.getCodeInstaller().verify(bytecode);
}
DumpBytecode.dumpBytecode(senv, compiler.getLogger(), bytecode, className);
}
return newFunctionNode;
}
@Override
public String toString() {
return "'Bytecode Generation'";
}
}
/**
* Bytecode generation:
*
* Generate the byte code class(es) resulting from the compiled FunctionNode
*/
static final CompilationPhase BYTECODE_GENERATION_PHASE = new BytecodeGenerationPhase();
private static final class InstallPhase extends CompilationPhase {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
final DebugLogger log = compiler.getLogger();
final Map<String, Class<?>> installedClasses = new LinkedHashMap<>();
boolean first = true;
Class<?> rootClass = null;
long length = 0L;
final CodeInstaller codeInstaller = compiler.getCodeInstaller();
final Map<String, byte[]> bytecode = compiler.getBytecode();
for (final Entry<String, byte[]> entry : bytecode.entrySet()) {
final String className = entry.getKey();
//assert !first || className.equals(compiler.getFirstCompileUnit().getUnitClassName()) : "first=" + first + " className=" + className + " != " + compiler.getFirstCompileUnit().getUnitClassName();
final byte[] code = entry.getValue();
length += code.length;
final Class<?> clazz = codeInstaller.install(className, code);
if (first) {
rootClass = clazz;
first = false;
}
installedClasses.put(className, clazz);
}
if (rootClass == null) {
throw new CompilationException("Internal compiler error: root class not found!");
}
final Object[] constants = compiler.getConstantData().toArray();
codeInstaller.initialize(installedClasses.values(), compiler.getSource(), constants);
// initialize transient fields on recompilable script function data
for (final Object constant: constants) {
if (constant instanceof RecompilableScriptFunctionData) {
((RecompilableScriptFunctionData)constant).initTransients(compiler.getSource(), codeInstaller);
}
}
// initialize function in the compile units
for (final CompileUnit unit : compiler.getCompileUnits()) {
if (!unit.isUsed()) {
continue;
}
unit.setCode(installedClasses.get(unit.getUnitClassName()));
unit.initializeFunctionsCode();
}
if (log.isEnabled()) {
final StringBuilder sb = new StringBuilder();
sb.append("Installed class '").
append(rootClass.getSimpleName()).
append('\'').
append(" [").
append(rootClass.getName()).
append(", size=").
append(length).
append(" bytes, ").
append(compiler.getCompileUnits().size()).
append(" compile unit(s)]");
log.fine(sb.toString());
}
return fn.setRootClass(null, rootClass);
}
@Override
public String toString() {
return "'Class Installation'";
}
}
static final CompilationPhase INSTALL_PHASE = new InstallPhase();
/** start time of transform - used for timing, see {@link jdk.nashorn.internal.runtime.Timing} */
private long startTime;
/** start time of transform - used for timing, see {@link jdk.nashorn.internal.runtime.Timing} */
private long endTime;
/** boolean that is true upon transform completion */
private boolean isFinished;
private CompilationPhase() {}
/**
* Start a compilation phase
* @param compiler the compiler to use
* @param functionNode function to compile
* @return function node
*/
protected FunctionNode begin(final Compiler compiler, final FunctionNode functionNode) {
compiler.getLogger().indent();
startTime = System.nanoTime();
return functionNode;
}
/**
* End a compilation phase
* @param compiler the compiler
* @param functionNode function node to compile
* @return function node
*/
protected FunctionNode end(final Compiler compiler, final FunctionNode functionNode) {
compiler.getLogger().unindent();
endTime = System.nanoTime();
compiler.getScriptEnvironment()._timing.accumulateTime(toString(), endTime - startTime);
isFinished = true;
return functionNode;
}
boolean isFinished() {
return isFinished;
}
long getStartTime() {
return startTime;
}
long getEndTime() {
return endTime;
}
abstract FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode functionNode) throws CompilationException;
/**
* Apply a transform to a function node, returning the transformed function node. If the transform is not
* applicable, an exception is thrown. Every transform requires the function to have a certain number of
* states to operate. It can have more states set, but not fewer. The state list, i.e. the constructor
* arguments to any of the CompilationPhase enum entries, is a set of REQUIRED states.
*
* @param compiler compiler
* @param phases current complete pipeline of which this phase is one
* @param functionNode function node to transform
*
* @return transformed function node
*
* @throws CompilationException if function node lacks the state required to run the transform on it
*/
final FunctionNode apply(final Compiler compiler, final CompilationPhases phases, final FunctionNode functionNode) throws CompilationException {
assert phases.contains(this);
return end(compiler, transform(compiler, phases, begin(compiler, functionNode)));
}
private static FunctionNode transformFunction(final FunctionNode fn, final NodeVisitor<?> visitor) {
return (FunctionNode) fn.accept(visitor);
}
private static CompileUnit createNewCompileUnit(final Compiler compiler, final CompilationPhases phases) {
final StringBuilder sb = new StringBuilder(compiler.nextCompileUnitName());
if (phases.isRestOfCompilation()) {
sb.append("$restOf");
}
//it's ok to not copy the initCount, methodCount and clinitCount here, as codegen is what
//fills those out anyway. Thus no need for a copy constructor
return compiler.createCompileUnit(sb.toString(), 0);
}
}