blob: ced37b72613da44120d551067ccb317bd10f3cdb [file] [log] [blame]
/*
* Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Copyright (c) 2007-2012, Stephen Colebourne & Michael Nascimento Santos
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of JSR-310 nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package build.tools.tzdb;
import static build.tools.tzdb.Utils.*;
import static build.tools.tzdb.LocalTime.HOURS_PER_DAY;
import static build.tools.tzdb.LocalTime.MICROS_PER_DAY;
import static build.tools.tzdb.LocalTime.MILLIS_PER_DAY;
import static build.tools.tzdb.LocalTime.MINUTES_PER_DAY;
import static build.tools.tzdb.LocalTime.SECONDS_PER_DAY;
import static build.tools.tzdb.LocalTime.SECONDS_PER_MINUTE;
import static build.tools.tzdb.LocalTime.SECONDS_PER_HOUR;
import java.util.Objects;
/**
* A date-time without a time-zone in the ISO-8601 calendar system,
* such as {@code 2007-12-03T10:15:30}.
*
* @since 1.8
*/
final class LocalDateTime {
/**
* The minimum supported {@code LocalDateTime}, '-999999999-01-01T00:00:00'.
* This is the local date-time of midnight at the start of the minimum date.
* This combines {@link LocalDate#MIN} and {@link LocalTime#MIN}.
* This could be used by an application as a "far past" date-time.
*/
public static final LocalDateTime MIN = LocalDateTime.of(LocalDate.MIN, LocalTime.MIN);
/**
* The maximum supported {@code LocalDateTime}, '+999999999-12-31T23:59:59.999999999'.
* This is the local date-time just before midnight at the end of the maximum date.
* This combines {@link LocalDate#MAX} and {@link LocalTime#MAX}.
* This could be used by an application as a "far future" date-time.
*/
public static final LocalDateTime MAX = LocalDateTime.of(LocalDate.MAX, LocalTime.MAX);
/**
* The date part.
*/
private final LocalDate date;
/**
* The time part.
*/
private final LocalTime time;
/**
* Obtains an instance of {@code LocalDateTime} from year, month,
* day, hour and minute, setting the second and nanosecond to zero.
* <p>
* The day must be valid for the year and month, otherwise an exception will be thrown.
* The second and nanosecond fields will be set to zero.
*
* @param year the year to represent, from MIN_YEAR to MAX_YEAR
* @param month the month-of-year to represent, from 1 (January) to 12 (December)
* @param dayOfMonth the day-of-month to represent, from 1 to 31
* @param hour the hour-of-day to represent, from 0 to 23
* @param minute the minute-of-hour to represent, from 0 to 59
* @return the local date-time, not null
* @throws DateTimeException if the value of any field is out of range
* @throws DateTimeException if the day-of-month is invalid for the month-year
*/
public static LocalDateTime of(int year, int month, int dayOfMonth, int hour, int minute) {
LocalDate date = LocalDate.of(year, month, dayOfMonth);
LocalTime time = LocalTime.of(hour, minute);
return new LocalDateTime(date, time);
}
/**
* Obtains an instance of {@code LocalDateTime} from a date and time.
*
* @param date the local date, not null
* @param time the local time, not null
* @return the local date-time, not null
*/
public static LocalDateTime of(LocalDate date, LocalTime time) {
Objects.requireNonNull(date, "date");
Objects.requireNonNull(time, "time");
return new LocalDateTime(date, time);
}
/**
* Obtains an instance of {@code LocalDateTime} using seconds from the
* epoch of 1970-01-01T00:00:00Z.
* <p>
* This allows the {@link ChronoField#INSTANT_SECONDS epoch-second} field
* to be converted to a local date-time. This is primarily intended for
* low-level conversions rather than general application usage.
*
* @param epochSecond the number of seconds from the epoch of 1970-01-01T00:00:00Z
* @param nanoOfSecond the nanosecond within the second, from 0 to 999,999,999
* @param offset the zone offset, not null
* @return the local date-time, not null
* @throws DateTimeException if the result exceeds the supported range
*/
public static LocalDateTime ofEpochSecond(long epochSecond, int nanoOfSecond, ZoneOffset offset) {
Objects.requireNonNull(offset, "offset");
long localSecond = epochSecond + offset.getTotalSeconds(); // overflow caught later
long localEpochDay = floorDiv(localSecond, SECONDS_PER_DAY);
int secsOfDay = (int)floorMod(localSecond, SECONDS_PER_DAY);
LocalDate date = LocalDate.ofEpochDay(localEpochDay);
LocalTime time = LocalTime.ofSecondOfDay(secsOfDay); // ignore nano
return new LocalDateTime(date, time);
}
/**
* Constructor.
*
* @param date the date part of the date-time, validated not null
* @param time the time part of the date-time, validated not null
*/
private LocalDateTime(LocalDate date, LocalTime time) {
this.date = date;
this.time = time;
}
/**
* Returns a copy of this date-time with the new date and time, checking
* to see if a new object is in fact required.
*
* @param newDate the date of the new date-time, not null
* @param newTime the time of the new date-time, not null
* @return the date-time, not null
*/
private LocalDateTime with(LocalDate newDate, LocalTime newTime) {
if (date == newDate && time == newTime) {
return this;
}
return new LocalDateTime(newDate, newTime);
}
/**
* Gets the {@code LocalDate} part of this date-time.
* <p>
* This returns a {@code LocalDate} with the same year, month and day
* as this date-time.
*
* @return the date part of this date-time, not null
*/
public LocalDate getDate() {
return date;
}
/**
* Gets the year field.
* <p>
* This method returns the primitive {@code int} value for the year.
* <p>
* The year returned by this method is proleptic as per {@code get(YEAR)}.
* To obtain the year-of-era, use {@code get(YEAR_OF_ERA}.
*
* @return the year, from MIN_YEAR to MAX_YEAR
*/
public int getYear() {
return date.getYear();
}
/**
* Gets the month-of-year field as an int from 1 to 12.
*
* @return the month-of-year
*/
public int getMonth() {
return date.getMonth();
}
/**
* Gets the day-of-month field.
* <p>
* This method returns the primitive {@code int} value for the day-of-month.
*
* @return the day-of-month, from 1 to 31
*/
public int getDayOfMonth() {
return date.getDayOfMonth();
}
/**
* Gets the day-of-week field, which is an integer from 1 to 7.
*
* @return the day-of-week, from 1 to 7
*/
public int getDayOfWeek() {
return date.getDayOfWeek();
}
/**
* Gets the {@code LocalTime} part of this date-time.
* <p>
* This returns a {@code LocalTime} with the same hour, minute, second and
* nanosecond as this date-time.
*
* @return the time part of this date-time, not null
*/
public LocalTime getTime() {
return time;
}
/**
* Gets the hour-of-day field.
*
* @return the hour-of-day, from 0 to 23
*/
public int getHour() {
return time.getHour();
}
/**
* Gets the minute-of-hour field.
*
* @return the minute-of-hour, from 0 to 59
*/
public int getMinute() {
return time.getMinute();
}
/**
* Gets the second-of-minute field.
*
* @return the second-of-minute, from 0 to 59
*/
public int getSecond() {
return time.getSecond();
}
/**
* Converts this date-time to the number of seconds from the epoch
* of 1970-01-01T00:00:00Z.
* <p>
* This combines this local date-time and the specified offset to calculate the
* epoch-second value, which is the number of elapsed seconds from 1970-01-01T00:00:00Z.
* Instants on the time-line after the epoch are positive, earlier are negative.
* <p>
* This default implementation calculates from the epoch-day of the date and the
* second-of-day of the time.
*
* @param offset the offset to use for the conversion, not null
* @return the number of seconds from the epoch of 1970-01-01T00:00:00Z
*/
public long toEpochSecond(ZoneOffset offset) {
Objects.requireNonNull(offset, "offset");
long epochDay = getDate().toEpochDay();
long secs = epochDay * 86400 + getTime().toSecondOfDay();
secs -= offset.getTotalSeconds();
return secs;
}
/**
* Returns a copy of this {@code LocalDateTime} with the specified period in days added.
* <p>
* This method adds the specified amount to the days field incrementing the
* month and year fields as necessary to ensure the result remains valid.
* The result is only invalid if the maximum/minimum year is exceeded.
* <p>
* For example, 2008-12-31 plus one day would result in 2009-01-01.
* <p>
* This instance is immutable and unaffected by this method call.
*
* @param days the days to add, may be negative
* @return a {@code LocalDateTime} based on this date-time with the days added, not null
* @throws DateTimeException if the result exceeds the supported date range
*/
public LocalDateTime plusDays(long days) {
LocalDate newDate = date.plusDays(days);
return with(newDate, time);
}
/**
* Returns a copy of this {@code LocalDateTime} with the specified period in seconds added.
* <p>
* This instance is immutable and unaffected by this method call.
*
* @param seconds the seconds to add, may be negative
* @return a {@code LocalDateTime} based on this date-time with the seconds added, not null
* @throws DateTimeException if the result exceeds the supported date range
*/
public LocalDateTime plusSeconds(long seconds) {
return plusWithOverflow(date, 0, 0, seconds, 1);
}
/**
* Returns a copy of this {@code LocalDateTime} with the specified period added.
* <p>
* This instance is immutable and unaffected by this method call.
*
* @param newDate the new date to base the calculation on, not null
* @param hours the hours to add, may be negative
* @param minutes the minutes to add, may be negative
* @param seconds the seconds to add, may be negative
* @param nanos the nanos to add, may be negative
* @param sign the sign to determine add or subtract
* @return the combined result, not null
*/
private LocalDateTime plusWithOverflow(LocalDate newDate, long hours, long minutes, long seconds, int sign) {
if ((hours | minutes | seconds) == 0) {
return with(newDate, time);
}
long totDays = seconds / SECONDS_PER_DAY + // max/24*60*60
minutes / MINUTES_PER_DAY + // max/24*60
hours / HOURS_PER_DAY; // max/24
totDays *= sign; // total max*0.4237...
long totSecs = (seconds % SECONDS_PER_DAY) +
(minutes % MINUTES_PER_DAY) * SECONDS_PER_MINUTE +
(hours % HOURS_PER_DAY) * SECONDS_PER_HOUR;
long curSoD = time.toSecondOfDay();
totSecs = totSecs * sign + curSoD; // total 432000000000000
totDays += floorDiv(totSecs, SECONDS_PER_DAY);
int newSoD = (int)floorMod(totSecs, SECONDS_PER_DAY);
LocalTime newTime = (newSoD == curSoD ? time : LocalTime.ofSecondOfDay(newSoD));
return with(newDate.plusDays(totDays), newTime);
}
/**
* Compares this date-time to another date-time.
* <p>
* The comparison is primarily based on the date-time, from earliest to latest.
* It is "consistent with equals", as defined by {@link Comparable}.
* <p>
* If all the date-times being compared are instances of {@code LocalDateTime},
* then the comparison will be entirely based on the date-time.
* If some dates being compared are in different chronologies, then the
* chronology is also considered, see {@link ChronoLocalDateTime#compareTo}.
*
* @param other the other date-time to compare to, not null
* @return the comparator value, negative if less, positive if greater
*/
public int compareTo(LocalDateTime other) {
int cmp = date.compareTo(other.getDate());
if (cmp == 0) {
cmp = time.compareTo(other.getTime());
}
return cmp;
}
/**
* Checks if this date-time is equal to another date-time.
* <p>
* Compares this {@code LocalDateTime} with another ensuring that the date-time is the same.
* Only objects of type {@code LocalDateTime} are compared, other types return false.
*
* @param obj the object to check, null returns false
* @return true if this is equal to the other date-time
*/
@Override
public boolean equals(Object obj) {
if (this == obj) {
return true;
}
if (obj instanceof LocalDateTime) {
LocalDateTime other = (LocalDateTime) obj;
return date.equals(other.date) && time.equals(other.time);
}
return false;
}
/**
* A hash code for this date-time.
*
* @return a suitable hash code
*/
@Override
public int hashCode() {
return date.hashCode() ^ time.hashCode();
}
}