blob: cc1573e720af5e1e221585a9bcdfa975a8af0174 [file] [log] [blame]
/*
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "memory/resourceArea.hpp"
#include "nativeInst_x86.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/ostream.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
void NativeInstruction::wrote(int offset) {
ICache::invalidate_word(addr_at(offset));
}
void NativeCall::verify() {
// Make sure code pattern is actually a call imm32 instruction.
int inst = ubyte_at(0);
if (inst != instruction_code) {
tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", instruction_address(),
inst);
fatal("not a call disp32");
}
}
address NativeCall::destination() const {
// Getting the destination of a call isn't safe because that call can
// be getting patched while you're calling this. There's only special
// places where this can be called but not automatically verifiable by
// checking which locks are held. The solution is true atomic patching
// on x86, nyi.
return return_address() + displacement();
}
void NativeCall::print() {
tty->print_cr(PTR_FORMAT ": call " PTR_FORMAT,
instruction_address(), destination());
}
// Inserts a native call instruction at a given pc
void NativeCall::insert(address code_pos, address entry) {
intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
#ifdef AMD64
guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
#endif // AMD64
*code_pos = instruction_code;
*((int32_t *)(code_pos+1)) = (int32_t) disp;
ICache::invalidate_range(code_pos, instruction_size);
}
// MT-safe patching of a call instruction.
// First patches first word of instruction to two jmp's that jmps to them
// selfs (spinlock). Then patches the last byte, and then atomicly replaces
// the jmp's with the first 4 byte of the new instruction.
void NativeCall::replace_mt_safe(address instr_addr, address code_buffer) {
assert(Patching_lock->is_locked() ||
SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
assert (instr_addr != NULL, "illegal address for code patching");
NativeCall* n_call = nativeCall_at (instr_addr); // checking that it is a call
if (os::is_MP()) {
guarantee((intptr_t)instr_addr % BytesPerWord == 0, "must be aligned");
}
// First patch dummy jmp in place
unsigned char patch[4];
assert(sizeof(patch)==sizeof(jint), "sanity check");
patch[0] = 0xEB; // jmp rel8
patch[1] = 0xFE; // jmp to self
patch[2] = 0xEB;
patch[3] = 0xFE;
// First patch dummy jmp in place
*(jint*)instr_addr = *(jint *)patch;
// Invalidate. Opteron requires a flush after every write.
n_call->wrote(0);
// Patch 4th byte
instr_addr[4] = code_buffer[4];
n_call->wrote(4);
// Patch bytes 0-3
*(jint*)instr_addr = *(jint *)code_buffer;
n_call->wrote(0);
#ifdef ASSERT
// verify patching
for ( int i = 0; i < instruction_size; i++) {
address ptr = (address)((intptr_t)code_buffer + i);
int a_byte = (*ptr) & 0xFF;
assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
}
#endif
}
// Similar to replace_mt_safe, but just changes the destination. The
// important thing is that free-running threads are able to execute this
// call instruction at all times. If the displacement field is aligned
// we can simply rely on atomicity of 32-bit writes to make sure other threads
// will see no intermediate states. Otherwise, the first two bytes of the
// call are guaranteed to be aligned, and can be atomically patched to a
// self-loop to guard the instruction while we change the other bytes.
// We cannot rely on locks here, since the free-running threads must run at
// full speed.
//
// Used in the runtime linkage of calls; see class CompiledIC.
// (Cf. 4506997 and 4479829, where threads witnessed garbage displacements.)
void NativeCall::set_destination_mt_safe(address dest) {
debug_only(verify());
// Make sure patching code is locked. No two threads can patch at the same
// time but one may be executing this code.
assert(Patching_lock->is_locked() ||
SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
// Both C1 and C2 should now be generating code which aligns the patched address
// to be within a single cache line except that C1 does not do the alignment on
// uniprocessor systems.
bool is_aligned = ((uintptr_t)displacement_address() + 0) / cache_line_size ==
((uintptr_t)displacement_address() + 3) / cache_line_size;
guarantee(!os::is_MP() || is_aligned, "destination must be aligned");
if (is_aligned) {
// Simple case: The destination lies within a single cache line.
set_destination(dest);
} else if ((uintptr_t)instruction_address() / cache_line_size ==
((uintptr_t)instruction_address()+1) / cache_line_size) {
// Tricky case: The instruction prefix lies within a single cache line.
intptr_t disp = dest - return_address();
#ifdef AMD64
guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
#endif // AMD64
int call_opcode = instruction_address()[0];
// First patch dummy jump in place:
{
u_char patch_jump[2];
patch_jump[0] = 0xEB; // jmp rel8
patch_jump[1] = 0xFE; // jmp to self
assert(sizeof(patch_jump)==sizeof(short), "sanity check");
*(short*)instruction_address() = *(short*)patch_jump;
}
// Invalidate. Opteron requires a flush after every write.
wrote(0);
// (Note: We assume any reader which has already started to read
// the unpatched call will completely read the whole unpatched call
// without seeing the next writes we are about to make.)
// Next, patch the last three bytes:
u_char patch_disp[5];
patch_disp[0] = call_opcode;
*(int32_t*)&patch_disp[1] = (int32_t)disp;
assert(sizeof(patch_disp)==instruction_size, "sanity check");
for (int i = sizeof(short); i < instruction_size; i++)
instruction_address()[i] = patch_disp[i];
// Invalidate. Opteron requires a flush after every write.
wrote(sizeof(short));
// (Note: We assume that any reader which reads the opcode we are
// about to repatch will also read the writes we just made.)
// Finally, overwrite the jump:
*(short*)instruction_address() = *(short*)patch_disp;
// Invalidate. Opteron requires a flush after every write.
wrote(0);
debug_only(verify());
guarantee(destination() == dest, "patch succeeded");
} else {
// Impossible: One or the other must be atomically writable.
ShouldNotReachHere();
}
}
void NativeMovConstReg::verify() {
#ifdef AMD64
// make sure code pattern is actually a mov reg64, imm64 instruction
if ((ubyte_at(0) != Assembler::REX_W && ubyte_at(0) != Assembler::REX_WB) ||
(ubyte_at(1) & (0xff ^ register_mask)) != 0xB8) {
print();
fatal("not a REX.W[B] mov reg64, imm64");
}
#else
// make sure code pattern is actually a mov reg, imm32 instruction
u_char test_byte = *(u_char*)instruction_address();
u_char test_byte_2 = test_byte & ( 0xff ^ register_mask);
if (test_byte_2 != instruction_code) fatal("not a mov reg, imm32");
#endif // AMD64
}
void NativeMovConstReg::print() {
tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT,
instruction_address(), data());
}
//-------------------------------------------------------------------
int NativeMovRegMem::instruction_start() const {
int off = 0;
u_char instr_0 = ubyte_at(off);
// See comment in Assembler::locate_operand() about VEX prefixes.
if (instr_0 == instruction_VEX_prefix_2bytes) {
assert((UseAVX > 0), "shouldn't have VEX prefix");
NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions"));
return 2;
}
if (instr_0 == instruction_VEX_prefix_3bytes) {
assert((UseAVX > 0), "shouldn't have VEX prefix");
NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions"));
return 3;
}
// First check to see if we have a (prefixed or not) xor
if (instr_0 >= instruction_prefix_wide_lo && // 0x40
instr_0 <= instruction_prefix_wide_hi) { // 0x4f
off++;
instr_0 = ubyte_at(off);
}
if (instr_0 == instruction_code_xor) {
off += 2;
instr_0 = ubyte_at(off);
}
// Now look for the real instruction and the many prefix/size specifiers.
if (instr_0 == instruction_operandsize_prefix ) { // 0x66
off++; // Not SSE instructions
instr_0 = ubyte_at(off);
}
if ( instr_0 == instruction_code_xmm_ss_prefix || // 0xf3
instr_0 == instruction_code_xmm_sd_prefix) { // 0xf2
off++;
instr_0 = ubyte_at(off);
}
if ( instr_0 >= instruction_prefix_wide_lo && // 0x40
instr_0 <= instruction_prefix_wide_hi) { // 0x4f
off++;
instr_0 = ubyte_at(off);
}
if (instr_0 == instruction_extended_prefix ) { // 0x0f
off++;
}
return off;
}
address NativeMovRegMem::instruction_address() const {
return addr_at(instruction_start());
}
address NativeMovRegMem::next_instruction_address() const {
address ret = instruction_address() + instruction_size;
u_char instr_0 = *(u_char*) instruction_address();
switch (instr_0) {
case instruction_operandsize_prefix:
fatal("should have skipped instruction_operandsize_prefix");
break;
case instruction_extended_prefix:
fatal("should have skipped instruction_extended_prefix");
break;
case instruction_code_mem2reg_movslq: // 0x63
case instruction_code_mem2reg_movzxb: // 0xB6
case instruction_code_mem2reg_movsxb: // 0xBE
case instruction_code_mem2reg_movzxw: // 0xB7
case instruction_code_mem2reg_movsxw: // 0xBF
case instruction_code_reg2mem: // 0x89 (q/l)
case instruction_code_mem2reg: // 0x8B (q/l)
case instruction_code_reg2memb: // 0x88
case instruction_code_mem2regb: // 0x8a
case instruction_code_float_s: // 0xd9 fld_s a
case instruction_code_float_d: // 0xdd fld_d a
case instruction_code_xmm_load: // 0x10
case instruction_code_xmm_store: // 0x11
case instruction_code_xmm_lpd: // 0x12
{
// If there is an SIB then instruction is longer than expected
u_char mod_rm = *(u_char*)(instruction_address() + 1);
if ((mod_rm & 7) == 0x4) {
ret++;
}
}
case instruction_code_xor:
fatal("should have skipped xor lead in");
break;
default:
fatal("not a NativeMovRegMem");
}
return ret;
}
int NativeMovRegMem::offset() const{
int off = data_offset + instruction_start();
u_char mod_rm = *(u_char*)(instruction_address() + 1);
// nnnn(r12|rsp) isn't coded as simple mod/rm since that is
// the encoding to use an SIB byte. Which will have the nnnn
// field off by one byte
if ((mod_rm & 7) == 0x4) {
off++;
}
return int_at(off);
}
void NativeMovRegMem::set_offset(int x) {
int off = data_offset + instruction_start();
u_char mod_rm = *(u_char*)(instruction_address() + 1);
// nnnn(r12|rsp) isn't coded as simple mod/rm since that is
// the encoding to use an SIB byte. Which will have the nnnn
// field off by one byte
if ((mod_rm & 7) == 0x4) {
off++;
}
set_int_at(off, x);
}
void NativeMovRegMem::verify() {
// make sure code pattern is actually a mov [reg+offset], reg instruction
u_char test_byte = *(u_char*)instruction_address();
switch (test_byte) {
case instruction_code_reg2memb: // 0x88 movb a, r
case instruction_code_reg2mem: // 0x89 movl a, r (can be movq in 64bit)
case instruction_code_mem2regb: // 0x8a movb r, a
case instruction_code_mem2reg: // 0x8b movl r, a (can be movq in 64bit)
break;
case instruction_code_mem2reg_movslq: // 0x63 movsql r, a
case instruction_code_mem2reg_movzxb: // 0xb6 movzbl r, a (movzxb)
case instruction_code_mem2reg_movzxw: // 0xb7 movzwl r, a (movzxw)
case instruction_code_mem2reg_movsxb: // 0xbe movsbl r, a (movsxb)
case instruction_code_mem2reg_movsxw: // 0xbf movswl r, a (movsxw)
break;
case instruction_code_float_s: // 0xd9 fld_s a
case instruction_code_float_d: // 0xdd fld_d a
case instruction_code_xmm_load: // 0x10 movsd xmm, a
case instruction_code_xmm_store: // 0x11 movsd a, xmm
case instruction_code_xmm_lpd: // 0x12 movlpd xmm, a
break;
default:
fatal ("not a mov [reg+offs], reg instruction");
}
}
void NativeMovRegMem::print() {
tty->print_cr("0x%x: mov reg, [reg + %x]", instruction_address(), offset());
}
//-------------------------------------------------------------------
void NativeLoadAddress::verify() {
// make sure code pattern is actually a mov [reg+offset], reg instruction
u_char test_byte = *(u_char*)instruction_address();
#ifdef _LP64
if ( (test_byte == instruction_prefix_wide ||
test_byte == instruction_prefix_wide_extended) ) {
test_byte = *(u_char*)(instruction_address() + 1);
}
#endif // _LP64
if ( ! ((test_byte == lea_instruction_code)
LP64_ONLY(|| (test_byte == mov64_instruction_code) ))) {
fatal ("not a lea reg, [reg+offs] instruction");
}
}
void NativeLoadAddress::print() {
tty->print_cr("0x%x: lea [reg + %x], reg", instruction_address(), offset());
}
//--------------------------------------------------------------------------------
void NativeJump::verify() {
if (*(u_char*)instruction_address() != instruction_code) {
fatal("not a jump instruction");
}
}
void NativeJump::insert(address code_pos, address entry) {
intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
#ifdef AMD64
guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
#endif // AMD64
*code_pos = instruction_code;
*((int32_t*)(code_pos + 1)) = (int32_t)disp;
ICache::invalidate_range(code_pos, instruction_size);
}
void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) {
// Patching to not_entrant can happen while activations of the method are
// in use. The patching in that instance must happen only when certain
// alignment restrictions are true. These guarantees check those
// conditions.
#ifdef AMD64
const int linesize = 64;
#else
const int linesize = 32;
#endif // AMD64
// Must be wordSize aligned
guarantee(((uintptr_t) verified_entry & (wordSize -1)) == 0,
"illegal address for code patching 2");
// First 5 bytes must be within the same cache line - 4827828
guarantee((uintptr_t) verified_entry / linesize ==
((uintptr_t) verified_entry + 4) / linesize,
"illegal address for code patching 3");
}
// MT safe inserting of a jump over an unknown instruction sequence (used by nmethod::makeZombie)
// The problem: jmp <dest> is a 5-byte instruction. Atomical write can be only with 4 bytes.
// First patches the first word atomically to be a jump to itself.
// Then patches the last byte and then atomically patches the first word (4-bytes),
// thus inserting the desired jump
// This code is mt-safe with the following conditions: entry point is 4 byte aligned,
// entry point is in same cache line as unverified entry point, and the instruction being
// patched is >= 5 byte (size of patch).
//
// In C2 the 5+ byte sized instruction is enforced by code in MachPrologNode::emit.
// In C1 the restriction is enforced by CodeEmitter::method_entry
//
void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) {
// complete jump instruction (to be inserted) is in code_buffer;
unsigned char code_buffer[5];
code_buffer[0] = instruction_code;
intptr_t disp = (intptr_t)dest - ((intptr_t)verified_entry + 1 + 4);
#ifdef AMD64
guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
#endif // AMD64
*(int32_t*)(code_buffer + 1) = (int32_t)disp;
check_verified_entry_alignment(entry, verified_entry);
// Can't call nativeJump_at() because it's asserts jump exists
NativeJump* n_jump = (NativeJump*) verified_entry;
//First patch dummy jmp in place
unsigned char patch[4];
assert(sizeof(patch)==sizeof(int32_t), "sanity check");
patch[0] = 0xEB; // jmp rel8
patch[1] = 0xFE; // jmp to self
patch[2] = 0xEB;
patch[3] = 0xFE;
// First patch dummy jmp in place
*(int32_t*)verified_entry = *(int32_t *)patch;
n_jump->wrote(0);
// Patch 5th byte (from jump instruction)
verified_entry[4] = code_buffer[4];
n_jump->wrote(4);
// Patch bytes 0-3 (from jump instruction)
*(int32_t*)verified_entry = *(int32_t *)code_buffer;
// Invalidate. Opteron requires a flush after every write.
n_jump->wrote(0);
}
void NativePopReg::insert(address code_pos, Register reg) {
assert(reg->encoding() < 8, "no space for REX");
assert(NativePopReg::instruction_size == sizeof(char), "right address unit for update");
*code_pos = (u_char)(instruction_code | reg->encoding());
ICache::invalidate_range(code_pos, instruction_size);
}
void NativeIllegalInstruction::insert(address code_pos) {
assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update");
*(short *)code_pos = instruction_code;
ICache::invalidate_range(code_pos, instruction_size);
}
void NativeGeneralJump::verify() {
assert(((NativeInstruction *)this)->is_jump() ||
((NativeInstruction *)this)->is_cond_jump(), "not a general jump instruction");
}
void NativeGeneralJump::insert_unconditional(address code_pos, address entry) {
intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
#ifdef AMD64
guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
#endif // AMD64
*code_pos = unconditional_long_jump;
*((int32_t *)(code_pos+1)) = (int32_t) disp;
ICache::invalidate_range(code_pos, instruction_size);
}
// MT-safe patching of a long jump instruction.
// First patches first word of instruction to two jmp's that jmps to them
// selfs (spinlock). Then patches the last byte, and then atomicly replaces
// the jmp's with the first 4 byte of the new instruction.
void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) {
assert (instr_addr != NULL, "illegal address for code patching (4)");
NativeGeneralJump* n_jump = nativeGeneralJump_at (instr_addr); // checking that it is a jump
// Temporary code
unsigned char patch[4];
assert(sizeof(patch)==sizeof(int32_t), "sanity check");
patch[0] = 0xEB; // jmp rel8
patch[1] = 0xFE; // jmp to self
patch[2] = 0xEB;
patch[3] = 0xFE;
// First patch dummy jmp in place
*(int32_t*)instr_addr = *(int32_t *)patch;
n_jump->wrote(0);
// Patch 4th byte
instr_addr[4] = code_buffer[4];
n_jump->wrote(4);
// Patch bytes 0-3
*(jint*)instr_addr = *(jint *)code_buffer;
n_jump->wrote(0);
#ifdef ASSERT
// verify patching
for ( int i = 0; i < instruction_size; i++) {
address ptr = (address)((intptr_t)code_buffer + i);
int a_byte = (*ptr) & 0xFF;
assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
}
#endif
}
address NativeGeneralJump::jump_destination() const {
int op_code = ubyte_at(0);
bool is_rel32off = (op_code == 0xE9 || op_code == 0x0F);
int offset = (op_code == 0x0F) ? 2 : 1;
int length = offset + ((is_rel32off) ? 4 : 1);
if (is_rel32off)
return addr_at(0) + length + int_at(offset);
else
return addr_at(0) + length + sbyte_at(offset);
}
bool NativeInstruction::is_dtrace_trap() {
return (*(int32_t*)this & 0xff) == 0xcc;
}