blob: 7671dc43efe93a3abac96300f77935c07f366c34 [file] [log] [blame]
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "igt.h"
#include <unistd.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <ftw.h>
#include <inttypes.h>
#include <pthread.h>
#include <sched.h>
#include <signal.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <time.h>
#include <limits.h>
#include "drm.h"
#include <linux/unistd.h>
#define sigev_notify_thread_id _sigev_un._tid
static volatile int done;
struct gem_busyspin {
pthread_t thread;
unsigned long sz;
unsigned long count;
bool leak;
bool interrupts;
};
struct sys_wait {
pthread_t thread;
struct igt_mean mean;
};
static void force_low_latency(void)
{
int32_t target = 0;
int fd = open("/dev/cpu_dma_latency", O_RDWR);
if (fd < 0 || write(fd, &target, sizeof(target)) < 0)
fprintf(stderr,
"Unable to prevent CPU sleeps and force low latency using /dev/cpu_dma_latency: %s\n",
strerror(errno));
}
#define LOCAL_I915_EXEC_NO_RELOC (1<<11)
#define LOCAL_I915_EXEC_HANDLE_LUT (1<<12)
#define LOCAL_I915_EXEC_BSD_SHIFT (13)
#define LOCAL_I915_EXEC_BSD_MASK (3 << LOCAL_I915_EXEC_BSD_SHIFT)
#define ENGINE_FLAGS (I915_EXEC_RING_MASK | LOCAL_I915_EXEC_BSD_MASK)
static bool ignore_engine(int fd, unsigned engine)
{
if (engine == 0)
return true;
if (gem_has_bsd2(fd) && engine == I915_EXEC_BSD)
return true;
return false;
}
static void *gem_busyspin(void *arg)
{
const uint32_t bbe = MI_BATCH_BUFFER_END;
struct gem_busyspin *bs = arg;
struct drm_i915_gem_execbuffer2 execbuf;
struct drm_i915_gem_exec_object2 obj[2];
const unsigned sz =
bs->sz ? bs->sz + sizeof(bbe) : bs->leak ? 16 << 20 : 4 << 10;
unsigned engines[16];
unsigned nengine;
unsigned engine;
int fd;
fd = drm_open_driver(DRIVER_INTEL);
nengine = 0;
for_each_engine(fd, engine)
if (!ignore_engine(fd, engine)) engines[nengine++] = engine;
memset(obj, 0, sizeof(obj));
obj[0].handle = gem_create(fd, 4096);
obj[0].flags = EXEC_OBJECT_WRITE;
obj[1].handle = gem_create(fd, sz);
gem_write(fd, obj[1].handle, bs->sz, &bbe, sizeof(bbe));
memset(&execbuf, 0, sizeof(execbuf));
if (bs->interrupts) {
execbuf.buffers_ptr = (uintptr_t)&obj[0];
execbuf.buffer_count = 2;
} else {
execbuf.buffers_ptr = (uintptr_t)&obj[1];
execbuf.buffer_count = 1;
}
execbuf.flags |= LOCAL_I915_EXEC_HANDLE_LUT;
execbuf.flags |= LOCAL_I915_EXEC_NO_RELOC;
if (__gem_execbuf(fd, &execbuf)) {
execbuf.flags = 0;
gem_execbuf(fd, &execbuf);
}
while (!done) {
for (int n = 0; n < nengine; n++) {
const int m = rand() % nengine;
unsigned int tmp = engines[n];
engines[n] = engines[m];
engines[m] = tmp;
}
for (int n = 0; n < nengine; n++) {
execbuf.flags &= ~ENGINE_FLAGS;
execbuf.flags |= engines[n];
gem_execbuf(fd, &execbuf);
}
bs->count += nengine;
if (bs->leak) {
gem_madvise(fd, obj[1].handle, I915_MADV_DONTNEED);
obj[1].handle = gem_create(fd, sz);
gem_write(fd, obj[1].handle, bs->sz, &bbe, sizeof(bbe));
}
}
close(fd);
return NULL;
}
static double elapsed(const struct timespec *a, const struct timespec *b)
{
return 1e9*(b->tv_sec - a->tv_sec) + (b->tv_nsec - a ->tv_nsec);
}
static void *sys_wait(void *arg)
{
struct sys_wait *w = arg;
struct sigevent sev;
timer_t timer;
sigset_t mask;
struct timespec now;
#define SIG SIGRTMIN
sigemptyset(&mask);
sigaddset(&mask, SIG);
sigprocmask(SIG_SETMASK, &mask, NULL);
sev.sigev_notify = SIGEV_SIGNAL | SIGEV_THREAD_ID;
sev.sigev_notify_thread_id = gettid();
sev.sigev_signo = SIG;
timer_create(CLOCK_MONOTONIC, &sev, &timer);
clock_gettime(CLOCK_MONOTONIC, &now);
while (!done) {
struct itimerspec its;
int sigs;
its.it_value = now;
its.it_value.tv_nsec += 100 * 1000;
its.it_value.tv_nsec += rand() % (NSEC_PER_SEC / 1000);
if (its.it_value.tv_nsec >= NSEC_PER_SEC) {
its.it_value.tv_nsec -= NSEC_PER_SEC;
its.it_value.tv_sec += 1;
}
its.it_interval.tv_sec = its.it_interval.tv_nsec = 0;
timer_settime(timer, TIMER_ABSTIME, &its, NULL);
sigwait(&mask, &sigs);
clock_gettime(CLOCK_MONOTONIC, &now);
igt_mean_add(&w->mean, elapsed(&its.it_value, &now));
}
sigprocmask(SIG_UNBLOCK, &mask, NULL);
timer_delete(timer);
return NULL;
}
#define PAGE_SIZE 4096
static void *sys_thp_alloc(void *arg)
{
struct sys_wait *w = arg;
struct timespec now;
clock_gettime(CLOCK_MONOTONIC, &now);
while (!done) {
const size_t sz = 2 << 20;
const struct timespec start = now;
void *ptr;
ptr = mmap(NULL, sz,
PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0);
assert(ptr != MAP_FAILED);
madvise(ptr, sz, MADV_HUGEPAGE);
for (size_t page = 0; page < sz; page += PAGE_SIZE)
*(volatile uint32_t *)((unsigned char *)ptr + page) = 0;
munmap(ptr, sz);
clock_gettime(CLOCK_MONOTONIC, &now);
igt_mean_add(&w->mean, elapsed(&start, &now));
}
return NULL;
}
static void bind_cpu(pthread_attr_t *attr, int cpu)
{
#ifdef __USE_GNU
cpu_set_t mask;
if (cpu == -1)
return;
CPU_ZERO(&mask);
CPU_SET(cpu, &mask);
pthread_attr_setaffinity_np(attr, sizeof(mask), &mask);
#endif
}
static void rtprio(pthread_attr_t *attr, int prio)
{
#ifdef PTHREAD_EXPLICIT_SCHED
struct sched_param param = { .sched_priority = 99 };
pthread_attr_setinheritsched(attr, PTHREAD_EXPLICIT_SCHED);
pthread_attr_setschedpolicy(attr, SCHED_FIFO);
pthread_attr_setschedparam(attr, &param);
#endif
}
static double l_estimate(igt_stats_t *stats)
{
if (stats->n_values > 9)
return igt_stats_get_trimean(stats);
else if (stats->n_values > 5)
return igt_stats_get_median(stats);
else
return igt_stats_get_mean(stats);
}
static double min_measurement_error(void)
{
struct timespec start, end;
int n;
clock_gettime(CLOCK_MONOTONIC, &start);
for (n = 0; n < 1024; n++)
clock_gettime(CLOCK_MONOTONIC, &end);
return elapsed(&start, &end) / n;
}
static int print_entry(const char *filepath, const struct stat *info,
const int typeflag, struct FTW *pathinfo)
{
int fd;
fd = open(filepath, O_RDONLY);
if (fd != -1) {
void *ptr;
ptr = mmap(NULL, info->st_size,
PROT_READ, MAP_SHARED | MAP_POPULATE,
fd, 0);
if (ptr != MAP_FAILED)
munmap(ptr, info->st_size);
close(fd);
}
return 0;
}
static void *background_fs(void *path)
{
while (1)
nftw(path, print_entry, 20, FTW_PHYS | FTW_MOUNT);
return NULL;
}
static unsigned long calibrate_nop(unsigned int target_us,
unsigned int tolerance_pct)
{
const uint32_t bbe = MI_BATCH_BUFFER_END;
const unsigned int loops = 100;
struct drm_i915_gem_exec_object2 obj = {};
struct drm_i915_gem_execbuffer2 eb =
{ .buffer_count = 1, .buffers_ptr = (uintptr_t)&obj};
struct timespec t_0, t_end;
long sz, prev;
int fd;
fd = drm_open_driver(DRIVER_INTEL);
clock_gettime(CLOCK_MONOTONIC, &t_0);
sz = 256 * 1024;
do {
struct timespec t_start;
obj.handle = gem_create(fd, sz + sizeof(bbe));
gem_write(fd, obj.handle, sz, &bbe, sizeof(bbe));
gem_execbuf(fd, &eb);
gem_sync(fd, obj.handle);
clock_gettime(CLOCK_MONOTONIC, &t_start);
for (int loop = 0; loop < loops; loop++)
gem_execbuf(fd, &eb);
gem_sync(fd, obj.handle);
clock_gettime(CLOCK_MONOTONIC, &t_end);
gem_close(fd, obj.handle);
prev = sz;
sz = loops * sz / elapsed(&t_start, &t_end) * 1e3 * target_us;
sz = ALIGN(sz, sizeof(uint32_t));
} while (elapsed(&t_0, &t_end) < 5 ||
abs(sz - prev) > (sz * tolerance_pct / 100));
close(fd);
return sz;
}
int main(int argc, char **argv)
{
struct gem_busyspin *busy;
struct sys_wait *wait;
void *sys_fn = sys_wait;
pthread_attr_t attr;
pthread_t bg_fs = 0;
int ncpus = sysconf(_SC_NPROCESSORS_ONLN);
igt_stats_t cycles, mean, max;
double min;
int time = 10;
int field = -1;
int enable_gem_sysbusy = 1;
bool leak = false;
bool interrupts = false;
long batch = 0;
int n, c;
while ((c = getopt(argc, argv, "r:t:f:bmni1")) != -1) {
switch (c) {
case '1':
ncpus = 1;
break;
case 'n': /* dry run, measure baseline system latency */
enable_gem_sysbusy = 0;
break;
case 'i': /* interrupts ahoy! */
interrupts = true;
break;
case 't':
/* How long to run the benchmark for (seconds) */
time = atoi(optarg);
if (time < 0)
time = INT_MAX;
break;
case 'r':
/* Duration of each batch (microseconds) */
batch = atoi(optarg);
break;
case 'f':
/* Select an output field */
field = atoi(optarg);
break;
case 'b':
pthread_create(&bg_fs, NULL,
background_fs, (void *)"/");
sleep(5);
break;
case 'm':
sys_fn = sys_thp_alloc;
leak = true;
break;
default:
break;
}
}
/* Prevent CPU sleeps so that busy and idle loads are consistent. */
force_low_latency();
min = min_measurement_error();
if (batch > 0)
batch = calibrate_nop(batch, 2);
else
batch = -batch;
busy = calloc(ncpus, sizeof(*busy));
pthread_attr_init(&attr);
if (enable_gem_sysbusy) {
for (n = 0; n < ncpus; n++) {
bind_cpu(&attr, n);
busy[n].sz = batch;
busy[n].leak = leak;
busy[n].interrupts = interrupts;
pthread_create(&busy[n].thread, &attr,
gem_busyspin, &busy[n]);
}
}
wait = calloc(ncpus, sizeof(*wait));
pthread_attr_init(&attr);
rtprio(&attr, 99);
for (n = 0; n < ncpus; n++) {
igt_mean_init(&wait[n].mean);
bind_cpu(&attr, n);
pthread_create(&wait[n].thread, &attr, sys_fn, &wait[n]);
}
sleep(time);
done = 1;
igt_stats_init_with_size(&cycles, ncpus);
if (enable_gem_sysbusy) {
for (n = 0; n < ncpus; n++) {
pthread_join(busy[n].thread, NULL);
igt_stats_push(&cycles, busy[n].count);
}
}
igt_stats_init_with_size(&mean, ncpus);
igt_stats_init_with_size(&max, ncpus);
for (n = 0; n < ncpus; n++) {
pthread_join(wait[n].thread, NULL);
igt_stats_push_float(&mean, wait[n].mean.mean);
igt_stats_push_float(&max, wait[n].mean.max);
}
if (bg_fs) {
pthread_cancel(bg_fs);
pthread_join(bg_fs, NULL);
}
switch (field) {
default:
printf("gem_syslatency: cycles=%.0f, latency mean=%.3fus max=%.0fus\n",
igt_stats_get_mean(&cycles),
(igt_stats_get_mean(&mean) - min)/ 1000,
(l_estimate(&max) - min) / 1000);
break;
case 0:
printf("%.0f\n", igt_stats_get_mean(&cycles));
break;
case 1:
printf("%.3f\n", (igt_stats_get_mean(&mean) - min) / 1000);
break;
case 2:
printf("%.0f\n", (l_estimate(&max) - min) / 1000);
break;
}
return 0;
}