blob: a8984329e6b9164f749e8305e11205184dbefdfe [file] [log] [blame]
/*
***************************************************************************
* Copyright (C) 2008-2012, International Business Machines Corporation
* and others. All Rights Reserved.
***************************************************************************
* file name: uspoof.cpp
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2008Feb13
* created by: Andy Heninger
*
* Unicode Spoof Detection
*/
#include "unicode/utypes.h"
#include "unicode/uspoof.h"
#include "unicode/unorm.h"
#include "unicode/ustring.h"
#include "unicode/utf16.h"
#include "cmemory.h"
#include "uspoof_impl.h"
#include "uassert.h"
#if !UCONFIG_NO_NORMALIZATION
U_NAMESPACE_USE
U_CAPI USpoofChecker * U_EXPORT2
uspoof_open(UErrorCode *status) {
if (U_FAILURE(*status)) {
return NULL;
}
SpoofImpl *si = new SpoofImpl(SpoofData::getDefault(*status), *status);
if (U_FAILURE(*status)) {
delete si;
si = NULL;
}
return (USpoofChecker *)si;
}
U_CAPI USpoofChecker * U_EXPORT2
uspoof_openFromSerialized(const void *data, int32_t length, int32_t *pActualLength,
UErrorCode *status) {
if (U_FAILURE(*status)) {
return NULL;
}
SpoofData *sd = new SpoofData(data, length, *status);
SpoofImpl *si = new SpoofImpl(sd, *status);
if (U_FAILURE(*status)) {
delete sd;
delete si;
return NULL;
}
if (sd == NULL || si == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
delete sd;
delete si;
return NULL;
}
if (pActualLength != NULL) {
*pActualLength = sd->fRawData->fLength;
}
return reinterpret_cast<USpoofChecker *>(si);
}
U_CAPI USpoofChecker * U_EXPORT2
uspoof_clone(const USpoofChecker *sc, UErrorCode *status) {
const SpoofImpl *src = SpoofImpl::validateThis(sc, *status);
if (src == NULL) {
return NULL;
}
SpoofImpl *result = new SpoofImpl(*src, *status); // copy constructor
if (U_FAILURE(*status)) {
delete result;
result = NULL;
}
return (USpoofChecker *)result;
}
U_CAPI void U_EXPORT2
uspoof_close(USpoofChecker *sc) {
UErrorCode status = U_ZERO_ERROR;
SpoofImpl *This = SpoofImpl::validateThis(sc, status);
delete This;
}
U_CAPI void U_EXPORT2
uspoof_setChecks(USpoofChecker *sc, int32_t checks, UErrorCode *status) {
SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == NULL) {
return;
}
// Verify that the requested checks are all ones (bits) that
// are acceptable, known values.
if (checks & ~USPOOF_ALL_CHECKS) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
This->fChecks = checks;
}
U_CAPI int32_t U_EXPORT2
uspoof_getChecks(const USpoofChecker *sc, UErrorCode *status) {
const SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == NULL) {
return 0;
}
return This->fChecks;
}
U_CAPI void U_EXPORT2
uspoof_setAllowedLocales(USpoofChecker *sc, const char *localesList, UErrorCode *status) {
SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == NULL) {
return;
}
This->setAllowedLocales(localesList, *status);
}
U_CAPI const char * U_EXPORT2
uspoof_getAllowedLocales(USpoofChecker *sc, UErrorCode *status) {
SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == NULL) {
return NULL;
}
return This->getAllowedLocales(*status);
}
U_CAPI const USet * U_EXPORT2
uspoof_getAllowedChars(const USpoofChecker *sc, UErrorCode *status) {
const UnicodeSet *result = uspoof_getAllowedUnicodeSet(sc, status);
return reinterpret_cast<const USet *>(result);
}
U_CAPI const UnicodeSet * U_EXPORT2
uspoof_getAllowedUnicodeSet(const USpoofChecker *sc, UErrorCode *status) {
const SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == NULL) {
return NULL;
}
return This->fAllowedCharsSet;
}
U_CAPI void U_EXPORT2
uspoof_setAllowedChars(USpoofChecker *sc, const USet *chars, UErrorCode *status) {
const UnicodeSet *set = reinterpret_cast<const UnicodeSet *>(chars);
uspoof_setAllowedUnicodeSet(sc, set, status);
}
U_CAPI void U_EXPORT2
uspoof_setAllowedUnicodeSet(USpoofChecker *sc, const UnicodeSet *chars, UErrorCode *status) {
SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == NULL) {
return;
}
if (chars->isBogus()) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
UnicodeSet *clonedSet = static_cast<UnicodeSet *>(chars->clone());
if (clonedSet == NULL || clonedSet->isBogus()) {
*status = U_MEMORY_ALLOCATION_ERROR;
return;
}
clonedSet->freeze();
delete This->fAllowedCharsSet;
This->fAllowedCharsSet = clonedSet;
This->fChecks |= USPOOF_CHAR_LIMIT;
}
U_CAPI int32_t U_EXPORT2
uspoof_check(const USpoofChecker *sc,
const UChar *text, int32_t length,
int32_t *position,
UErrorCode *status) {
const SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == NULL) {
return 0;
}
if (length < -1) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
if (length == -1) {
// It's not worth the bother to handle nul terminated strings everywhere.
// Just get the length and be done with it.
length = u_strlen(text);
}
int32_t result = 0;
int32_t failPos = 0x7fffffff; // TODO: do we have a #define for max int32?
// A count of the number of non-Common or inherited scripts.
// Needed for both the SINGLE_SCRIPT and the WHOLE/MIXED_SCIRPT_CONFUSABLE tests.
// Share the computation when possible. scriptCount == -1 means that we haven't
// done it yet.
int32_t scriptCount = -1;
if ((This->fChecks) & USPOOF_SINGLE_SCRIPT) {
scriptCount = This->scriptScan(text, length, failPos, *status);
// printf("scriptCount (clipped to 2) = %d\n", scriptCount);
if ( scriptCount >= 2) {
// Note: scriptCount == 2 covers all cases of the number of scripts >= 2
result |= USPOOF_SINGLE_SCRIPT;
}
}
if (This->fChecks & USPOOF_CHAR_LIMIT) {
int32_t i;
UChar32 c;
for (i=0; i<length ;) {
U16_NEXT(text, i, length, c);
if (!This->fAllowedCharsSet->contains(c)) {
result |= USPOOF_CHAR_LIMIT;
if (i < failPos) {
failPos = i;
}
break;
}
}
}
if (This->fChecks &
(USPOOF_WHOLE_SCRIPT_CONFUSABLE | USPOOF_MIXED_SCRIPT_CONFUSABLE | USPOOF_INVISIBLE)) {
// These are the checks that need to be done on NFD input
NFDBuffer normalizedInput(text, length, *status);
const UChar *nfdText = normalizedInput.getBuffer();
int32_t nfdLength = normalizedInput.getLength();
if (This->fChecks & USPOOF_INVISIBLE) {
// scan for more than one occurence of the same non-spacing mark
// in a sequence of non-spacing marks.
int32_t i;
UChar32 c;
UChar32 firstNonspacingMark = 0;
UBool haveMultipleMarks = FALSE;
UnicodeSet marksSeenSoFar; // Set of combining marks in a single combining sequence.
for (i=0; i<nfdLength ;) {
U16_NEXT(nfdText, i, nfdLength, c);
if (u_charType(c) != U_NON_SPACING_MARK) {
firstNonspacingMark = 0;
if (haveMultipleMarks) {
marksSeenSoFar.clear();
haveMultipleMarks = FALSE;
}
continue;
}
if (firstNonspacingMark == 0) {
firstNonspacingMark = c;
continue;
}
if (!haveMultipleMarks) {
marksSeenSoFar.add(firstNonspacingMark);
haveMultipleMarks = TRUE;
}
if (marksSeenSoFar.contains(c)) {
// report the error, and stop scanning.
// No need to find more than the first failure.
result |= USPOOF_INVISIBLE;
failPos = i;
// TODO: Bug 8655: failPos is the position in the NFD buffer, but what we want
// to give back to our caller is a position in the original input string.
if (failPos > length) {
failPos = length;
}
break;
}
marksSeenSoFar.add(c);
}
}
if (This->fChecks & (USPOOF_WHOLE_SCRIPT_CONFUSABLE | USPOOF_MIXED_SCRIPT_CONFUSABLE)) {
// The basic test is the same for both whole and mixed script confusables.
// Compute the set of scripts that every input character has a confusable in.
// For this computation an input character is always considered to be
// confusable with itself in its own script.
// If the number of such scripts is two or more, and the input consisted of
// characters all from a single script, we have a whole script confusable.
// (The two scripts will be the original script and the one that is confusable)
// If the number of such scripts >= one, and the original input contained characters from
// more than one script, we have a mixed script confusable. (We can transform
// some of the characters, and end up with a visually similar string all in
// one script.)
if (scriptCount == -1) {
int32_t t;
scriptCount = This->scriptScan(text, length, t, *status);
}
ScriptSet scripts;
This->wholeScriptCheck(nfdText, nfdLength, &scripts, *status);
int32_t confusableScriptCount = scripts.countMembers();
//printf("confusableScriptCount = %d\n", confusableScriptCount);
if ((This->fChecks & USPOOF_WHOLE_SCRIPT_CONFUSABLE) &&
confusableScriptCount >= 2 &&
scriptCount == 1) {
result |= USPOOF_WHOLE_SCRIPT_CONFUSABLE;
}
if ((This->fChecks & USPOOF_MIXED_SCRIPT_CONFUSABLE) &&
confusableScriptCount >= 1 &&
scriptCount > 1) {
result |= USPOOF_MIXED_SCRIPT_CONFUSABLE;
}
}
}
if (position != NULL && failPos != 0x7fffffff) {
*position = failPos;
}
return result;
}
U_CAPI int32_t U_EXPORT2
uspoof_checkUTF8(const USpoofChecker *sc,
const char *text, int32_t length,
int32_t *position,
UErrorCode *status) {
if (U_FAILURE(*status)) {
return 0;
}
UChar stackBuf[USPOOF_STACK_BUFFER_SIZE];
UChar* text16 = stackBuf;
int32_t len16;
u_strFromUTF8(text16, USPOOF_STACK_BUFFER_SIZE, &len16, text, length, status);
if (U_FAILURE(*status) && *status != U_BUFFER_OVERFLOW_ERROR) {
return 0;
}
if (*status == U_BUFFER_OVERFLOW_ERROR) {
text16 = static_cast<UChar *>(uprv_malloc(len16 * sizeof(UChar) + 2));
if (text16 == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
*status = U_ZERO_ERROR;
u_strFromUTF8(text16, len16+1, NULL, text, length, status);
}
int32_t position16 = -1;
int32_t result = uspoof_check(sc, text16, len16, &position16, status);
if (U_FAILURE(*status)) {
return 0;
}
if (position16 > 0) {
// Translate a UTF-16 based error position back to a UTF-8 offset.
// u_strToUTF8() in preflight mode is an easy way to do it.
U_ASSERT(position16 <= len16);
u_strToUTF8(NULL, 0, position, text16, position16, status);
if (position > 0) {
// position is the required buffer length from u_strToUTF8, which includes
// space for a terminating NULL, which we don't want, hence the -1.
*position -= 1;
}
*status = U_ZERO_ERROR; // u_strToUTF8, above sets BUFFER_OVERFLOW_ERROR.
}
if (text16 != stackBuf) {
uprv_free(text16);
}
return result;
}
/* A convenience wrapper around the public uspoof_getSkeleton that handles
* allocating a larger buffer than provided if the original is too small.
*/
static UChar *getSkeleton(const USpoofChecker *sc, uint32_t type, const UChar *s, int32_t inputLength,
UChar *dest, int32_t destCapacity, int32_t *outputLength, UErrorCode *status) {
int32_t requiredCapacity = 0;
UChar *buf = dest;
if (U_FAILURE(*status)) {
return NULL;
}
requiredCapacity = uspoof_getSkeleton(sc, type, s, inputLength, dest, destCapacity, status);
if (*status == U_BUFFER_OVERFLOW_ERROR) {
buf = static_cast<UChar *>(uprv_malloc(requiredCapacity * sizeof(UChar)));
if (buf == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
*status = U_ZERO_ERROR;
uspoof_getSkeleton(sc, type, s, inputLength, buf, requiredCapacity, status);
}
*outputLength = requiredCapacity;
return buf;
}
U_CAPI int32_t U_EXPORT2
uspoof_areConfusable(const USpoofChecker *sc,
const UChar *s1, int32_t length1,
const UChar *s2, int32_t length2,
UErrorCode *status) {
const SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (U_FAILURE(*status)) {
return 0;
}
//
// See section 4 of UAX 39 for the algorithm for checking whether two strings are confusable,
// and for definitions of the types (single, whole, mixed-script) of confusables.
// We only care about a few of the check flags. Ignore the others.
// If no tests relavant to this function have been specified, return an error.
// TODO: is this really the right thing to do? It's probably an error on the caller's part,
// but logically we would just return 0 (no error).
if ((This->fChecks & (USPOOF_SINGLE_SCRIPT_CONFUSABLE | USPOOF_MIXED_SCRIPT_CONFUSABLE |
USPOOF_WHOLE_SCRIPT_CONFUSABLE)) == 0) {
*status = U_INVALID_STATE_ERROR;
return 0;
}
int32_t flagsForSkeleton = This->fChecks & USPOOF_ANY_CASE;
UChar s1SkeletonBuf[USPOOF_STACK_BUFFER_SIZE];
UChar *s1Skeleton;
int32_t s1SkeletonLength = 0;
UChar s2SkeletonBuf[USPOOF_STACK_BUFFER_SIZE];
UChar *s2Skeleton;
int32_t s2SkeletonLength = 0;
int32_t result = 0;
int32_t t;
int32_t s1ScriptCount = This->scriptScan(s1, length1, t, *status);
int32_t s2ScriptCount = This->scriptScan(s2, length2, t, *status);
if (This->fChecks & USPOOF_SINGLE_SCRIPT_CONFUSABLE) {
// Do the Single Script compare.
if (s1ScriptCount <= 1 && s2ScriptCount <= 1) {
flagsForSkeleton |= USPOOF_SINGLE_SCRIPT_CONFUSABLE;
s1Skeleton = getSkeleton(sc, flagsForSkeleton, s1, length1, s1SkeletonBuf,
sizeof(s1SkeletonBuf)/sizeof(UChar), &s1SkeletonLength, status);
s2Skeleton = getSkeleton(sc, flagsForSkeleton, s2, length2, s2SkeletonBuf,
sizeof(s2SkeletonBuf)/sizeof(UChar), &s2SkeletonLength, status);
if (s1SkeletonLength == s2SkeletonLength && u_strncmp(s1Skeleton, s2Skeleton, s1SkeletonLength) == 0) {
result |= USPOOF_SINGLE_SCRIPT_CONFUSABLE;
}
if (s1Skeleton != s1SkeletonBuf) {
uprv_free(s1Skeleton);
}
if (s2Skeleton != s2SkeletonBuf) {
uprv_free(s2Skeleton);
}
}
}
if (result & USPOOF_SINGLE_SCRIPT_CONFUSABLE) {
// If the two inputs are single script confusable they cannot also be
// mixed or whole script confusable, according to the UAX39 definitions.
// So we can skip those tests.
return result;
}
// Optimization for whole script confusables test: two identifiers are whole script confusable if
// each is of a single script and they are mixed script confusable.
UBool possiblyWholeScriptConfusables =
s1ScriptCount <= 1 && s2ScriptCount <= 1 && (This->fChecks & USPOOF_WHOLE_SCRIPT_CONFUSABLE);
//
// Mixed Script Check
//
if ((This->fChecks & USPOOF_MIXED_SCRIPT_CONFUSABLE) || possiblyWholeScriptConfusables ) {
// For getSkeleton(), resetting the USPOOF_SINGLE_SCRIPT_CONFUSABLE flag will get us
// the mixed script table skeleton, which is what we want.
// The Any Case / Lower Case bit in the skelton flags was set at the top of the function.
flagsForSkeleton &= ~USPOOF_SINGLE_SCRIPT_CONFUSABLE;
s1Skeleton = getSkeleton(sc, flagsForSkeleton, s1, length1, s1SkeletonBuf,
sizeof(s1SkeletonBuf)/sizeof(UChar), &s1SkeletonLength, status);
s2Skeleton = getSkeleton(sc, flagsForSkeleton, s2, length2, s2SkeletonBuf,
sizeof(s2SkeletonBuf)/sizeof(UChar), &s2SkeletonLength, status);
if (s1SkeletonLength == s2SkeletonLength && u_strncmp(s1Skeleton, s2Skeleton, s1SkeletonLength) == 0) {
result |= USPOOF_MIXED_SCRIPT_CONFUSABLE;
if (possiblyWholeScriptConfusables) {
result |= USPOOF_WHOLE_SCRIPT_CONFUSABLE;
}
}
if (s1Skeleton != s1SkeletonBuf) {
uprv_free(s1Skeleton);
}
if (s2Skeleton != s2SkeletonBuf) {
uprv_free(s2Skeleton);
}
}
return result;
}
// Convenience function for converting a UTF-8 input to a UChar * string, including
// reallocating a buffer when required. Parameters and their interpretation mostly
// match u_strFromUTF8.
static UChar * convertFromUTF8(UChar *outBuf, int32_t outBufCapacity, int32_t *outputLength,
const char *in, int32_t inLength, UErrorCode *status) {
if (U_FAILURE(*status)) {
return NULL;
}
UChar *dest = outBuf;
u_strFromUTF8(dest, outBufCapacity, outputLength, in, inLength, status);
if (*status == U_BUFFER_OVERFLOW_ERROR) {
dest = static_cast<UChar *>(uprv_malloc(*outputLength * sizeof(UChar)));
if (dest == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
*status = U_ZERO_ERROR;
u_strFromUTF8(dest, *outputLength, NULL, in, inLength, status);
}
return dest;
}
U_CAPI int32_t U_EXPORT2
uspoof_areConfusableUTF8(const USpoofChecker *sc,
const char *s1, int32_t length1,
const char *s2, int32_t length2,
UErrorCode *status) {
SpoofImpl::validateThis(sc, *status);
if (U_FAILURE(*status)) {
return 0;
}
UChar s1Buf[USPOOF_STACK_BUFFER_SIZE];
int32_t lengthS1U;
UChar *s1U = convertFromUTF8(s1Buf, USPOOF_STACK_BUFFER_SIZE, &lengthS1U, s1, length1, status);
UChar s2Buf[USPOOF_STACK_BUFFER_SIZE];
int32_t lengthS2U;
UChar *s2U = convertFromUTF8(s2Buf, USPOOF_STACK_BUFFER_SIZE, &lengthS2U, s2, length2, status);
int32_t results = uspoof_areConfusable(sc, s1U, lengthS1U, s2U, lengthS2U, status);
if (s1U != s1Buf) {
uprv_free(s1U);
}
if (s2U != s2Buf) {
uprv_free(s2U);
}
return results;
}
U_CAPI int32_t U_EXPORT2
uspoof_areConfusableUnicodeString(const USpoofChecker *sc,
const icu::UnicodeString &s1,
const icu::UnicodeString &s2,
UErrorCode *status) {
const UChar *u1 = s1.getBuffer();
int32_t length1 = s1.length();
const UChar *u2 = s2.getBuffer();
int32_t length2 = s2.length();
int32_t results = uspoof_areConfusable(sc, u1, length1, u2, length2, status);
return results;
}
U_CAPI int32_t U_EXPORT2
uspoof_checkUnicodeString(const USpoofChecker *sc,
const icu::UnicodeString &text,
int32_t *position,
UErrorCode *status) {
int32_t result = uspoof_check(sc, text.getBuffer(), text.length(), position, status);
return result;
}
U_CAPI int32_t U_EXPORT2
uspoof_getSkeleton(const USpoofChecker *sc,
uint32_t type,
const UChar *s, int32_t length,
UChar *dest, int32_t destCapacity,
UErrorCode *status) {
// TODO: this function could be sped up a bit
// Skip the input normalization when not needed, work from callers data.
// Put the initial skeleton straight into the caller's destination buffer.
// It probably won't need normalization.
// But these would make the structure more complicated.
const SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (U_FAILURE(*status)) {
return 0;
}
if (length<-1 || destCapacity<0 || (destCapacity==0 && dest!=NULL) ||
(type & ~(USPOOF_SINGLE_SCRIPT_CONFUSABLE | USPOOF_ANY_CASE)) != 0) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
int32_t tableMask = 0;
switch (type) {
case 0:
tableMask = USPOOF_ML_TABLE_FLAG;
break;
case USPOOF_SINGLE_SCRIPT_CONFUSABLE:
tableMask = USPOOF_SL_TABLE_FLAG;
break;
case USPOOF_ANY_CASE:
tableMask = USPOOF_MA_TABLE_FLAG;
break;
case USPOOF_SINGLE_SCRIPT_CONFUSABLE | USPOOF_ANY_CASE:
tableMask = USPOOF_SA_TABLE_FLAG;
break;
default:
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
// NFD transform of the user supplied input
UChar nfdStackBuf[USPOOF_STACK_BUFFER_SIZE];
UChar *nfdInput = nfdStackBuf;
int32_t normalizedLen = unorm_normalize(
s, length, UNORM_NFD, 0, nfdInput, USPOOF_STACK_BUFFER_SIZE, status);
if (*status == U_BUFFER_OVERFLOW_ERROR) {
nfdInput = (UChar *)uprv_malloc((normalizedLen+1)*sizeof(UChar));
if (nfdInput == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
*status = U_ZERO_ERROR;
normalizedLen = unorm_normalize(s, length, UNORM_NFD, 0,
nfdInput, normalizedLen+1, status);
}
if (U_FAILURE(*status)) {
if (nfdInput != nfdStackBuf) {
uprv_free(nfdInput);
}
return 0;
}
// buffer to hold the Unicode defined skeleton mappings for a single code point
UChar buf[USPOOF_MAX_SKELETON_EXPANSION];
// Apply the skeleton mapping to the NFD normalized input string
// Accumulate the skeleton, possibly unnormalized, in a UnicodeString.
int32_t inputIndex = 0;
UnicodeString skelStr;
while (inputIndex < normalizedLen) {
UChar32 c;
U16_NEXT(nfdInput, inputIndex, normalizedLen, c);
int32_t replaceLen = This->confusableLookup(c, tableMask, buf);
skelStr.append(buf, replaceLen);
}
if (nfdInput != nfdStackBuf) {
uprv_free(nfdInput);
}
const UChar *result = skelStr.getBuffer();
int32_t resultLen = skelStr.length();
UChar *normedResult = NULL;
// Check the skeleton for NFD, normalize it if needed.
// Unnormalized results should be very rare.
if (!unorm_isNormalized(result, resultLen, UNORM_NFD, status)) {
normalizedLen = unorm_normalize(result, resultLen, UNORM_NFD, 0, NULL, 0, status);
normedResult = static_cast<UChar *>(uprv_malloc((normalizedLen+1)*sizeof(UChar)));
if (normedResult == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
*status = U_ZERO_ERROR;
unorm_normalize(result, resultLen, UNORM_NFD, 0, normedResult, normalizedLen+1, status);
result = normedResult;
resultLen = normalizedLen;
}
// Copy the skeleton to the caller's buffer
if (U_SUCCESS(*status)) {
if (destCapacity == 0 || resultLen > destCapacity) {
*status = resultLen>destCapacity ? U_BUFFER_OVERFLOW_ERROR : U_STRING_NOT_TERMINATED_WARNING;
} else {
u_memcpy(dest, result, resultLen);
if (destCapacity > resultLen) {
dest[resultLen] = 0;
} else {
*status = U_STRING_NOT_TERMINATED_WARNING;
}
}
}
uprv_free(normedResult);
return resultLen;
}
U_I18N_API UnicodeString & U_EXPORT2
uspoof_getSkeletonUnicodeString(const USpoofChecker *sc,
uint32_t type,
const UnicodeString &s,
UnicodeString &dest,
UErrorCode *status) {
if (U_FAILURE(*status)) {
return dest;
}
dest.remove();
const UChar *str = s.getBuffer();
int32_t strLen = s.length();
UChar smallBuf[USPOOF_STACK_BUFFER_SIZE];
UChar *buf = smallBuf;
int32_t outputSize = uspoof_getSkeleton(sc, type, str, strLen, smallBuf, USPOOF_STACK_BUFFER_SIZE, status);
if (*status == U_BUFFER_OVERFLOW_ERROR) {
buf = static_cast<UChar *>(uprv_malloc((outputSize+1)*sizeof(UChar)));
if (buf == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return dest;
}
*status = U_ZERO_ERROR;
uspoof_getSkeleton(sc, type, str, strLen, buf, outputSize+1, status);
}
if (U_SUCCESS(*status)) {
dest.setTo(buf, outputSize);
}
if (buf != smallBuf) {
uprv_free(buf);
}
return dest;
}
U_CAPI int32_t U_EXPORT2
uspoof_getSkeletonUTF8(const USpoofChecker *sc,
uint32_t type,
const char *s, int32_t length,
char *dest, int32_t destCapacity,
UErrorCode *status) {
// Lacking a UTF-8 normalization API, just converting the input to
// UTF-16 seems as good an approach as any. In typical use, input will
// be an identifier, which is to say not too long for stack buffers.
if (U_FAILURE(*status)) {
return 0;
}
// Buffers for the UChar form of the input and skeleton strings.
UChar smallInBuf[USPOOF_STACK_BUFFER_SIZE];
UChar *inBuf = smallInBuf;
UChar smallOutBuf[USPOOF_STACK_BUFFER_SIZE];
UChar *outBuf = smallOutBuf;
int32_t lengthInUChars = 0;
int32_t skelLengthInUChars = 0;
int32_t skelLengthInUTF8 = 0;
u_strFromUTF8(inBuf, USPOOF_STACK_BUFFER_SIZE, &lengthInUChars,
s, length, status);
if (*status == U_BUFFER_OVERFLOW_ERROR) {
inBuf = static_cast<UChar *>(uprv_malloc((lengthInUChars+1)*sizeof(UChar)));
if (inBuf == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
*status = U_ZERO_ERROR;
u_strFromUTF8(inBuf, lengthInUChars+1, &lengthInUChars,
s, length, status);
}
skelLengthInUChars = uspoof_getSkeleton(sc, type, inBuf, lengthInUChars,
outBuf, USPOOF_STACK_BUFFER_SIZE, status);
if (*status == U_BUFFER_OVERFLOW_ERROR) {
outBuf = static_cast<UChar *>(uprv_malloc((skelLengthInUChars+1)*sizeof(UChar)));
if (outBuf == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
*status = U_ZERO_ERROR;
skelLengthInUChars = uspoof_getSkeleton(sc, type, inBuf, lengthInUChars,
outBuf, skelLengthInUChars+1, status);
}
u_strToUTF8(dest, destCapacity, &skelLengthInUTF8,
outBuf, skelLengthInUChars, status);
cleanup:
if (inBuf != smallInBuf) {
uprv_free(inBuf);
}
if (outBuf != smallOutBuf) {
uprv_free(outBuf);
}
return skelLengthInUTF8;
}
U_CAPI int32_t U_EXPORT2
uspoof_serialize(USpoofChecker *sc,void *buf, int32_t capacity, UErrorCode *status) {
SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == NULL) {
U_ASSERT(U_FAILURE(*status));
return 0;
}
int32_t dataSize = This->fSpoofData->fRawData->fLength;
if (capacity < dataSize) {
*status = U_BUFFER_OVERFLOW_ERROR;
return dataSize;
}
uprv_memcpy(buf, This->fSpoofData->fRawData, dataSize);
return dataSize;
}
#endif