blob: cd1163e4f7825a1f27824b82705e347200263e5b [file] [log] [blame]
/*
* Copyright © 2007,2008,2009,2010 Red Hat, Inc.
* Copyright © 2012 Google, Inc.
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
* Red Hat Author(s): Behdad Esfahbod
* Google Author(s): Behdad Esfahbod
*/
#ifndef HB_OPEN_TYPE_PRIVATE_HH
#define HB_OPEN_TYPE_PRIVATE_HH
#include "hb-private.hh"
#include "hb-blob.h"
namespace OT {
/*
* Casts
*/
/* Cast to struct T, reference to reference */
template<typename Type, typename TObject>
inline const Type& CastR(const TObject &X)
{ return reinterpret_cast<const Type&> (X); }
template<typename Type, typename TObject>
inline Type& CastR(TObject &X)
{ return reinterpret_cast<Type&> (X); }
/* Cast to struct T, pointer to pointer */
template<typename Type, typename TObject>
inline const Type* CastP(const TObject *X)
{ return reinterpret_cast<const Type*> (X); }
template<typename Type, typename TObject>
inline Type* CastP(TObject *X)
{ return reinterpret_cast<Type*> (X); }
/* StructAtOffset<T>(P,Ofs) returns the struct T& that is placed at memory
* location pointed to by P plus Ofs bytes. */
template<typename Type>
inline const Type& StructAtOffset(const void *P, unsigned int offset)
{ return * reinterpret_cast<const Type*> ((const char *) P + offset); }
template<typename Type>
inline Type& StructAtOffset(void *P, unsigned int offset)
{ return * reinterpret_cast<Type*> ((char *) P + offset); }
/* StructAfter<T>(X) returns the struct T& that is placed after X.
* Works with X of variable size also. X must implement get_size() */
template<typename Type, typename TObject>
inline const Type& StructAfter(const TObject &X)
{ return StructAtOffset<Type>(&X, X.get_size()); }
template<typename Type, typename TObject>
inline Type& StructAfter(TObject &X)
{ return StructAtOffset<Type>(&X, X.get_size()); }
/*
* Size checking
*/
/* Check _assertion in a method environment */
#define _DEFINE_INSTANCE_ASSERTION1(_line, _assertion) \
inline void _instance_assertion_on_line_##_line (void) const \
{ \
ASSERT_STATIC (_assertion); \
ASSERT_INSTANCE_POD (*this); /* Make sure it's POD. */ \
}
# define _DEFINE_INSTANCE_ASSERTION0(_line, _assertion) _DEFINE_INSTANCE_ASSERTION1 (_line, _assertion)
# define DEFINE_INSTANCE_ASSERTION(_assertion) _DEFINE_INSTANCE_ASSERTION0 (__LINE__, _assertion)
/* Check that _code compiles in a method environment */
#define _DEFINE_COMPILES_ASSERTION1(_line, _code) \
inline void _compiles_assertion_on_line_##_line (void) const \
{ _code; }
# define _DEFINE_COMPILES_ASSERTION0(_line, _code) _DEFINE_COMPILES_ASSERTION1 (_line, _code)
# define DEFINE_COMPILES_ASSERTION(_code) _DEFINE_COMPILES_ASSERTION0 (__LINE__, _code)
#define DEFINE_SIZE_STATIC(size) \
DEFINE_INSTANCE_ASSERTION (sizeof (*this) == (size)); \
static const unsigned int static_size = (size); \
static const unsigned int min_size = (size)
/* Size signifying variable-sized array */
#define VAR 1
#define DEFINE_SIZE_UNION(size, _member) \
DEFINE_INSTANCE_ASSERTION (this->u._member.static_size == (size)); \
static const unsigned int min_size = (size)
#define DEFINE_SIZE_MIN(size) \
DEFINE_INSTANCE_ASSERTION (sizeof (*this) >= (size)); \
static const unsigned int min_size = (size)
#define DEFINE_SIZE_ARRAY(size, array) \
DEFINE_INSTANCE_ASSERTION (sizeof (*this) == (size) + sizeof (array[0])); \
DEFINE_COMPILES_ASSERTION ((void) array[0].static_size) \
static const unsigned int min_size = (size)
#define DEFINE_SIZE_ARRAY2(size, array1, array2) \
DEFINE_INSTANCE_ASSERTION (sizeof (*this) == (size) + sizeof (this->array1[0]) + sizeof (this->array2[0])); \
DEFINE_COMPILES_ASSERTION ((void) array1[0].static_size; (void) array2[0].static_size) \
static const unsigned int min_size = (size)
/*
* Null objects
*/
/* Global nul-content Null pool. Enlarge as necessary. */
/* TODO This really should be a extern HB_INTERNAL and defined somewhere... */
static const void *_NullPool[64 / sizeof (void *)];
/* Generic nul-content Null objects. */
template <typename Type>
static inline const Type& Null (void) {
ASSERT_STATIC (sizeof (Type) <= sizeof (_NullPool));
return *CastP<Type> (_NullPool);
}
/* Specializaiton for arbitrary-content arbitrary-sized Null objects. */
#define DEFINE_NULL_DATA(Type, data) \
static const char _Null##Type[sizeof (Type) + 1] = data; /* +1 is for nul-termination in data */ \
template <> \
inline const Type& Null<Type> (void) { \
return *CastP<Type> (_Null##Type); \
} /* The following line really exists such that we end in a place needing semicolon */ \
ASSERT_STATIC (Type::min_size + 1 <= sizeof (_Null##Type))
/* Accessor macro. */
#define Null(Type) Null<Type>()
/*
* Sanitize
*/
#ifndef HB_DEBUG_SANITIZE
#define HB_DEBUG_SANITIZE (HB_DEBUG+0)
#endif
#define TRACE_SANITIZE(this) \
hb_auto_trace_t<HB_DEBUG_SANITIZE, bool> trace \
(&c->debug_depth, c->get_name (), this, HB_FUNC, \
"");
/* This limits sanitizing time on really broken fonts. */
#ifndef HB_SANITIZE_MAX_EDITS
#define HB_SANITIZE_MAX_EDITS 100
#endif
struct hb_sanitize_context_t
{
inline const char *get_name (void) { return "SANITIZE"; }
static const unsigned int max_debug_depth = HB_DEBUG_SANITIZE;
typedef bool return_t;
template <typename T>
inline return_t dispatch (const T &obj) { return obj.sanitize (this); }
static return_t default_return_value (void) { return true; }
bool stop_sublookup_iteration (const return_t r HB_UNUSED) const { return false; }
inline void init (hb_blob_t *b)
{
this->blob = hb_blob_reference (b);
this->writable = false;
}
inline void start_processing (void)
{
this->start = hb_blob_get_data (this->blob, NULL);
this->end = this->start + hb_blob_get_length (this->blob);
this->edit_count = 0;
this->debug_depth = 0;
DEBUG_MSG_LEVEL (SANITIZE, this->blob, 0, +1,
"start [%p..%p] (%lu bytes)",
this->start, this->end,
(unsigned long) (this->end - this->start));
}
inline void end_processing (void)
{
DEBUG_MSG_LEVEL (SANITIZE, this->blob, 0, -1,
"end [%p..%p] %u edit requests",
this->start, this->end, this->edit_count);
hb_blob_destroy (this->blob);
this->blob = NULL;
this->start = this->end = NULL;
}
inline bool check_range (const void *base, unsigned int len) const
{
const char *p = (const char *) base;
hb_auto_trace_t<HB_DEBUG_SANITIZE, bool> trace
(&this->debug_depth, "SANITIZE", this->blob, NULL,
"check_range [%p..%p] (%d bytes) in [%p..%p]",
p, p + len, len,
this->start, this->end);
return TRACE_RETURN (likely (this->start <= p && p <= this->end && (unsigned int) (this->end - p) >= len));
}
inline bool check_array (const void *base, unsigned int record_size, unsigned int len) const
{
const char *p = (const char *) base;
bool overflows = _hb_unsigned_int_mul_overflows (len, record_size);
hb_auto_trace_t<HB_DEBUG_SANITIZE, bool> trace
(&this->debug_depth, "SANITIZE", this->blob, NULL,
"check_array [%p..%p] (%d*%d=%ld bytes) in [%p..%p]",
p, p + (record_size * len), record_size, len, (unsigned long) record_size * len,
this->start, this->end);
return TRACE_RETURN (likely (!overflows && this->check_range (base, record_size * len)));
}
template <typename Type>
inline bool check_struct (const Type *obj) const
{
return likely (this->check_range (obj, obj->min_size));
}
inline bool may_edit (const void *base HB_UNUSED, unsigned int len HB_UNUSED)
{
if (this->edit_count >= HB_SANITIZE_MAX_EDITS)
return false;
const char *p = (const char *) base;
this->edit_count++;
hb_auto_trace_t<HB_DEBUG_SANITIZE, bool> trace
(&this->debug_depth, "SANITIZE", this->blob, NULL,
"may_edit(%u) [%p..%p] (%d bytes) in [%p..%p] -> %s",
this->edit_count,
p, p + len, len,
this->start, this->end,
this->writable ? "GRANTED" : "DENIED");
return TRACE_RETURN (this->writable);
}
mutable unsigned int debug_depth;
const char *start, *end;
bool writable;
unsigned int edit_count;
hb_blob_t *blob;
};
/* Template to sanitize an object. */
template <typename Type>
struct Sanitizer
{
static hb_blob_t *sanitize (hb_blob_t *blob) {
hb_sanitize_context_t c[1] = {{0}};
bool sane;
/* TODO is_sane() stuff */
c->init (blob);
retry:
DEBUG_MSG_FUNC (SANITIZE, blob, "start");
c->start_processing ();
if (unlikely (!c->start)) {
c->end_processing ();
return blob;
}
Type *t = CastP<Type> (const_cast<char *> (c->start));
sane = t->sanitize (c);
if (sane) {
if (c->edit_count) {
DEBUG_MSG_FUNC (SANITIZE, blob, "passed first round with %d edits; going for second round", c->edit_count);
/* sanitize again to ensure no toe-stepping */
c->edit_count = 0;
sane = t->sanitize (c);
if (c->edit_count) {
DEBUG_MSG_FUNC (SANITIZE, blob, "requested %d edits in second round; FAILLING", c->edit_count);
sane = false;
}
}
} else {
unsigned int edit_count = c->edit_count;
if (edit_count && !c->writable) {
c->start = hb_blob_get_data_writable (blob, NULL);
c->end = c->start + hb_blob_get_length (blob);
if (c->start) {
c->writable = true;
/* ok, we made it writable by relocating. try again */
DEBUG_MSG_FUNC (SANITIZE, blob, "retry");
goto retry;
}
}
}
c->end_processing ();
DEBUG_MSG_FUNC (SANITIZE, blob, sane ? "PASSED" : "FAILED");
if (sane)
return blob;
else {
hb_blob_destroy (blob);
return hb_blob_get_empty ();
}
}
static const Type* lock_instance (hb_blob_t *blob) {
hb_blob_make_immutable (blob);
const char *base = hb_blob_get_data (blob, NULL);
return unlikely (!base) ? &Null(Type) : CastP<Type> (base);
}
};
/*
* Serialize
*/
#ifndef HB_DEBUG_SERIALIZE
#define HB_DEBUG_SERIALIZE (HB_DEBUG+0)
#endif
#define TRACE_SERIALIZE(this) \
hb_auto_trace_t<HB_DEBUG_SERIALIZE, bool> trace \
(&c->debug_depth, "SERIALIZE", c, HB_FUNC, \
"");
struct hb_serialize_context_t
{
inline hb_serialize_context_t (void *start, unsigned int size)
{
this->start = (char *) start;
this->end = this->start + size;
this->ran_out_of_room = false;
this->head = this->start;
this->debug_depth = 0;
}
template <typename Type>
inline Type *start_serialize (void)
{
DEBUG_MSG_LEVEL (SERIALIZE, this->start, 0, +1,
"start [%p..%p] (%lu bytes)",
this->start, this->end,
(unsigned long) (this->end - this->start));
return start_embed<Type> ();
}
inline void end_serialize (void)
{
DEBUG_MSG_LEVEL (SERIALIZE, this->start, 0, -1,
"end [%p..%p] serialized %d bytes; %s",
this->start, this->end,
(int) (this->head - this->start),
this->ran_out_of_room ? "RAN OUT OF ROOM" : "did not ran out of room");
}
template <typename Type>
inline Type *copy (void)
{
assert (!this->ran_out_of_room);
unsigned int len = this->head - this->start;
void *p = malloc (len);
if (p)
memcpy (p, this->start, len);
return reinterpret_cast<Type *> (p);
}
template <typename Type>
inline Type *allocate_size (unsigned int size)
{
if (unlikely (this->ran_out_of_room || this->end - this->head < ptrdiff_t (size))) {
this->ran_out_of_room = true;
return NULL;
}
memset (this->head, 0, size);
char *ret = this->head;
this->head += size;
return reinterpret_cast<Type *> (ret);
}
template <typename Type>
inline Type *allocate_min (void)
{
return this->allocate_size<Type> (Type::min_size);
}
template <typename Type>
inline Type *start_embed (void)
{
Type *ret = reinterpret_cast<Type *> (this->head);
return ret;
}
template <typename Type>
inline Type *embed (const Type &obj)
{
unsigned int size = obj.get_size ();
Type *ret = this->allocate_size<Type> (size);
if (unlikely (!ret)) return NULL;
memcpy (ret, obj, size);
return ret;
}
template <typename Type>
inline Type *extend_min (Type &obj)
{
unsigned int size = obj.min_size;
assert (this->start <= (char *) &obj && (char *) &obj <= this->head && (char *) &obj + size >= this->head);
if (unlikely (!this->allocate_size<Type> (((char *) &obj) + size - this->head))) return NULL;
return reinterpret_cast<Type *> (&obj);
}
template <typename Type>
inline Type *extend (Type &obj)
{
unsigned int size = obj.get_size ();
assert (this->start < (char *) &obj && (char *) &obj <= this->head && (char *) &obj + size >= this->head);
if (unlikely (!this->allocate_size<Type> (((char *) &obj) + size - this->head))) return NULL;
return reinterpret_cast<Type *> (&obj);
}
inline void truncate (void *head)
{
assert (this->start < head && head <= this->head);
this->head = (char *) head;
}
unsigned int debug_depth;
char *start, *end, *head;
bool ran_out_of_room;
};
template <typename Type>
struct Supplier
{
inline Supplier (const Type *array, unsigned int len_)
{
head = array;
len = len_;
}
inline const Type operator [] (unsigned int i) const
{
if (unlikely (i >= len)) return Type ();
return head[i];
}
inline void advance (unsigned int count)
{
if (unlikely (count > len))
count = len;
len -= count;
head += count;
}
private:
inline Supplier (const Supplier<Type> &); /* Disallow copy */
inline Supplier<Type>& operator= (const Supplier<Type> &); /* Disallow copy */
unsigned int len;
const Type *head;
};
/*
*
* The OpenType Font File: Data Types
*/
/* "The following data types are used in the OpenType font file.
* All OpenType fonts use Motorola-style byte ordering (Big Endian):" */
/*
* Int types
*/
template <typename Type, int Bytes> struct BEInt;
template <typename Type>
struct BEInt<Type, 2>
{
public:
inline void set (Type i) { hb_be_uint16_put (v,i); }
inline operator Type (void) const { return hb_be_uint16_get (v); }
inline bool operator == (const BEInt<Type, 2>& o) const { return hb_be_uint16_eq (v, o.v); }
inline bool operator != (const BEInt<Type, 2>& o) const { return !(*this == o); }
private: uint8_t v[2];
};
template <typename Type>
struct BEInt<Type, 4>
{
public:
inline void set (Type i) { hb_be_uint32_put (v,i); }
inline operator Type (void) const { return hb_be_uint32_get (v); }
inline bool operator == (const BEInt<Type, 4>& o) const { return hb_be_uint32_eq (v, o.v); }
inline bool operator != (const BEInt<Type, 4>& o) const { return !(*this == o); }
private: uint8_t v[4];
};
template <typename Type>
struct BEInt<Type, 3>
{
public:
inline void set (Type i) { hb_be_uint24_put (v,i); }
inline operator Type (void) const { return hb_be_uint24_get (v); }
inline bool operator == (const BEInt<Type, 3>& o) const { return hb_be_uint24_eq (v, o.v); }
inline bool operator != (const BEInt<Type, 3>& o) const { return !(*this == o); }
private: uint8_t v[3];
};
/* Integer types in big-endian order and no alignment requirement */
template <typename Type, unsigned int Size>
struct IntType
{
inline void set (Type i) { v.set (i); }
inline operator Type(void) const { return v; }
inline bool operator == (const IntType<Type,Size> &o) const { return v == o.v; }
inline bool operator != (const IntType<Type,Size> &o) const { return v != o.v; }
static inline int cmp (const IntType<Type,Size> *a, const IntType<Type,Size> *b) { return b->cmp (*a); }
inline int cmp (IntType<Type,Size> va) const { Type a = va; Type b = v; return a < b ? -1 : a == b ? 0 : +1; }
inline int cmp (Type a) const { Type b = v; return a < b ? -1 : a == b ? 0 : +1; }
inline bool sanitize (hb_sanitize_context_t *c) {
TRACE_SANITIZE (this);
return TRACE_RETURN (likely (c->check_struct (this)));
}
protected:
BEInt<Type, Size> v;
public:
DEFINE_SIZE_STATIC (Size);
};
typedef IntType<uint16_t, 2> USHORT; /* 16-bit unsigned integer. */
typedef IntType<int16_t, 2> SHORT; /* 16-bit signed integer. */
typedef IntType<uint32_t, 4> ULONG; /* 32-bit unsigned integer. */
typedef IntType<int32_t, 4> LONG; /* 32-bit signed integer. */
typedef IntType<uint32_t, 3> UINT24; /* 24-bit unsigned integer. */
/* 16-bit signed integer (SHORT) that describes a quantity in FUnits. */
typedef SHORT FWORD;
/* 16-bit unsigned integer (USHORT) that describes a quantity in FUnits. */
typedef USHORT UFWORD;
/* Date represented in number of seconds since 12:00 midnight, January 1,
* 1904. The value is represented as a signed 64-bit integer. */
struct LONGDATETIME
{
inline bool sanitize (hb_sanitize_context_t *c) {
TRACE_SANITIZE (this);
return TRACE_RETURN (likely (c->check_struct (this)));
}
private:
LONG major;
ULONG minor;
public:
DEFINE_SIZE_STATIC (8);
};
/* Array of four uint8s (length = 32 bits) used to identify a script, language
* system, feature, or baseline */
struct Tag : ULONG
{
/* What the char* converters return is NOT nul-terminated. Print using "%.4s" */
inline operator const char* (void) const { return reinterpret_cast<const char *> (&this->v); }
inline operator char* (void) { return reinterpret_cast<char *> (&this->v); }
public:
DEFINE_SIZE_STATIC (4);
};
DEFINE_NULL_DATA (Tag, " ");
/* Glyph index number, same as uint16 (length = 16 bits) */
typedef USHORT GlyphID;
/* Script/language-system/feature index */
struct Index : USHORT {
static const unsigned int NOT_FOUND_INDEX = 0xFFFF;
};
DEFINE_NULL_DATA (Index, "\xff\xff");
/* Offset to a table, same as uint16 (length = 16 bits), Null offset = 0x0000 */
struct Offset : USHORT
{
inline bool is_null (void) const { return 0 == *this; }
public:
DEFINE_SIZE_STATIC (2);
};
/* LongOffset to a table, same as uint32 (length = 32 bits), Null offset = 0x00000000 */
struct LongOffset : ULONG
{
inline bool is_null (void) const { return 0 == *this; }
public:
DEFINE_SIZE_STATIC (4);
};
/* CheckSum */
struct CheckSum : ULONG
{
static uint32_t CalcTableChecksum (ULONG *Table, uint32_t Length)
{
uint32_t Sum = 0L;
ULONG *EndPtr = Table+((Length+3) & ~3) / ULONG::static_size;
while (Table < EndPtr)
Sum += *Table++;
return Sum;
}
public:
DEFINE_SIZE_STATIC (4);
};
/*
* Version Numbers
*/
struct FixedVersion
{
inline uint32_t to_int (void) const { return (major << 16) + minor; }
inline bool sanitize (hb_sanitize_context_t *c) {
TRACE_SANITIZE (this);
return TRACE_RETURN (c->check_struct (this));
}
USHORT major;
USHORT minor;
public:
DEFINE_SIZE_STATIC (4);
};
/*
* Template subclasses of Offset and LongOffset that do the dereferencing.
* Use: (base+offset)
*/
template <typename OffsetType, typename Type>
struct GenericOffsetTo : OffsetType
{
inline const Type& operator () (const void *base) const
{
unsigned int offset = *this;
if (unlikely (!offset)) return Null(Type);
return StructAtOffset<Type> (base, offset);
}
inline Type& serialize (hb_serialize_context_t *c, void *base)
{
Type *t = c->start_embed<Type> ();
this->set ((char *) t - (char *) base); /* TODO(serialize) Overflow? */
return *t;
}
inline bool sanitize (hb_sanitize_context_t *c, void *base) {
TRACE_SANITIZE (this);
if (unlikely (!c->check_struct (this))) return TRACE_RETURN (false);
unsigned int offset = *this;
if (unlikely (!offset)) return TRACE_RETURN (true);
Type &obj = StructAtOffset<Type> (base, offset);
return TRACE_RETURN (likely (obj.sanitize (c)) || neuter (c));
}
template <typename T>
inline bool sanitize (hb_sanitize_context_t *c, void *base, T user_data) {
TRACE_SANITIZE (this);
if (unlikely (!c->check_struct (this))) return TRACE_RETURN (false);
unsigned int offset = *this;
if (unlikely (!offset)) return TRACE_RETURN (true);
Type &obj = StructAtOffset<Type> (base, offset);
return TRACE_RETURN (likely (obj.sanitize (c, user_data)) || neuter (c));
}
inline bool try_set (hb_sanitize_context_t *c, const OffsetType &v) {
if (c->may_edit (this, this->static_size)) {
this->set (v);
return true;
}
return false;
}
/* Set the offset to Null */
inline bool neuter (hb_sanitize_context_t *c) {
if (c->may_edit (this, this->static_size)) {
this->set (0); /* 0 is Null offset */
return true;
}
return false;
}
};
template <typename Base, typename OffsetType, typename Type>
inline const Type& operator + (const Base &base, const GenericOffsetTo<OffsetType, Type> &offset) { return offset (base); }
template <typename Base, typename OffsetType, typename Type>
inline Type& operator + (Base &base, GenericOffsetTo<OffsetType, Type> &offset) { return offset (base); }
template <typename Type>
struct OffsetTo : GenericOffsetTo<Offset, Type> {};
template <typename Type>
struct LongOffsetTo : GenericOffsetTo<LongOffset, Type> {};
/*
* Array Types
*/
template <typename LenType, typename Type>
struct GenericArrayOf
{
const Type *sub_array (unsigned int start_offset, unsigned int *pcount /* IN/OUT */) const
{
unsigned int count = len;
if (unlikely (start_offset > count))
count = 0;
else
count -= start_offset;
count = MIN (count, *pcount);
*pcount = count;
return array + start_offset;
}
inline const Type& operator [] (unsigned int i) const
{
if (unlikely (i >= len)) return Null(Type);
return array[i];
}
inline Type& operator [] (unsigned int i)
{
return array[i];
}
inline unsigned int get_size (void) const
{ return len.static_size + len * Type::static_size; }
inline bool serialize (hb_serialize_context_t *c,
unsigned int items_len)
{
TRACE_SERIALIZE (this);
if (unlikely (!c->extend_min (*this))) return TRACE_RETURN (false);
len.set (items_len); /* TODO(serialize) Overflow? */
if (unlikely (!c->extend (*this))) return TRACE_RETURN (false);
return TRACE_RETURN (true);
}
inline bool serialize (hb_serialize_context_t *c,
Supplier<Type> &items,
unsigned int items_len)
{
TRACE_SERIALIZE (this);
if (unlikely (!serialize (c, items_len))) return TRACE_RETURN (false);
for (unsigned int i = 0; i < items_len; i++)
array[i] = items[i];
items.advance (items_len);
return TRACE_RETURN (true);
}
inline bool sanitize (hb_sanitize_context_t *c) {
TRACE_SANITIZE (this);
if (unlikely (!sanitize_shallow (c))) return TRACE_RETURN (false);
/* Note: for structs that do not reference other structs,
* we do not need to call their sanitize() as we already did
* a bound check on the aggregate array size. We just include
* a small unreachable expression to make sure the structs
* pointed to do have a simple sanitize(), ie. they do not
* reference other structs via offsets.
*/
(void) (false && array[0].sanitize (c));
return TRACE_RETURN (true);
}
inline bool sanitize (hb_sanitize_context_t *c, void *base) {
TRACE_SANITIZE (this);
if (unlikely (!sanitize_shallow (c))) return TRACE_RETURN (false);
unsigned int count = len;
for (unsigned int i = 0; i < count; i++)
if (unlikely (!array[i].sanitize (c, base)))
return TRACE_RETURN (false);
return TRACE_RETURN (true);
}
template <typename T>
inline bool sanitize (hb_sanitize_context_t *c, void *base, T user_data) {
TRACE_SANITIZE (this);
if (unlikely (!sanitize_shallow (c))) return TRACE_RETURN (false);
unsigned int count = len;
for (unsigned int i = 0; i < count; i++)
if (unlikely (!array[i].sanitize (c, base, user_data)))
return TRACE_RETURN (false);
return TRACE_RETURN (true);
}
private:
inline bool sanitize_shallow (hb_sanitize_context_t *c) {
TRACE_SANITIZE (this);
return TRACE_RETURN (c->check_struct (this) && c->check_array (this, Type::static_size, len));
}
public:
LenType len;
Type array[VAR];
public:
DEFINE_SIZE_ARRAY (sizeof (LenType), array);
};
/* An array with a USHORT number of elements. */
template <typename Type>
struct ArrayOf : GenericArrayOf<USHORT, Type> {};
/* An array with a ULONG number of elements. */
template <typename Type>
struct LongArrayOf : GenericArrayOf<ULONG, Type> {};
/* Array of Offset's */
template <typename Type>
struct OffsetArrayOf : ArrayOf<OffsetTo<Type> > {};
/* Array of LongOffset's */
template <typename Type>
struct LongOffsetArrayOf : ArrayOf<LongOffsetTo<Type> > {};
/* LongArray of LongOffset's */
template <typename Type>
struct LongOffsetLongArrayOf : LongArrayOf<LongOffsetTo<Type> > {};
/* Array of offsets relative to the beginning of the array itself. */
template <typename Type>
struct OffsetListOf : OffsetArrayOf<Type>
{
inline const Type& operator [] (unsigned int i) const
{
if (unlikely (i >= this->len)) return Null(Type);
return this+this->array[i];
}
inline bool sanitize (hb_sanitize_context_t *c) {
TRACE_SANITIZE (this);
return TRACE_RETURN (OffsetArrayOf<Type>::sanitize (c, this));
}
template <typename T>
inline bool sanitize (hb_sanitize_context_t *c, T user_data) {
TRACE_SANITIZE (this);
return TRACE_RETURN (OffsetArrayOf<Type>::sanitize (c, this, user_data));
}
};
/* An array with a USHORT number of elements,
* starting at second element. */
template <typename Type>
struct HeadlessArrayOf
{
inline const Type& operator [] (unsigned int i) const
{
if (unlikely (i >= len || !i)) return Null(Type);
return array[i-1];
}
inline unsigned int get_size (void) const
{ return len.static_size + (len ? len - 1 : 0) * Type::static_size; }
inline bool serialize (hb_serialize_context_t *c,
Supplier<Type> &items,
unsigned int items_len)
{
TRACE_SERIALIZE (this);
if (unlikely (!c->extend_min (*this))) return TRACE_RETURN (false);
len.set (items_len); /* TODO(serialize) Overflow? */
if (unlikely (!items_len)) return TRACE_RETURN (true);
if (unlikely (!c->extend (*this))) return TRACE_RETURN (false);
for (unsigned int i = 0; i < items_len - 1; i++)
array[i] = items[i];
items.advance (items_len - 1);
return TRACE_RETURN (true);
}
inline bool sanitize_shallow (hb_sanitize_context_t *c) {
return c->check_struct (this)
&& c->check_array (this, Type::static_size, len);
}
inline bool sanitize (hb_sanitize_context_t *c) {
TRACE_SANITIZE (this);
if (unlikely (!sanitize_shallow (c))) return TRACE_RETURN (false);
/* Note: for structs that do not reference other structs,
* we do not need to call their sanitize() as we already did
* a bound check on the aggregate array size. We just include
* a small unreachable expression to make sure the structs
* pointed to do have a simple sanitize(), ie. they do not
* reference other structs via offsets.
*/
(void) (false && array[0].sanitize (c));
return TRACE_RETURN (true);
}
USHORT len;
Type array[VAR];
public:
DEFINE_SIZE_ARRAY (sizeof (USHORT), array);
};
/* An array with sorted elements. Supports binary searching. */
template <typename Type>
struct SortedArrayOf : ArrayOf<Type> {
template <typename SearchType>
inline int search (const SearchType &x) const {
unsigned int count = this->len;
/* Linear search is *much* faster for small counts. */
if (likely (count < 32)) {
for (unsigned int i = 0; i < count; i++)
if (this->array[i].cmp (x) == 0)
return i;
return -1;
} else {
struct Cmp {
static int cmp (const SearchType *a, const Type *b) { return b->cmp (*a); }
};
const Type *p = (const Type *) bsearch (&x, this->array, this->len, sizeof (this->array[0]), (hb_compare_func_t) Cmp::cmp);
return p ? p - this->array : -1;
}
}
};
} /* namespace OT */
#endif /* HB_OPEN_TYPE_PRIVATE_HH */