blob: a483f42d1720bb3f912ee1c255cbf04efafec474 [file] [log] [blame]
/*
* Copyright (C) 2014 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.graph;
import static com.google.common.truth.Truth.assertThat;
import static com.google.common.truth.TruthJUnit.assume;
import static org.junit.Assert.assertTrue;
import static org.junit.Assert.fail;
import com.google.common.testing.EqualsTester;
import java.util.Set;
import org.junit.After;
import org.junit.Test;
/**
* Abstract base class for testing undirected {@link Graph} implementations defined in this package.
*/
public abstract class AbstractStandardUndirectedGraphTest extends AbstractGraphTest {
@After
public void validateUndirectedEdges() {
for (Integer node : graph.nodes()) {
new EqualsTester()
.addEqualityGroup(
graph.predecessors(node), graph.successors(node), graph.adjacentNodes(node))
.testEquals();
}
}
@Override
@Test
public void nodes_checkReturnedSetMutability() {
assume().that(graphIsMutable()).isTrue();
Set<Integer> nodes = graph.nodes();
try {
nodes.add(N2);
fail(ERROR_MODIFIABLE_SET);
} catch (UnsupportedOperationException e) {
addNode(N1);
assertThat(graph.nodes()).containsExactlyElementsIn(nodes);
}
}
@Override
@Test
public void adjacentNodes_checkReturnedSetMutability() {
assume().that(graphIsMutable()).isTrue();
addNode(N1);
Set<Integer> adjacentNodes = graph.adjacentNodes(N1);
try {
adjacentNodes.add(N2);
fail(ERROR_MODIFIABLE_SET);
} catch (UnsupportedOperationException e) {
putEdge(N1, N2);
assertThat(graph.adjacentNodes(N1)).containsExactlyElementsIn(adjacentNodes);
}
}
@Override
@Test
public void predecessors_checkReturnedSetMutability() {
assume().that(graphIsMutable()).isTrue();
addNode(N2);
Set<Integer> predecessors = graph.predecessors(N2);
try {
predecessors.add(N1);
fail(ERROR_MODIFIABLE_SET);
} catch (UnsupportedOperationException e) {
putEdge(N1, N2);
assertThat(graph.predecessors(N2)).containsExactlyElementsIn(predecessors);
}
}
@Override
@Test
public void successors_checkReturnedSetMutability() {
assume().that(graphIsMutable()).isTrue();
addNode(N1);
Set<Integer> successors = graph.successors(N1);
try {
successors.add(N2);
fail(ERROR_MODIFIABLE_SET);
} catch (UnsupportedOperationException e) {
putEdge(N1, N2);
assertThat(graph.successors(N1)).containsExactlyElementsIn(successors);
}
}
@Override
@Test
public void incidentEdges_checkReturnedSetMutability() {
assume().that(graphIsMutable()).isTrue();
addNode(N1);
Set<EndpointPair<Integer>> incidentEdges = graph.incidentEdges(N1);
try {
incidentEdges.add(EndpointPair.unordered(N1, N2));
fail(ERROR_MODIFIABLE_SET);
} catch (UnsupportedOperationException e) {
putEdge(N1, N2);
assertThat(incidentEdges).containsExactlyElementsIn(graph.incidentEdges(N1));
}
}
@Test
public void predecessors_oneEdge() {
putEdge(N1, N2);
assertThat(graph.predecessors(N2)).containsExactly(N1);
assertThat(graph.predecessors(N1)).containsExactly(N2);
}
@Test
public void successors_oneEdge() {
putEdge(N1, N2);
assertThat(graph.successors(N1)).containsExactly(N2);
assertThat(graph.successors(N2)).containsExactly(N1);
}
@Test
public void incidentEdges_oneEdge() {
putEdge(N1, N2);
EndpointPair<Integer> expectedEndpoints = EndpointPair.unordered(N1, N2);
assertThat(graph.incidentEdges(N1)).containsExactly(expectedEndpoints);
assertThat(graph.incidentEdges(N2)).containsExactly(expectedEndpoints);
}
@Test
public void inDegree_oneEdge() {
putEdge(N1, N2);
assertThat(graph.inDegree(N2)).isEqualTo(1);
assertThat(graph.inDegree(N1)).isEqualTo(1);
}
@Test
public void outDegree_oneEdge() {
putEdge(N1, N2);
assertThat(graph.outDegree(N1)).isEqualTo(1);
assertThat(graph.outDegree(N2)).isEqualTo(1);
}
@Test
public void hasEdgeConnecting_correct() {
putEdge(N1, N2);
assertThat(graph.hasEdgeConnecting(EndpointPair.unordered(N1, N2))).isTrue();
assertThat(graph.hasEdgeConnecting(EndpointPair.unordered(N2, N1))).isTrue();
}
@Test
public void hasEdgeConnecting_mismatch() {
putEdge(N1, N2);
assertThat(graph.hasEdgeConnecting(EndpointPair.ordered(N1, N2))).isTrue();
assertThat(graph.hasEdgeConnecting(EndpointPair.ordered(N2, N1))).isTrue();
}
@Test
public void adjacentNodes_selfLoop() {
assume().that(graph.allowsSelfLoops()).isTrue();
putEdge(N1, N1);
putEdge(N1, N2);
assertThat(graph.adjacentNodes(N1)).containsExactly(N1, N2);
}
@Test
public void predecessors_selfLoop() {
assume().that(graph.allowsSelfLoops()).isTrue();
putEdge(N1, N1);
assertThat(graph.predecessors(N1)).containsExactly(N1);
putEdge(N1, N2);
assertThat(graph.predecessors(N1)).containsExactly(N1, N2);
}
@Test
public void successors_selfLoop() {
assume().that(graph.allowsSelfLoops()).isTrue();
putEdge(N1, N1);
assertThat(graph.successors(N1)).containsExactly(N1);
putEdge(N2, N1);
assertThat(graph.successors(N1)).containsExactly(N1, N2);
}
@Test
public void incidentEdges_selfLoop() {
assume().that(graph.allowsSelfLoops()).isTrue();
putEdge(N1, N1);
assertThat(graph.incidentEdges(N1)).containsExactly(EndpointPair.unordered(N1, N1));
putEdge(N1, N2);
assertThat(graph.incidentEdges(N1))
.containsExactly(EndpointPair.unordered(N1, N1), EndpointPair.unordered(N1, N2));
}
@Test
public void degree_selfLoop() {
assume().that(graph.allowsSelfLoops()).isTrue();
putEdge(N1, N1);
assertThat(graph.degree(N1)).isEqualTo(2);
putEdge(N1, N2);
assertThat(graph.degree(N1)).isEqualTo(3);
}
@Test
public void inDegree_selfLoop() {
assume().that(graph.allowsSelfLoops()).isTrue();
putEdge(N1, N1);
assertThat(graph.inDegree(N1)).isEqualTo(2);
putEdge(N1, N2);
assertThat(graph.inDegree(N1)).isEqualTo(3);
}
@Test
public void outDegree_selfLoop() {
assume().that(graph.allowsSelfLoops()).isTrue();
putEdge(N1, N1);
assertThat(graph.outDegree(N1)).isEqualTo(2);
putEdge(N2, N1);
assertThat(graph.outDegree(N1)).isEqualTo(3);
}
// Stable order tests
// Note: Stable order means that the ordering doesn't change between iterations and versions.
// Ideally, the ordering in test should never be updated.
@Test
public void stableIncidentEdgeOrder_edges_returnsInStableOrder() {
assume().that(graph.incidentEdgeOrder().type()).isEqualTo(ElementOrder.Type.STABLE);
populateTShapedGraph();
assertThat(graph.edges())
.containsExactly(
EndpointPair.unordered(1, 2),
EndpointPair.unordered(1, 4),
EndpointPair.unordered(1, 3),
EndpointPair.unordered(4, 5))
.inOrder();
}
@Test
public void stableIncidentEdgeOrder_adjacentNodes_returnsInConnectingEdgeInsertionOrder() {
assume().that(graph.incidentEdgeOrder().type()).isEqualTo(ElementOrder.Type.STABLE);
populateTShapedGraph();
assertThat(graph.adjacentNodes(1)).containsExactly(2, 4, 3).inOrder();
}
@Test
public void stableIncidentEdgeOrder_predecessors_returnsInConnectingEdgeInsertionOrder() {
assume().that(graph.incidentEdgeOrder().type()).isEqualTo(ElementOrder.Type.STABLE);
populateTShapedGraph();
assertThat(graph.adjacentNodes(1)).containsExactly(2, 4, 3).inOrder();
}
@Test
public void stableIncidentEdgeOrder_successors_returnsInConnectingEdgeInsertionOrder() {
assume().that(graph.incidentEdgeOrder().type()).isEqualTo(ElementOrder.Type.STABLE);
populateTShapedGraph();
assertThat(graph.adjacentNodes(1)).containsExactly(2, 4, 3).inOrder();
}
@Test
public void stableIncidentEdgeOrder_incidentEdges_returnsInEdgeInsertionOrder() {
assume().that(graph.incidentEdgeOrder().type()).isEqualTo(ElementOrder.Type.STABLE);
populateTShapedGraph();
assertThat(graph.incidentEdges(1))
.containsExactly(
EndpointPair.unordered(1, 2),
EndpointPair.unordered(1, 4),
EndpointPair.unordered(1, 3))
.inOrder();
}
@Test
public void stableIncidentEdgeOrder_incidentEdges_withSelfLoop_returnsInEdgeInsertionOrder() {
assume().that(graph.incidentEdgeOrder().type()).isEqualTo(ElementOrder.Type.STABLE);
assume().that(graph.allowsSelfLoops()).isTrue();
putEdge(2, 1);
putEdge(1, 1);
putEdge(1, 3);
assertThat(graph.incidentEdges(1))
.containsExactly(
EndpointPair.unordered(2, 1),
EndpointPair.unordered(1, 1),
EndpointPair.unordered(1, 3))
.inOrder();
}
/**
* Populates the graph with nodes and edges in a star shape with node `1` in the middle.
*
* <p>Note that the edges are added in a shuffled order to properly test the effect of the
* insertion order.
*/
private void populateTShapedGraph() {
putEdge(2, 1);
putEdge(1, 4);
putEdge(1, 3);
putEdge(1, 2); // Duplicate
putEdge(4, 5);
}
// Element Mutation
@Test
public void putEdge_existingNodes() {
assume().that(graphIsMutable()).isTrue();
// Adding nodes initially for safety (insulating from possible future
// modifications to proxy methods)
addNode(N1);
addNode(N2);
assertThat(graphAsMutableGraph.putEdge(N1, N2)).isTrue();
}
@Test
public void putEdge_existingEdgeBetweenSameNodes() {
assume().that(graphIsMutable()).isTrue();
putEdge(N1, N2);
assertThat(graphAsMutableGraph.putEdge(N2, N1)).isFalse();
}
/**
* Tests that the method {@code putEdge} will silently add the missing nodes to the graph, then
* add the edge connecting them. We are not using the proxy methods here as we want to test {@code
* putEdge} when the end-points are not elements of the graph.
*/
@Test
public void putEdge_nodesNotInGraph() {
assume().that(graphIsMutable()).isTrue();
graphAsMutableGraph.addNode(N1);
assertTrue(graphAsMutableGraph.putEdge(N1, N5));
assertTrue(graphAsMutableGraph.putEdge(N4, N1));
assertTrue(graphAsMutableGraph.putEdge(N2, N3));
assertThat(graph.nodes()).containsExactly(N1, N5, N4, N2, N3).inOrder();
assertThat(graph.adjacentNodes(N1)).containsExactly(N4, N5);
assertThat(graph.adjacentNodes(N2)).containsExactly(N3);
assertThat(graph.adjacentNodes(N3)).containsExactly(N2);
assertThat(graph.adjacentNodes(N4)).containsExactly(N1);
assertThat(graph.adjacentNodes(N5)).containsExactly(N1);
}
@Test
public void putEdge_doesntAllowSelfLoops() {
assume().that(graphIsMutable()).isTrue();
assume().that(graph.allowsSelfLoops()).isFalse();
try {
putEdge(N1, N1);
fail(ERROR_ADDED_SELF_LOOP);
} catch (IllegalArgumentException e) {
assertThat(e).hasMessageThat().contains(ERROR_SELF_LOOP);
}
}
@Test
public void putEdge_allowsSelfLoops() {
assume().that(graphIsMutable()).isTrue();
assume().that(graph.allowsSelfLoops()).isTrue();
assertThat(graphAsMutableGraph.putEdge(N1, N1)).isTrue();
assertThat(graph.adjacentNodes(N1)).containsExactly(N1);
}
@Test
public void putEdge_existingSelfLoopEdgeBetweenSameNodes() {
assume().that(graphIsMutable()).isTrue();
assume().that(graph.allowsSelfLoops()).isTrue();
putEdge(N1, N1);
assertThat(graphAsMutableGraph.putEdge(N1, N1)).isFalse();
}
@Test
public void removeEdge_antiparallelEdges() {
assume().that(graphIsMutable()).isTrue();
putEdge(N1, N2);
putEdge(N2, N1); // no-op
assertThat(graphAsMutableGraph.removeEdge(N1, N2)).isTrue();
assertThat(graph.adjacentNodes(N1)).isEmpty();
assertThat(graph.edges()).isEmpty();
assertThat(graphAsMutableGraph.removeEdge(N2, N1)).isFalse();
}
@Test
public void removeNode_existingNodeWithSelfLoopEdge() {
assume().that(graphIsMutable()).isTrue();
assume().that(graph.allowsSelfLoops()).isTrue();
addNode(N1);
putEdge(N1, N1);
assertThat(graphAsMutableGraph.removeNode(N1)).isTrue();
assertThat(graph.nodes()).isEmpty();
}
@Test
public void removeEdge_existingSelfLoopEdge() {
assume().that(graphIsMutable()).isTrue();
assume().that(graph.allowsSelfLoops()).isTrue();
putEdge(N1, N1);
assertThat(graphAsMutableGraph.removeEdge(N1, N1)).isTrue();
assertThat(graph.nodes()).containsExactly(N1);
assertThat(graph.adjacentNodes(N1)).isEmpty();
}
}