blob: e386252bd986c200a66ae5be1d707f378c4ca97c [file] [log] [blame]
/*
* Copyright (C) 2014 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.graph;
import static com.google.common.graph.TestUtil.ERROR_NODE_NOT_IN_GRAPH;
import static com.google.common.graph.TestUtil.assertEdgeNotInGraphErrorMessage;
import static com.google.common.graph.TestUtil.assertNodeNotInGraphErrorMessage;
import static com.google.common.graph.TestUtil.assertStronglyEquivalent;
import static com.google.common.graph.TestUtil.sanityCheckSet;
import static com.google.common.truth.Truth.assertThat;
import static com.google.common.truth.TruthJUnit.assume;
import static java.util.concurrent.Executors.newFixedThreadPool;
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;
import static org.junit.Assert.fail;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableSet;
import com.google.common.collect.Sets;
import java.util.Set;
import java.util.concurrent.Callable;
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Future;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;
/**
* Abstract base class for testing implementations of {@link Network} interface. Network instances
* created for testing should have Integer node and String edge objects.
*
* <p>Test cases that should be handled similarly in any graph implementation are included in this
* class. For example, testing that {@code nodes()} method returns the set of the nodes in the
* graph. The following test cases are left for the subclasses to handle:
*
* <ul>
* <li>Test cases related to whether the graph is directed, undirected, mutable, or immutable.
* <li>Test cases related to the specific implementation of the {@link Network} interface.
* </ul>
*
* TODO(user): Make this class generic (using <N, E>) for all node and edge types.
* TODO(user): Differentiate between directed and undirected edge strings.
*/
public abstract class AbstractNetworkTest {
Network<Integer, String> network;
/**
* The same reference as {@link #network}, except as a mutable network. This field is null in case
* {@link #createGraph()} didn't return a mutable network.
*/
MutableNetwork<Integer, String> networkAsMutableNetwork;
static final Integer N1 = 1;
static final Integer N2 = 2;
static final Integer N3 = 3;
static final Integer N4 = 4;
static final Integer N5 = 5;
static final Integer NODE_NOT_IN_GRAPH = 1000;
static final String E11 = "1-1";
static final String E11_A = "1-1a";
static final String E12 = "1-2";
static final String E12_A = "1-2a";
static final String E12_B = "1-2b";
static final String E21 = "2-1";
static final String E13 = "1-3";
static final String E14 = "1-4";
static final String E23 = "2-3";
static final String E31 = "3-1";
static final String E34 = "3-4";
static final String E41 = "4-1";
static final String E15 = "1-5";
static final String EDGE_NOT_IN_GRAPH = "edgeNotInGraph";
// TODO(user): Consider separating Strings that we've defined here to capture
// identifiable substrings of expected error messages, from Strings that we've defined
// here to provide error messages.
// TODO(user): Some Strings used in the subclasses can be added as static Strings
// here too.
static final String ERROR_PARALLEL_EDGE = "connected by a different edge";
static final String ERROR_REUSE_EDGE = "it cannot be reused to connect";
static final String ERROR_MODIFIABLE_COLLECTION =
"Collection returned is unexpectedly modifiable";
static final String ERROR_SELF_LOOP = "self-loops are not allowed";
static final String ERROR_EDGE_NOT_IN_GRAPH =
"Should not be allowed to pass an edge that is not an element of the graph.";
static final String ERROR_ADDED_SELF_LOOP = "Should not be allowed to add a self-loop edge.";
static final String ERROR_ADDED_PARALLEL_EDGE = "Should not be allowed to add a parallel edge.";
static final String ERROR_ADDED_EXISTING_EDGE =
"Reusing an existing edge to connect different nodes succeeded";
/** Creates and returns an instance of the graph to be tested. */
abstract Network<Integer, String> createGraph();
/**
* A proxy method that adds the node {@code n} to the graph being tested. In case of Immutable
* graph implementations, this method should replace {@link #network} with a new graph that
* includes this node.
*/
abstract void addNode(Integer n);
/**
* A proxy method that adds the edge {@code e} to the graph being tested. In case of Immutable
* graph implementations, this method should replace {@link #network} with a new graph that
* includes this edge.
*/
abstract void addEdge(Integer n1, Integer n2, String e);
final boolean graphIsMutable() {
return networkAsMutableNetwork != null;
}
@Before
public void init() {
network = createGraph();
if (network instanceof MutableNetwork) {
networkAsMutableNetwork = (MutableNetwork<Integer, String>) network;
}
}
@After
public void validateNetworkState() {
validateNetwork(network);
}
static <N, E> void validateNetwork(Network<N, E> network) {
assertStronglyEquivalent(network, Graphs.copyOf(network));
assertStronglyEquivalent(network, ImmutableNetwork.copyOf(network));
String networkString = network.toString();
assertThat(networkString).contains("isDirected: " + network.isDirected());
assertThat(networkString).contains("allowsParallelEdges: " + network.allowsParallelEdges());
assertThat(networkString).contains("allowsSelfLoops: " + network.allowsSelfLoops());
int nodeStart = networkString.indexOf("nodes:");
int edgeStart = networkString.indexOf("edges:");
String nodeString = networkString.substring(nodeStart, edgeStart);
String edgeString = networkString.substring(edgeStart);
Graph<N> asGraph = network.asGraph();
AbstractGraphTest.validateGraph(asGraph);
assertThat(network.nodes()).isEqualTo(asGraph.nodes());
assertThat(network.edges().size()).isAtLeast(asGraph.edges().size());
assertThat(network.nodeOrder()).isEqualTo(asGraph.nodeOrder());
assertThat(network.isDirected()).isEqualTo(asGraph.isDirected());
assertThat(network.allowsSelfLoops()).isEqualTo(asGraph.allowsSelfLoops());
for (E edge : sanityCheckSet(network.edges())) {
// TODO(b/27817069): Consider verifying the edge's incident nodes in the string.
assertThat(edgeString).contains(edge.toString());
EndpointPair<N> endpointPair = network.incidentNodes(edge);
N nodeU = endpointPair.nodeU();
N nodeV = endpointPair.nodeV();
assertThat(asGraph.edges()).contains(EndpointPair.of(network, nodeU, nodeV));
assertThat(network.edgesConnecting(nodeU, nodeV)).contains(edge);
assertThat(network.successors(nodeU)).contains(nodeV);
assertThat(network.adjacentNodes(nodeU)).contains(nodeV);
assertThat(network.outEdges(nodeU)).contains(edge);
assertThat(network.incidentEdges(nodeU)).contains(edge);
assertThat(network.predecessors(nodeV)).contains(nodeU);
assertThat(network.adjacentNodes(nodeV)).contains(nodeU);
assertThat(network.inEdges(nodeV)).contains(edge);
assertThat(network.incidentEdges(nodeV)).contains(edge);
for (N incidentNode : network.incidentNodes(edge)) {
assertThat(network.nodes()).contains(incidentNode);
for (E adjacentEdge : network.incidentEdges(incidentNode)) {
assertTrue(
edge.equals(adjacentEdge) || network.adjacentEdges(edge).contains(adjacentEdge));
}
}
}
for (N node : sanityCheckSet(network.nodes())) {
assertThat(nodeString).contains(node.toString());
assertThat(network.adjacentNodes(node)).isEqualTo(asGraph.adjacentNodes(node));
assertThat(network.predecessors(node)).isEqualTo(asGraph.predecessors(node));
assertThat(network.successors(node)).isEqualTo(asGraph.successors(node));
int selfLoopCount = network.edgesConnecting(node, node).size();
assertThat(network.incidentEdges(node).size() + selfLoopCount)
.isEqualTo(network.degree(node));
if (network.isDirected()) {
assertThat(network.incidentEdges(node).size() + selfLoopCount)
.isEqualTo(network.inDegree(node) + network.outDegree(node));
assertThat(network.inEdges(node)).hasSize(network.inDegree(node));
assertThat(network.outEdges(node)).hasSize(network.outDegree(node));
} else {
assertThat(network.predecessors(node)).isEqualTo(network.adjacentNodes(node));
assertThat(network.successors(node)).isEqualTo(network.adjacentNodes(node));
assertThat(network.inEdges(node)).isEqualTo(network.incidentEdges(node));
assertThat(network.outEdges(node)).isEqualTo(network.incidentEdges(node));
assertThat(network.inDegree(node)).isEqualTo(network.degree(node));
assertThat(network.outDegree(node)).isEqualTo(network.degree(node));
}
for (N otherNode : network.nodes()) {
Set<E> edgesConnecting = sanityCheckSet(network.edgesConnecting(node, otherNode));
switch (edgesConnecting.size()) {
case 0:
assertThat(network.edgeConnectingOrNull(node, otherNode)).isNull();
assertThat(network.hasEdgeConnecting(node, otherNode)).isFalse();
break;
case 1:
assertThat(network.edgeConnectingOrNull(node, otherNode))
.isEqualTo(edgesConnecting.iterator().next());
assertThat(network.hasEdgeConnecting(node, otherNode)).isTrue();
break;
default:
assertThat(network.hasEdgeConnecting(node, otherNode)).isTrue();
try {
network.edgeConnectingOrNull(node, otherNode);
fail();
} catch (IllegalArgumentException expected) {
}
}
boolean isSelfLoop = node.equals(otherNode);
boolean connected = !edgesConnecting.isEmpty();
if (network.isDirected() || !isSelfLoop) {
assertThat(edgesConnecting)
.isEqualTo(Sets.intersection(network.outEdges(node), network.inEdges(otherNode)));
}
if (!network.allowsParallelEdges()) {
assertThat(edgesConnecting.size()).isAtMost(1);
}
if (!network.allowsSelfLoops() && isSelfLoop) {
assertThat(connected).isFalse();
}
assertThat(network.successors(node).contains(otherNode)).isEqualTo(connected);
assertThat(network.predecessors(otherNode).contains(node)).isEqualTo(connected);
for (E edge : edgesConnecting) {
assertThat(network.incidentNodes(edge))
.isEqualTo(EndpointPair.of(network, node, otherNode));
assertThat(network.outEdges(node)).contains(edge);
assertThat(network.inEdges(otherNode)).contains(edge);
}
}
for (N adjacentNode : sanityCheckSet(network.adjacentNodes(node))) {
assertTrue(
network.predecessors(node).contains(adjacentNode)
|| network.successors(node).contains(adjacentNode));
assertTrue(
!network.edgesConnecting(node, adjacentNode).isEmpty()
|| !network.edgesConnecting(adjacentNode, node).isEmpty());
}
for (N predecessor : sanityCheckSet(network.predecessors(node))) {
assertThat(network.successors(predecessor)).contains(node);
assertThat(network.edgesConnecting(predecessor, node)).isNotEmpty();
}
for (N successor : sanityCheckSet(network.successors(node))) {
assertThat(network.predecessors(successor)).contains(node);
assertThat(network.edgesConnecting(node, successor)).isNotEmpty();
}
for (E incidentEdge : sanityCheckSet(network.incidentEdges(node))) {
assertTrue(
network.inEdges(node).contains(incidentEdge)
|| network.outEdges(node).contains(incidentEdge));
assertThat(network.edges()).contains(incidentEdge);
assertThat(network.incidentNodes(incidentEdge)).contains(node);
}
for (E inEdge : sanityCheckSet(network.inEdges(node))) {
assertThat(network.incidentEdges(node)).contains(inEdge);
assertThat(network.outEdges(network.incidentNodes(inEdge).adjacentNode(node)))
.contains(inEdge);
if (network.isDirected()) {
assertThat(network.incidentNodes(inEdge).target()).isEqualTo(node);
}
}
for (E outEdge : sanityCheckSet(network.outEdges(node))) {
assertThat(network.incidentEdges(node)).contains(outEdge);
assertThat(network.inEdges(network.incidentNodes(outEdge).adjacentNode(node)))
.contains(outEdge);
if (network.isDirected()) {
assertThat(network.incidentNodes(outEdge).source()).isEqualTo(node);
}
}
}
}
/**
* Verifies that the {@code Set} returned by {@code nodes} has the expected mutability property
* (see the {@code Network} documentation for more information).
*/
@Test
public abstract void nodes_checkReturnedSetMutability();
/**
* Verifies that the {@code Set} returned by {@code edges} has the expected mutability property
* (see the {@code Network} documentation for more information).
*/
@Test
public abstract void edges_checkReturnedSetMutability();
/**
* Verifies that the {@code Set} returned by {@code incidentEdges} has the expected mutability
* property (see the {@code Network} documentation for more information).
*/
@Test
public abstract void incidentEdges_checkReturnedSetMutability();
/**
* Verifies that the {@code Set} returned by {@code adjacentNodes} has the expected mutability
* property (see the {@code Network} documentation for more information).
*/
@Test
public abstract void adjacentNodes_checkReturnedSetMutability();
/**
* Verifies that the {@code Set} returned by {@code adjacentEdges} has the expected mutability
* property (see the {@code Network} documentation for more information).
*/
@Test
public abstract void adjacentEdges_checkReturnedSetMutability();
/**
* Verifies that the {@code Set} returned by {@code edgesConnecting} has the expected mutability
* property (see the {@code Network} documentation for more information).
*/
@Test
public abstract void edgesConnecting_checkReturnedSetMutability();
/**
* Verifies that the {@code Set} returned by {@code inEdges} has the expected mutability property
* (see the {@code Network} documentation for more information).
*/
@Test
public abstract void inEdges_checkReturnedSetMutability();
/**
* Verifies that the {@code Set} returned by {@code outEdges} has the expected mutability property
* (see the {@code Network} documentation for more information).
*/
@Test
public abstract void outEdges_checkReturnedSetMutability();
/**
* Verifies that the {@code Set} returned by {@code predecessors} has the expected mutability
* property (see the {@code Network} documentation for more information).
*/
@Test
public abstract void predecessors_checkReturnedSetMutability();
/**
* Verifies that the {@code Set} returned by {@code successors} has the expected mutability
* property (see the {@code Network} documentation for more information).
*/
@Test
public abstract void successors_checkReturnedSetMutability();
@Test
public void nodes_oneNode() {
addNode(N1);
assertThat(network.nodes()).containsExactly(N1);
}
@Test
public void nodes_noNodes() {
assertThat(network.nodes()).isEmpty();
}
@Test
public void edges_oneEdge() {
addEdge(N1, N2, E12);
assertThat(network.edges()).containsExactly(E12);
}
@Test
public void edges_noEdges() {
assertThat(network.edges()).isEmpty();
// Network with no edges, given disconnected nodes
addNode(N1);
addNode(N2);
assertThat(network.edges()).isEmpty();
}
@Test
public void incidentEdges_oneEdge() {
addEdge(N1, N2, E12);
assertThat(network.incidentEdges(N2)).containsExactly(E12);
assertThat(network.incidentEdges(N1)).containsExactly(E12);
}
@Test
public void incidentEdges_isolatedNode() {
addNode(N1);
assertThat(network.incidentEdges(N1)).isEmpty();
}
@Test
public void incidentEdges_nodeNotInGraph() {
try {
network.incidentEdges(NODE_NOT_IN_GRAPH);
fail(ERROR_NODE_NOT_IN_GRAPH);
} catch (IllegalArgumentException e) {
assertNodeNotInGraphErrorMessage(e);
}
}
@Test
public void incidentNodes_oneEdge() {
addEdge(N1, N2, E12);
assertThat(network.incidentNodes(E12)).containsExactly(N1, N2);
}
@Test
public void incidentNodes_edgeNotInGraph() {
try {
network.incidentNodes(EDGE_NOT_IN_GRAPH);
fail(ERROR_EDGE_NOT_IN_GRAPH);
} catch (IllegalArgumentException e) {
assertEdgeNotInGraphErrorMessage(e);
}
}
@Test
public void adjacentNodes_oneEdge() {
addEdge(N1, N2, E12);
assertThat(network.adjacentNodes(N1)).containsExactly(N2);
assertThat(network.adjacentNodes(N2)).containsExactly(N1);
}
@Test
public void adjacentNodes_noAdjacentNodes() {
addNode(N1);
assertThat(network.adjacentNodes(N1)).isEmpty();
}
@Test
public void adjacentNodes_nodeNotInGraph() {
try {
network.adjacentNodes(NODE_NOT_IN_GRAPH);
fail(ERROR_NODE_NOT_IN_GRAPH);
} catch (IllegalArgumentException e) {
assertNodeNotInGraphErrorMessage(e);
}
}
@Test
public void adjacentEdges_bothEndpoints() {
addEdge(N1, N2, E12);
addEdge(N2, N3, E23);
addEdge(N3, N1, E31);
addEdge(N3, N4, E34);
assertThat(network.adjacentEdges(E12)).containsExactly(E31, E23);
}
@Test
public void adjacentEdges_noAdjacentEdges() {
addEdge(N1, N2, E12);
addEdge(N3, N4, E34);
assertThat(network.adjacentEdges(E12)).isEmpty();
}
@Test
public void adjacentEdges_edgeNotInGraph() {
try {
network.adjacentEdges(EDGE_NOT_IN_GRAPH);
fail(ERROR_EDGE_NOT_IN_GRAPH);
} catch (IllegalArgumentException e) {
assertEdgeNotInGraphErrorMessage(e);
}
}
@Test
public void adjacentEdges_parallelEdges() {
assume().that(network.allowsParallelEdges()).isTrue();
addEdge(N1, N2, E12);
addEdge(N1, N2, E12_A);
addEdge(N1, N2, E12_B);
addEdge(N3, N4, E34);
assertThat(network.adjacentEdges(E12)).containsExactly(E12_A, E12_B);
}
@Test
public void edgesConnecting_disconnectedNodes() {
addNode(N1);
addNode(N2);
assertThat(network.edgesConnecting(N1, N2)).isEmpty();
}
@Test
public void edgesConnecting_nodesNotInGraph() {
addNode(N1);
addNode(N2);
try {
network.edgesConnecting(N1, NODE_NOT_IN_GRAPH);
fail(ERROR_NODE_NOT_IN_GRAPH);
} catch (IllegalArgumentException e) {
assertNodeNotInGraphErrorMessage(e);
}
try {
network.edgesConnecting(NODE_NOT_IN_GRAPH, N2);
fail(ERROR_NODE_NOT_IN_GRAPH);
} catch (IllegalArgumentException e) {
assertNodeNotInGraphErrorMessage(e);
}
try {
network.edgesConnecting(NODE_NOT_IN_GRAPH, NODE_NOT_IN_GRAPH);
fail(ERROR_NODE_NOT_IN_GRAPH);
} catch (IllegalArgumentException e) {
assertNodeNotInGraphErrorMessage(e);
}
}
@Test
public void edgesConnecting_parallelEdges_directed() {
assume().that(network.allowsParallelEdges()).isTrue();
assume().that(network.isDirected()).isTrue();
addEdge(N1, N2, E12);
addEdge(N1, N2, E12_A);
assertThat(network.edgesConnecting(N1, N2)).containsExactly(E12, E12_A);
// Passed nodes should be in the correct edge direction, first is the
// source node and the second is the target node
assertThat(network.edgesConnecting(N2, N1)).isEmpty();
}
@Test
public void edgesConnecting_parallelEdges_undirected() {
assume().that(network.allowsParallelEdges()).isTrue();
assume().that(network.isDirected()).isFalse();
addEdge(N1, N2, E12);
addEdge(N1, N2, E12_A);
addEdge(N2, N1, E21);
assertThat(network.edgesConnecting(N1, N2)).containsExactly(E12, E12_A, E21);
assertThat(network.edgesConnecting(N2, N1)).containsExactly(E12, E12_A, E21);
}
@Test
public void edgesConnecting_parallelSelfLoopEdges() {
assume().that(network.allowsParallelEdges()).isTrue();
assume().that(network.allowsSelfLoops()).isTrue();
addEdge(N1, N1, E11);
addEdge(N1, N1, E11_A);
assertThat(network.edgesConnecting(N1, N1)).containsExactly(E11, E11_A);
}
@Test
public void hasEdgeConnecting_disconnectedNodes() {
addNode(N1);
addNode(N2);
assertThat(network.hasEdgeConnecting(N1, N2)).isFalse();
}
@Test
public void hasEdgesConnecting_nodesNotInGraph() {
addNode(N1);
addNode(N2);
assertThat(network.hasEdgeConnecting(N1, NODE_NOT_IN_GRAPH)).isFalse();
assertThat(network.hasEdgeConnecting(NODE_NOT_IN_GRAPH, N2)).isFalse();
assertThat(network.hasEdgeConnecting(NODE_NOT_IN_GRAPH, NODE_NOT_IN_GRAPH)).isFalse();
}
@Test
public void inEdges_noInEdges() {
addNode(N1);
assertThat(network.inEdges(N1)).isEmpty();
}
@Test
public void inEdges_nodeNotInGraph() {
try {
network.inEdges(NODE_NOT_IN_GRAPH);
fail(ERROR_NODE_NOT_IN_GRAPH);
} catch (IllegalArgumentException e) {
assertNodeNotInGraphErrorMessage(e);
}
}
@Test
public void outEdges_noOutEdges() {
addNode(N1);
assertThat(network.outEdges(N1)).isEmpty();
}
@Test
public void outEdges_nodeNotInGraph() {
try {
network.outEdges(NODE_NOT_IN_GRAPH);
fail(ERROR_NODE_NOT_IN_GRAPH);
} catch (IllegalArgumentException e) {
assertNodeNotInGraphErrorMessage(e);
}
}
@Test
public void predecessors_noPredecessors() {
addNode(N1);
assertThat(network.predecessors(N1)).isEmpty();
}
@Test
public void predecessors_nodeNotInGraph() {
try {
network.predecessors(NODE_NOT_IN_GRAPH);
fail(ERROR_NODE_NOT_IN_GRAPH);
} catch (IllegalArgumentException e) {
assertNodeNotInGraphErrorMessage(e);
}
}
@Test
public void successors_noSuccessors() {
addNode(N1);
assertThat(network.successors(N1)).isEmpty();
}
@Test
public void successors_nodeNotInGraph() {
try {
network.successors(NODE_NOT_IN_GRAPH);
fail(ERROR_NODE_NOT_IN_GRAPH);
} catch (IllegalArgumentException e) {
assertNodeNotInGraphErrorMessage(e);
}
}
@Test
public void addNode_newNode() {
assume().that(graphIsMutable()).isTrue();
assertTrue(networkAsMutableNetwork.addNode(N1));
assertThat(networkAsMutableNetwork.nodes()).contains(N1);
}
@Test
public void addNode_existingNode() {
assume().that(graphIsMutable()).isTrue();
addNode(N1);
ImmutableSet<Integer> nodes = ImmutableSet.copyOf(networkAsMutableNetwork.nodes());
assertFalse(networkAsMutableNetwork.addNode(N1));
assertThat(networkAsMutableNetwork.nodes()).containsExactlyElementsIn(nodes);
}
@Test
public void removeNode_existingNode() {
assume().that(graphIsMutable()).isTrue();
addEdge(N1, N2, E12);
addEdge(N4, N1, E41);
assertTrue(networkAsMutableNetwork.removeNode(N1));
assertFalse(networkAsMutableNetwork.removeNode(N1));
assertThat(networkAsMutableNetwork.nodes()).containsExactly(N2, N4);
assertThat(networkAsMutableNetwork.edges()).doesNotContain(E12);
assertThat(networkAsMutableNetwork.edges()).doesNotContain(E41);
}
@Test
public void removeNode_nodeNotPresent() {
assume().that(graphIsMutable()).isTrue();
addNode(N1);
ImmutableSet<Integer> nodes = ImmutableSet.copyOf(networkAsMutableNetwork.nodes());
assertFalse(networkAsMutableNetwork.removeNode(NODE_NOT_IN_GRAPH));
assertThat(networkAsMutableNetwork.nodes()).containsExactlyElementsIn(nodes);
}
@Test
public void removeNode_queryAfterRemoval() {
assume().that(graphIsMutable()).isTrue();
addNode(N1);
@SuppressWarnings("unused")
Set<Integer> unused =
networkAsMutableNetwork.adjacentNodes(N1); // ensure cache (if any) is populated
assertTrue(networkAsMutableNetwork.removeNode(N1));
try {
networkAsMutableNetwork.adjacentNodes(N1);
fail(ERROR_NODE_NOT_IN_GRAPH);
} catch (IllegalArgumentException e) {
assertNodeNotInGraphErrorMessage(e);
}
}
@Test
public void removeEdge_existingEdge() {
assume().that(graphIsMutable()).isTrue();
addEdge(N1, N2, E12);
assertTrue(networkAsMutableNetwork.removeEdge(E12));
assertFalse(networkAsMutableNetwork.removeEdge(E12));
assertThat(networkAsMutableNetwork.edges()).doesNotContain(E12);
assertThat(networkAsMutableNetwork.edgesConnecting(N1, N2)).isEmpty();
}
@Test
public void removeEdge_oneOfMany() {
assume().that(graphIsMutable()).isTrue();
addEdge(N1, N2, E12);
addEdge(N1, N3, E13);
addEdge(N1, N4, E14);
assertThat(networkAsMutableNetwork.edges()).containsExactly(E12, E13, E14);
assertTrue(networkAsMutableNetwork.removeEdge(E13));
assertThat(networkAsMutableNetwork.edges()).containsExactly(E12, E14);
}
@Test
public void removeEdge_edgeNotPresent() {
assume().that(graphIsMutable()).isTrue();
addEdge(N1, N2, E12);
ImmutableSet<String> edges = ImmutableSet.copyOf(networkAsMutableNetwork.edges());
assertFalse(networkAsMutableNetwork.removeEdge(EDGE_NOT_IN_GRAPH));
assertThat(networkAsMutableNetwork.edges()).containsExactlyElementsIn(edges);
}
@Test
public void removeEdge_queryAfterRemoval() {
assume().that(graphIsMutable()).isTrue();
addEdge(N1, N2, E12);
@SuppressWarnings("unused")
EndpointPair<Integer> unused =
networkAsMutableNetwork.incidentNodes(E12); // ensure cache (if any) is populated
assertTrue(networkAsMutableNetwork.removeEdge(E12));
try {
networkAsMutableNetwork.incidentNodes(E12);
fail(ERROR_EDGE_NOT_IN_GRAPH);
} catch (IllegalArgumentException e) {
assertEdgeNotInGraphErrorMessage(e);
}
}
@Test
public void removeEdge_parallelEdge() {
assume().that(graphIsMutable()).isTrue();
assume().that(network.allowsParallelEdges()).isTrue();
addEdge(N1, N2, E12);
addEdge(N1, N2, E12_A);
assertTrue(networkAsMutableNetwork.removeEdge(E12_A));
assertThat(network.edgesConnecting(N1, N2)).containsExactly(E12);
}
@Test
public void removeEdge_parallelSelfLoopEdge() {
assume().that(graphIsMutable()).isTrue();
assume().that(network.allowsParallelEdges()).isTrue();
assume().that(network.allowsSelfLoops()).isTrue();
addEdge(N1, N1, E11);
addEdge(N1, N1, E11_A);
addEdge(N1, N2, E12);
assertTrue(networkAsMutableNetwork.removeEdge(E11_A));
assertThat(network.edgesConnecting(N1, N1)).containsExactly(E11);
assertThat(network.edgesConnecting(N1, N2)).containsExactly(E12);
assertTrue(networkAsMutableNetwork.removeEdge(E11));
assertThat(network.edgesConnecting(N1, N1)).isEmpty();
assertThat(network.edgesConnecting(N1, N2)).containsExactly(E12);
}
@Test
public void concurrentIteration() throws Exception {
addEdge(1, 2, "foo");
addEdge(3, 4, "bar");
addEdge(5, 6, "baz");
int threadCount = 20;
ExecutorService executor = newFixedThreadPool(threadCount);
final CyclicBarrier barrier = new CyclicBarrier(threadCount);
ImmutableList.Builder<Future<?>> futures = ImmutableList.builder();
for (int i = 0; i < threadCount; i++) {
futures.add(
executor.submit(
new Callable<Object>() {
@Override
public Object call() throws Exception {
barrier.await();
Integer first = network.nodes().iterator().next();
for (Integer node : network.nodes()) {
Set<Integer> unused = network.successors(node);
}
/*
* Also look up an earlier node so that, if the graph is using MapRetrievalCache,
* we read one of the fields declared in that class.
*/
Set<Integer> unused = network.successors(first);
return null;
}
}));
}
/*
* It's unlikely that any operations would fail by throwing an exception, but let's check them
* just to be safe.
*
* The real purpose of this test is to produce a TSAN failure if MapIteratorCache is unsafe for
* reads from multiple threads -- unsafe, in fact, even in the absence of a concurrent write.
* The specific problem we had was unsafe reads of lastEntryReturnedBySomeIterator. (To fix the
* problem, we've since marked that field as volatile.)
*
* When MapIteratorCache is used from Immutable* classes, the TSAN failure doesn't indicate a
* real problem: The Entry objects are ImmutableMap entries, whose fields are all final and thus
* safe to read even when the Entry object is unsafely published. But with a mutable graph, the
* Entry object is likely to have a non-final value field, which is not safe to read when
* unsafely published. (The Entry object might even be newly created by each iterator.next()
* call, so we can't assume that writes to the Entry have been safely published by some other
* synchronization actions.)
*
* All that said: I haven't actually managed to make this particular test produce a TSAN error
* for the field accesses in MapIteratorCache. This teset *has* found other TSAN errors,
* including in MapRetrievalCache, so I'm not sure why this one is different. I did at least
* confirm that my change to MapIteratorCache fixes the TSAN error in the (larger) test it was
* originally reported in.
*/
for (Future<?> future : futures.build()) {
future.get();
}
executor.shutdown();
}
}