blob: 967e3f115b9aba750fc82fd97632183399cf6160 [file] [log] [blame]
/*
* Copyright (C) 2012 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
* in compliance with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
package com.google.common.math;
import static com.google.common.base.Preconditions.checkState;
import static com.google.common.primitives.Doubles.isFinite;
import static java.lang.Double.NaN;
import static java.lang.Double.isNaN;
import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtIncompatible;
/**
* A mutable object which accumulates paired double values (e.g. points on a plane) and tracks some
* basic statistics over all the values added so far. This class is not thread safe.
*
* @author Pete Gillin
* @since 20.0
*/
@Beta
@GwtIncompatible
public final class PairedStatsAccumulator {
// These fields must satisfy the requirements of PairedStats' constructor as well as those of the
// stat methods of this class.
private final StatsAccumulator xStats = new StatsAccumulator();
private final StatsAccumulator yStats = new StatsAccumulator();
private double sumOfProductsOfDeltas = 0.0;
/** Adds the given pair of values to the dataset. */
public void add(double x, double y) {
// We extend the recursive expression for the one-variable case at Art of Computer Programming
// vol. 2, Knuth, 4.2.2, (16) to the two-variable case. We have two value series x_i and y_i.
// We define the arithmetic means X_n = 1/n \sum_{i=1}^n x_i, and Y_n = 1/n \sum_{i=1}^n y_i.
// We also define the sum of the products of the differences from the means
// C_n = \sum_{i=1}^n x_i y_i - n X_n Y_n
// for all n >= 1. Then for all n > 1:
// C_{n-1} = \sum_{i=1}^{n-1} x_i y_i - (n-1) X_{n-1} Y_{n-1}
// C_n - C_{n-1} = x_n y_n - n X_n Y_n + (n-1) X_{n-1} Y_{n-1}
// = x_n y_n - X_n [ y_n + (n-1) Y_{n-1} ] + [ n X_n - x_n ] Y_{n-1}
// = x_n y_n - X_n y_n - x_n Y_{n-1} + X_n Y_{n-1}
// = (x_n - X_n) (y_n - Y_{n-1})
xStats.add(x);
if (isFinite(x) && isFinite(y)) {
if (xStats.count() > 1) {
sumOfProductsOfDeltas += (x - xStats.mean()) * (y - yStats.mean());
}
} else {
sumOfProductsOfDeltas = NaN;
}
yStats.add(y);
}
/**
* Adds the given statistics to the dataset, as if the individual values used to compute the
* statistics had been added directly.
*/
public void addAll(PairedStats values) {
if (values.count() == 0) {
return;
}
xStats.addAll(values.xStats());
if (yStats.count() == 0) {
sumOfProductsOfDeltas = values.sumOfProductsOfDeltas();
} else {
// This is a generalized version of the calculation in add(double, double) above. Note that
// non-finite inputs will have sumOfProductsOfDeltas = NaN, so non-finite values will result
// in NaN naturally.
sumOfProductsOfDeltas +=
values.sumOfProductsOfDeltas()
+ (values.xStats().mean() - xStats.mean())
* (values.yStats().mean() - yStats.mean())
* values.count();
}
yStats.addAll(values.yStats());
}
/** Returns an immutable snapshot of the current statistics. */
public PairedStats snapshot() {
return new PairedStats(xStats.snapshot(), yStats.snapshot(), sumOfProductsOfDeltas);
}
/** Returns the number of pairs in the dataset. */
public long count() {
return xStats.count();
}
/** Returns an immutable snapshot of the statistics on the {@code x} values alone. */
public Stats xStats() {
return xStats.snapshot();
}
/** Returns an immutable snapshot of the statistics on the {@code y} values alone. */
public Stats yStats() {
return yStats.snapshot();
}
/**
* Returns the population covariance of the values. The count must be non-zero.
*
* <p>This is guaranteed to return zero if the dataset contains a single pair of finite values. It
* is not guaranteed to return zero when the dataset consists of the same pair of values multiple
* times, due to numerical errors.
*
* <h3>Non-finite values</h3>
*
* <p>If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link
* Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}.
*
* @throws IllegalStateException if the dataset is empty
*/
public double populationCovariance() {
checkState(count() != 0);
return sumOfProductsOfDeltas / count();
}
/**
* Returns the sample covariance of the values. The count must be greater than one.
*
* <p>This is not guaranteed to return zero when the dataset consists of the same pair of values
* multiple times, due to numerical errors.
*
* <h3>Non-finite values</h3>
*
* <p>If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link
* Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}.
*
* @throws IllegalStateException if the dataset is empty or contains a single pair of values
*/
public final double sampleCovariance() {
checkState(count() > 1);
return sumOfProductsOfDeltas / (count() - 1);
}
/**
* Returns the <a href="http://mathworld.wolfram.com/CorrelationCoefficient.html">Pearson's or
* product-moment correlation coefficient</a> of the values. The count must greater than one, and
* the {@code x} and {@code y} values must both have non-zero population variance (i.e. {@code
* xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0}). The result is not
* guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to
* numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1].
*
* <h3>Non-finite values</h3>
*
* <p>If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link
* Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}.
*
* @throws IllegalStateException if the dataset is empty or contains a single pair of values, or
* either the {@code x} and {@code y} dataset has zero population variance
*/
public final double pearsonsCorrelationCoefficient() {
checkState(count() > 1);
if (isNaN(sumOfProductsOfDeltas)) {
return NaN;
}
double xSumOfSquaresOfDeltas = xStats.sumOfSquaresOfDeltas();
double ySumOfSquaresOfDeltas = yStats.sumOfSquaresOfDeltas();
checkState(xSumOfSquaresOfDeltas > 0.0);
checkState(ySumOfSquaresOfDeltas > 0.0);
// The product of two positive numbers can be zero if the multiplication underflowed. We
// force a positive value by effectively rounding up to MIN_VALUE.
double productOfSumsOfSquaresOfDeltas =
ensurePositive(xSumOfSquaresOfDeltas * ySumOfSquaresOfDeltas);
return ensureInUnitRange(sumOfProductsOfDeltas / Math.sqrt(productOfSumsOfSquaresOfDeltas));
}
/**
* Returns a linear transformation giving the best fit to the data according to <a
* href="http://mathworld.wolfram.com/LeastSquaresFitting.html">Ordinary Least Squares linear
* regression</a> of {@code y} as a function of {@code x}. The count must be greater than one, and
* either the {@code x} or {@code y} data must have a non-zero population variance (i.e. {@code
* xStats().populationVariance() > 0.0 || yStats().populationVariance() > 0.0}). The result is
* guaranteed to be horizontal if there is variance in the {@code x} data but not the {@code y}
* data, and vertical if there is variance in the {@code y} data but not the {@code x} data.
*
* <p>This fit minimizes the root-mean-square error in {@code y} as a function of {@code x}. This
* error is defined as the square root of the mean of the squares of the differences between the
* actual {@code y} values of the data and the values predicted by the fit for the {@code x}
* values (i.e. it is the square root of the mean of the squares of the vertical distances between
* the data points and the best fit line). For this fit, this error is a fraction {@code sqrt(1 -
* R*R)} of the population standard deviation of {@code y}, where {@code R} is the Pearson's
* correlation coefficient (as given by {@link #pearsonsCorrelationCoefficient()}).
*
* <p>The corresponding root-mean-square error in {@code x} as a function of {@code y} is a
* fraction {@code sqrt(1/(R*R) - 1)} of the population standard deviation of {@code x}. This fit
* does not normally minimize that error: to do that, you should swap the roles of {@code x} and
* {@code y}.
*
* <h3>Non-finite values</h3>
*
* <p>If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link
* Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link
* LinearTransformation#forNaN()}.
*
* @throws IllegalStateException if the dataset is empty or contains a single pair of values, or
* both the {@code x} and {@code y} dataset have zero population variance
*/
public final LinearTransformation leastSquaresFit() {
checkState(count() > 1);
if (isNaN(sumOfProductsOfDeltas)) {
return LinearTransformation.forNaN();
}
double xSumOfSquaresOfDeltas = xStats.sumOfSquaresOfDeltas();
if (xSumOfSquaresOfDeltas > 0.0) {
if (yStats.sumOfSquaresOfDeltas() > 0.0) {
return LinearTransformation.mapping(xStats.mean(), yStats.mean())
.withSlope(sumOfProductsOfDeltas / xSumOfSquaresOfDeltas);
} else {
return LinearTransformation.horizontal(yStats.mean());
}
} else {
checkState(yStats.sumOfSquaresOfDeltas() > 0.0);
return LinearTransformation.vertical(xStats.mean());
}
}
private double ensurePositive(double value) {
if (value > 0.0) {
return value;
} else {
return Double.MIN_VALUE;
}
}
private static double ensureInUnitRange(double value) {
if (value >= 1.0) {
return 1.0;
}
if (value <= -1.0) {
return -1.0;
}
return value;
}
}