blob: 5e23b358aa9f660d0c277ebd7bfb806c20b25d5e [file] [log] [blame]
/*
* Copyright (C) 2007 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.collect;
import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.collect.CollectPreconditions.checkNonnegative;
import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.base.Predicate;
import com.google.common.base.Predicates;
import com.google.common.collect.Collections2.FilteredCollection;
import com.google.common.math.IntMath;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import java.io.Serializable;
import java.util.AbstractSet;
import java.util.Arrays;
import java.util.BitSet;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.EnumSet;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.NavigableSet;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeSet;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.CopyOnWriteArraySet;
import org.checkerframework.checker.nullness.compatqual.MonotonicNonNullDecl;
import org.checkerframework.checker.nullness.compatqual.NullableDecl;
/**
* Static utility methods pertaining to {@link Set} instances. Also see this class's counterparts
* {@link Lists}, {@link Maps} and {@link Queues}.
*
* <p>See the Guava User Guide article on <a href=
* "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#sets"> {@code Sets}</a>.
*
* @author Kevin Bourrillion
* @author Jared Levy
* @author Chris Povirk
* @since 2.0
*/
@GwtCompatible(emulated = true)
public final class Sets {
private Sets() {}
/**
* {@link AbstractSet} substitute without the potentially-quadratic {@code removeAll}
* implementation.
*/
abstract static class ImprovedAbstractSet<E> extends AbstractSet<E> {
@Override
public boolean removeAll(Collection<?> c) {
return removeAllImpl(this, c);
}
@Override
public boolean retainAll(Collection<?> c) {
return super.retainAll(checkNotNull(c)); // GWT compatibility
}
}
/**
* Returns an immutable set instance containing the given enum elements. Internally, the returned
* set will be backed by an {@link EnumSet}.
*
* <p>The iteration order of the returned set follows the enum's iteration order, not the order in
* which the elements are provided to the method.
*
* @param anElement one of the elements the set should contain
* @param otherElements the rest of the elements the set should contain
* @return an immutable set containing those elements, minus duplicates
*/
// http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
@GwtCompatible(serializable = true)
public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(
E anElement, E... otherElements) {
return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements));
}
/**
* Returns an immutable set instance containing the given enum elements. Internally, the returned
* set will be backed by an {@link EnumSet}.
*
* <p>The iteration order of the returned set follows the enum's iteration order, not the order in
* which the elements appear in the given collection.
*
* @param elements the elements, all of the same {@code enum} type, that the set should contain
* @return an immutable set containing those elements, minus duplicates
*/
// http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
@GwtCompatible(serializable = true)
public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(Iterable<E> elements) {
if (elements instanceof ImmutableEnumSet) {
return (ImmutableEnumSet<E>) elements;
} else if (elements instanceof Collection) {
Collection<E> collection = (Collection<E>) elements;
if (collection.isEmpty()) {
return ImmutableSet.of();
} else {
return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection));
}
} else {
Iterator<E> itr = elements.iterator();
if (itr.hasNext()) {
EnumSet<E> enumSet = EnumSet.of(itr.next());
Iterators.addAll(enumSet, itr);
return ImmutableEnumSet.asImmutable(enumSet);
} else {
return ImmutableSet.of();
}
}
}
/**
* Returns a new, <i>mutable</i> {@code EnumSet} instance containing the given elements in their
* natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also
* accepts non-{@code Collection} iterables and empty iterables.
*/
public static <E extends Enum<E>> EnumSet<E> newEnumSet(
Iterable<E> iterable, Class<E> elementType) {
EnumSet<E> set = EnumSet.noneOf(elementType);
Iterables.addAll(set, iterable);
return set;
}
// HashSet
/**
* Creates a <i>mutable</i>, initially empty {@code HashSet} instance.
*
* <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. If {@code
* E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly consider
* using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get
* deterministic iteration behavior.
*
* <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
* deprecated. Instead, use the {@code HashSet} constructor directly, taking advantage of the new
* <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
*/
public static <E> HashSet<E> newHashSet() {
return new HashSet<E>();
}
/**
* Creates a <i>mutable</i> {@code HashSet} instance initially containing the given elements.
*
* <p><b>Note:</b> if elements are non-null and won't be added or removed after this point, use
* {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an
* {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider
* using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get
* deterministic iteration behavior.
*
* <p>This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList
* asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}.
* This method is not actually very useful and will likely be deprecated in the future.
*/
public static <E> HashSet<E> newHashSet(E... elements) {
HashSet<E> set = newHashSetWithExpectedSize(elements.length);
Collections.addAll(set, elements);
return set;
}
/**
* Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin
* convenience for creating an empty set then calling {@link Collection#addAll} or {@link
* Iterables#addAll}.
*
* <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
* ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
* FluentIterable} and call {@code elements.toSet()}.)
*
* <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)}
* instead.
*
* <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't
* need this method. Instead, use the {@code HashSet} constructor directly, taking advantage of
* the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
*
* <p>Overall, this method is not very useful and will likely be deprecated in the future.
*/
public static <E> HashSet<E> newHashSet(Iterable<? extends E> elements) {
return (elements instanceof Collection)
? new HashSet<E>(Collections2.cast(elements))
: newHashSet(elements.iterator());
}
/**
* Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin
* convenience for creating an empty set and then calling {@link Iterators#addAll}.
*
* <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
* ImmutableSet#copyOf(Iterator)} instead.
*
* <p><b>Note:</b> if {@code E} is an {@link Enum} type, you should create an {@link EnumSet}
* instead.
*
* <p>Overall, this method is not very useful and will likely be deprecated in the future.
*/
public static <E> HashSet<E> newHashSet(Iterator<? extends E> elements) {
HashSet<E> set = newHashSet();
Iterators.addAll(set, elements);
return set;
}
/**
* Returns a new hash set using the smallest initial table size that can hold {@code expectedSize}
* elements without resizing. Note that this is not what {@link HashSet#HashSet(int)} does, but it
* is what most users want and expect it to do.
*
* <p>This behavior can't be broadly guaranteed, but has been tested with OpenJDK 1.7 and 1.8.
*
* @param expectedSize the number of elements you expect to add to the returned set
* @return a new, empty hash set with enough capacity to hold {@code expectedSize} elements
* without resizing
* @throws IllegalArgumentException if {@code expectedSize} is negative
*/
public static <E> HashSet<E> newHashSetWithExpectedSize(int expectedSize) {
return new HashSet<E>(Maps.capacity(expectedSize));
}
/**
* Creates a thread-safe set backed by a hash map. The set is backed by a {@link
* ConcurrentHashMap} instance, and thus carries the same concurrency guarantees.
*
* <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The
* set is serializable.
*
* @return a new, empty thread-safe {@code Set}
* @since 15.0
*/
public static <E> Set<E> newConcurrentHashSet() {
return Collections.newSetFromMap(new ConcurrentHashMap<E, Boolean>());
}
/**
* Creates a thread-safe set backed by a hash map and containing the given elements. The set is
* backed by a {@link ConcurrentHashMap} instance, and thus carries the same concurrency
* guarantees.
*
* <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The
* set is serializable.
*
* @param elements the elements that the set should contain
* @return a new thread-safe set containing those elements (minus duplicates)
* @throws NullPointerException if {@code elements} or any of its contents is null
* @since 15.0
*/
public static <E> Set<E> newConcurrentHashSet(Iterable<? extends E> elements) {
Set<E> set = newConcurrentHashSet();
Iterables.addAll(set, elements);
return set;
}
// LinkedHashSet
/**
* Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance.
*
* <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead.
*
* <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
* deprecated. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage of
* the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
*
* @return a new, empty {@code LinkedHashSet}
*/
public static <E> LinkedHashSet<E> newLinkedHashSet() {
return new LinkedHashSet<E>();
}
/**
* Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the given elements in order.
*
* <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
* ImmutableSet#copyOf(Iterable)} instead.
*
* <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't
* need this method. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage
* of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
*
* <p>Overall, this method is not very useful and will likely be deprecated in the future.
*
* @param elements the elements that the set should contain, in order
* @return a new {@code LinkedHashSet} containing those elements (minus duplicates)
*/
public static <E> LinkedHashSet<E> newLinkedHashSet(Iterable<? extends E> elements) {
if (elements instanceof Collection) {
return new LinkedHashSet<E>(Collections2.cast(elements));
}
LinkedHashSet<E> set = newLinkedHashSet();
Iterables.addAll(set, elements);
return set;
}
/**
* Creates a {@code LinkedHashSet} instance, with a high enough "initial capacity" that it
* <i>should</i> hold {@code expectedSize} elements without growth. This behavior cannot be
* broadly guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed
* that the method isn't inadvertently <i>oversizing</i> the returned set.
*
* @param expectedSize the number of elements you expect to add to the returned set
* @return a new, empty {@code LinkedHashSet} with enough capacity to hold {@code expectedSize}
* elements without resizing
* @throws IllegalArgumentException if {@code expectedSize} is negative
* @since 11.0
*/
public static <E> LinkedHashSet<E> newLinkedHashSetWithExpectedSize(int expectedSize) {
return new LinkedHashSet<E>(Maps.capacity(expectedSize));
}
// TreeSet
/**
* Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the natural sort ordering of
* its elements.
*
* <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#of()} instead.
*
* <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
* deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
* <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
*
* @return a new, empty {@code TreeSet}
*/
public static <E extends Comparable> TreeSet<E> newTreeSet() {
return new TreeSet<E>();
}
/**
* Creates a <i>mutable</i> {@code TreeSet} instance containing the given elements sorted by their
* natural ordering.
*
* <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#copyOf(Iterable)}
* instead.
*
* <p><b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit comparator, this
* method has different behavior than {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code
* TreeSet} with that comparator.
*
* <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
* deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
* <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
*
* <p>This method is just a small convenience for creating an empty set and then calling {@link
* Iterables#addAll}. This method is not very useful and will likely be deprecated in the future.
*
* @param elements the elements that the set should contain
* @return a new {@code TreeSet} containing those elements (minus duplicates)
*/
public static <E extends Comparable> TreeSet<E> newTreeSet(Iterable<? extends E> elements) {
TreeSet<E> set = newTreeSet();
Iterables.addAll(set, elements);
return set;
}
/**
* Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given comparator.
*
* <p><b>Note:</b> if mutability is not required, use {@code
* ImmutableSortedSet.orderedBy(comparator).build()} instead.
*
* <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
* deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
* <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. One caveat to this is that the {@code
* TreeSet} constructor uses a null {@code Comparator} to mean "natural ordering," whereas this
* factory rejects null. Clean your code accordingly.
*
* @param comparator the comparator to use to sort the set
* @return a new, empty {@code TreeSet}
* @throws NullPointerException if {@code comparator} is null
*/
public static <E> TreeSet<E> newTreeSet(Comparator<? super E> comparator) {
return new TreeSet<E>(checkNotNull(comparator));
}
/**
* Creates an empty {@code Set} that uses identity to determine equality. It compares object
* references, instead of calling {@code equals}, to determine whether a provided object matches
* an element in the set. For example, {@code contains} returns {@code false} when passed an
* object that equals a set member, but isn't the same instance. This behavior is similar to the
* way {@code IdentityHashMap} handles key lookups.
*
* @since 8.0
*/
public static <E> Set<E> newIdentityHashSet() {
return Collections.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap());
}
/**
* Creates an empty {@code CopyOnWriteArraySet} instance.
*
* <p><b>Note:</b> if you need an immutable empty {@link Set}, use {@link Collections#emptySet}
* instead.
*
* @return a new, empty {@code CopyOnWriteArraySet}
* @since 12.0
*/
@GwtIncompatible // CopyOnWriteArraySet
public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet() {
return new CopyOnWriteArraySet<E>();
}
/**
* Creates a {@code CopyOnWriteArraySet} instance containing the given elements.
*
* @param elements the elements that the set should contain, in order
* @return a new {@code CopyOnWriteArraySet} containing those elements
* @since 12.0
*/
@GwtIncompatible // CopyOnWriteArraySet
public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet(Iterable<? extends E> elements) {
// We copy elements to an ArrayList first, rather than incurring the
// quadratic cost of adding them to the COWAS directly.
Collection<? extends E> elementsCollection =
(elements instanceof Collection)
? Collections2.cast(elements)
: Lists.newArrayList(elements);
return new CopyOnWriteArraySet<E>(elementsCollection);
}
/**
* Creates an {@code EnumSet} consisting of all enum values that are not in the specified
* collection. If the collection is an {@link EnumSet}, this method has the same behavior as
* {@link EnumSet#complementOf}. Otherwise, the specified collection must contain at least one
* element, in order to determine the element type. If the collection could be empty, use {@link
* #complementOf(Collection, Class)} instead of this method.
*
* @param collection the collection whose complement should be stored in the enum set
* @return a new, modifiable {@code EnumSet} containing all values of the enum that aren't present
* in the given collection
* @throws IllegalArgumentException if {@code collection} is not an {@code EnumSet} instance and
* contains no elements
*/
public static <E extends Enum<E>> EnumSet<E> complementOf(Collection<E> collection) {
if (collection instanceof EnumSet) {
return EnumSet.complementOf((EnumSet<E>) collection);
}
checkArgument(
!collection.isEmpty(), "collection is empty; use the other version of this method");
Class<E> type = collection.iterator().next().getDeclaringClass();
return makeComplementByHand(collection, type);
}
/**
* Creates an {@code EnumSet} consisting of all enum values that are not in the specified
* collection. This is equivalent to {@link EnumSet#complementOf}, but can act on any input
* collection, as long as the elements are of enum type.
*
* @param collection the collection whose complement should be stored in the {@code EnumSet}
* @param type the type of the elements in the set
* @return a new, modifiable {@code EnumSet} initially containing all the values of the enum not
* present in the given collection
*/
public static <E extends Enum<E>> EnumSet<E> complementOf(
Collection<E> collection, Class<E> type) {
checkNotNull(collection);
return (collection instanceof EnumSet)
? EnumSet.complementOf((EnumSet<E>) collection)
: makeComplementByHand(collection, type);
}
private static <E extends Enum<E>> EnumSet<E> makeComplementByHand(
Collection<E> collection, Class<E> type) {
EnumSet<E> result = EnumSet.allOf(type);
result.removeAll(collection);
return result;
}
/**
* Returns a set backed by the specified map. The resulting set displays the same ordering,
* concurrency, and performance characteristics as the backing map. In essence, this factory
* method provides a {@link Set} implementation corresponding to any {@link Map} implementation.
* There is no need to use this method on a {@link Map} implementation that already has a
* corresponding {@link Set} implementation (such as {@link java.util.HashMap} or {@link
* java.util.TreeMap}).
*
* <p>Each method invocation on the set returned by this method results in exactly one method
* invocation on the backing map or its {@code keySet} view, with one exception. The {@code
* addAll} method is implemented as a sequence of {@code put} invocations on the backing map.
*
* <p>The specified map must be empty at the time this method is invoked, and should not be
* accessed directly after this method returns. These conditions are ensured if the map is created
* empty, passed directly to this method, and no reference to the map is retained, as illustrated
* in the following code fragment:
*
* <pre>{@code
* Set<Object> identityHashSet = Sets.newSetFromMap(
* new IdentityHashMap<Object, Boolean>());
* }</pre>
*
* <p>The returned set is serializable if the backing map is.
*
* @param map the backing map
* @return the set backed by the map
* @throws IllegalArgumentException if {@code map} is not empty
* @deprecated Use {@link Collections#newSetFromMap} instead.
*/
@Deprecated
public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
return Collections.newSetFromMap(map);
}
/**
* An unmodifiable view of a set which may be backed by other sets; this view will change as the
* backing sets do. Contains methods to copy the data into a new set which will then remain
* stable. There is usually no reason to retain a reference of type {@code SetView}; typically,
* you either use it as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or
* {@link #copyInto} and forget the {@code SetView} itself.
*
* @since 2.0
*/
public abstract static class SetView<E> extends AbstractSet<E> {
private SetView() {} // no subclasses but our own
/**
* Returns an immutable copy of the current contents of this set view. Does not support null
* elements.
*
* <p><b>Warning:</b> this may have unexpected results if a backing set of this view uses a
* nonstandard notion of equivalence, for example if it is a {@link TreeSet} using a comparator
* that is inconsistent with {@link Object#equals(Object)}.
*/
public ImmutableSet<E> immutableCopy() {
return ImmutableSet.copyOf(this);
}
/**
* Copies the current contents of this set view into an existing set. This method has equivalent
* behavior to {@code set.addAll(this)}, assuming that all the sets involved are based on the
* same notion of equivalence.
*
* @return a reference to {@code set}, for convenience
*/
// Note: S should logically extend Set<? super E> but can't due to either
// some javac bug or some weirdness in the spec, not sure which.
@CanIgnoreReturnValue
public <S extends Set<E>> S copyInto(S set) {
set.addAll(this);
return set;
}
/**
* Guaranteed to throw an exception and leave the collection unmodified.
*
* @throws UnsupportedOperationException always
* @deprecated Unsupported operation.
*/
@CanIgnoreReturnValue
@Deprecated
@Override
public final boolean add(E e) {
throw new UnsupportedOperationException();
}
/**
* Guaranteed to throw an exception and leave the collection unmodified.
*
* @throws UnsupportedOperationException always
* @deprecated Unsupported operation.
*/
@CanIgnoreReturnValue
@Deprecated
@Override
public final boolean remove(Object object) {
throw new UnsupportedOperationException();
}
/**
* Guaranteed to throw an exception and leave the collection unmodified.
*
* @throws UnsupportedOperationException always
* @deprecated Unsupported operation.
*/
@CanIgnoreReturnValue
@Deprecated
@Override
public final boolean addAll(Collection<? extends E> newElements) {
throw new UnsupportedOperationException();
}
/**
* Guaranteed to throw an exception and leave the collection unmodified.
*
* @throws UnsupportedOperationException always
* @deprecated Unsupported operation.
*/
@CanIgnoreReturnValue
@Deprecated
@Override
public final boolean removeAll(Collection<?> oldElements) {
throw new UnsupportedOperationException();
}
/**
* Guaranteed to throw an exception and leave the collection unmodified.
*
* @throws UnsupportedOperationException always
* @deprecated Unsupported operation.
*/
@CanIgnoreReturnValue
@Deprecated
@Override
public final boolean retainAll(Collection<?> elementsToKeep) {
throw new UnsupportedOperationException();
}
/**
* Guaranteed to throw an exception and leave the collection unmodified.
*
* @throws UnsupportedOperationException always
* @deprecated Unsupported operation.
*/
@Deprecated
@Override
public final void clear() {
throw new UnsupportedOperationException();
}
/**
* Scope the return type to {@link UnmodifiableIterator} to ensure this is an unmodifiable view.
*
* @since 20.0 (present with return type {@link Iterator} since 2.0)
*/
@Override
public abstract UnmodifiableIterator<E> iterator();
}
/**
* Returns an unmodifiable <b>view</b> of the union of two sets. The returned set contains all
* elements that are contained in either backing set. Iterating over the returned set iterates
* first over all the elements of {@code set1}, then over each element of {@code set2}, in order,
* that is not contained in {@code set1}.
*
* <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
* equivalence relations (as {@link HashSet}, {@link TreeSet}, and the {@link Map#keySet} of an
* {@code IdentityHashMap} all are).
*/
public static <E> SetView<E> union(final Set<? extends E> set1, final Set<? extends E> set2) {
checkNotNull(set1, "set1");
checkNotNull(set2, "set2");
return new SetView<E>() {
@Override
public int size() {
int size = set1.size();
for (E e : set2) {
if (!set1.contains(e)) {
size++;
}
}
return size;
}
@Override
public boolean isEmpty() {
return set1.isEmpty() && set2.isEmpty();
}
@Override
public UnmodifiableIterator<E> iterator() {
return new AbstractIterator<E>() {
final Iterator<? extends E> itr1 = set1.iterator();
final Iterator<? extends E> itr2 = set2.iterator();
@Override
protected E computeNext() {
if (itr1.hasNext()) {
return itr1.next();
}
while (itr2.hasNext()) {
E e = itr2.next();
if (!set1.contains(e)) {
return e;
}
}
return endOfData();
}
};
}
@Override
public boolean contains(Object object) {
return set1.contains(object) || set2.contains(object);
}
@Override
public <S extends Set<E>> S copyInto(S set) {
set.addAll(set1);
set.addAll(set2);
return set;
}
@Override
public ImmutableSet<E> immutableCopy() {
return new ImmutableSet.Builder<E>().addAll(set1).addAll(set2).build();
}
};
}
/**
* Returns an unmodifiable <b>view</b> of the intersection of two sets. The returned set contains
* all elements that are contained by both backing sets. The iteration order of the returned set
* matches that of {@code set1}.
*
* <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
* equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code
* IdentityHashMap} all are).
*
* <p><b>Note:</b> The returned view performs slightly better when {@code set1} is the smaller of
* the two sets. If you have reason to believe one of your sets will generally be smaller than the
* other, pass it first. Unfortunately, since this method sets the generic type of the returned
* set based on the type of the first set passed, this could in rare cases force you to make a
* cast, for example:
*
* <pre>{@code
* Set<Object> aFewBadObjects = ...
* Set<String> manyBadStrings = ...
*
* // impossible for a non-String to be in the intersection
* SuppressWarnings("unchecked")
* Set<String> badStrings = (Set) Sets.intersection(
* aFewBadObjects, manyBadStrings);
* }</pre>
*
* <p>This is unfortunate, but should come up only very rarely.
*/
public static <E> SetView<E> intersection(final Set<E> set1, final Set<?> set2) {
checkNotNull(set1, "set1");
checkNotNull(set2, "set2");
return new SetView<E>() {
@Override
public UnmodifiableIterator<E> iterator() {
return new AbstractIterator<E>() {
final Iterator<E> itr = set1.iterator();
@Override
protected E computeNext() {
while (itr.hasNext()) {
E e = itr.next();
if (set2.contains(e)) {
return e;
}
}
return endOfData();
}
};
}
@Override
public int size() {
int size = 0;
for (E e : set1) {
if (set2.contains(e)) {
size++;
}
}
return size;
}
@Override
public boolean isEmpty() {
return Collections.disjoint(set2, set1);
}
@Override
public boolean contains(Object object) {
return set1.contains(object) && set2.contains(object);
}
@Override
public boolean containsAll(Collection<?> collection) {
return set1.containsAll(collection) && set2.containsAll(collection);
}
};
}
/**
* Returns an unmodifiable <b>view</b> of the difference of two sets. The returned set contains
* all elements that are contained by {@code set1} and not contained by {@code set2}. {@code set2}
* may also contain elements not present in {@code set1}; these are simply ignored. The iteration
* order of the returned set matches that of {@code set1}.
*
* <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
* equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code
* IdentityHashMap} all are).
*/
public static <E> SetView<E> difference(final Set<E> set1, final Set<?> set2) {
checkNotNull(set1, "set1");
checkNotNull(set2, "set2");
return new SetView<E>() {
@Override
public UnmodifiableIterator<E> iterator() {
return new AbstractIterator<E>() {
final Iterator<E> itr = set1.iterator();
@Override
protected E computeNext() {
while (itr.hasNext()) {
E e = itr.next();
if (!set2.contains(e)) {
return e;
}
}
return endOfData();
}
};
}
@Override
public int size() {
int size = 0;
for (E e : set1) {
if (!set2.contains(e)) {
size++;
}
}
return size;
}
@Override
public boolean isEmpty() {
return set2.containsAll(set1);
}
@Override
public boolean contains(Object element) {
return set1.contains(element) && !set2.contains(element);
}
};
}
/**
* Returns an unmodifiable <b>view</b> of the symmetric difference of two sets. The returned set
* contains all elements that are contained in either {@code set1} or {@code set2} but not in
* both. The iteration order of the returned set is undefined.
*
* <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
* equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code
* IdentityHashMap} all are).
*
* @since 3.0
*/
public static <E> SetView<E> symmetricDifference(
final Set<? extends E> set1, final Set<? extends E> set2) {
checkNotNull(set1, "set1");
checkNotNull(set2, "set2");
return new SetView<E>() {
@Override
public UnmodifiableIterator<E> iterator() {
final Iterator<? extends E> itr1 = set1.iterator();
final Iterator<? extends E> itr2 = set2.iterator();
return new AbstractIterator<E>() {
@Override
public E computeNext() {
while (itr1.hasNext()) {
E elem1 = itr1.next();
if (!set2.contains(elem1)) {
return elem1;
}
}
while (itr2.hasNext()) {
E elem2 = itr2.next();
if (!set1.contains(elem2)) {
return elem2;
}
}
return endOfData();
}
};
}
@Override
public int size() {
int size = 0;
for (E e : set1) {
if (!set2.contains(e)) {
size++;
}
}
for (E e : set2) {
if (!set1.contains(e)) {
size++;
}
}
return size;
}
@Override
public boolean isEmpty() {
return set1.equals(set2);
}
@Override
public boolean contains(Object element) {
return set1.contains(element) ^ set2.contains(element);
}
};
}
/**
* Returns the elements of {@code unfiltered} that satisfy a predicate. The returned set is a live
* view of {@code unfiltered}; changes to one affect the other.
*
* <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
* are supported. When given an element that doesn't satisfy the predicate, the set's {@code
* add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
* such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
* that satisfy the filter will be removed from the underlying set.
*
* <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
*
* <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
* the underlying set and determine which elements satisfy the filter. When a live view is
* <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
* use the copy.
*
* <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
* {@link Predicate#apply}. Do not provide a predicate such as {@code
* Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
* Iterables#filter(Iterable, Class)} for related functionality.)
*
* <p><b>Java 8 users:</b> many use cases for this method are better addressed by {@link
* java.util.stream.Stream#filter}. This method is not being deprecated, but we gently encourage
* you to migrate to streams.
*/
// TODO(kevinb): how to omit that last sentence when building GWT javadoc?
public static <E> Set<E> filter(Set<E> unfiltered, Predicate<? super E> predicate) {
if (unfiltered instanceof SortedSet) {
return filter((SortedSet<E>) unfiltered, predicate);
}
if (unfiltered instanceof FilteredSet) {
// Support clear(), removeAll(), and retainAll() when filtering a filtered
// collection.
FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
return new FilteredSet<E>((Set<E>) filtered.unfiltered, combinedPredicate);
}
return new FilteredSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
}
/**
* Returns the elements of a {@code SortedSet}, {@code unfiltered}, that satisfy a predicate. The
* returned set is a live view of {@code unfiltered}; changes to one affect the other.
*
* <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
* are supported. When given an element that doesn't satisfy the predicate, the set's {@code
* add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
* such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
* that satisfy the filter will be removed from the underlying set.
*
* <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
*
* <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
* the underlying set and determine which elements satisfy the filter. When a live view is
* <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
* use the copy.
*
* <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
* {@link Predicate#apply}. Do not provide a predicate such as {@code
* Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
* Iterables#filter(Iterable, Class)} for related functionality.)
*
* @since 11.0
*/
public static <E> SortedSet<E> filter(SortedSet<E> unfiltered, Predicate<? super E> predicate) {
if (unfiltered instanceof FilteredSet) {
// Support clear(), removeAll(), and retainAll() when filtering a filtered
// collection.
FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
return new FilteredSortedSet<E>((SortedSet<E>) filtered.unfiltered, combinedPredicate);
}
return new FilteredSortedSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
}
/**
* Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that satisfy a predicate.
* The returned set is a live view of {@code unfiltered}; changes to one affect the other.
*
* <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
* are supported. When given an element that doesn't satisfy the predicate, the set's {@code
* add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
* such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
* that satisfy the filter will be removed from the underlying set.
*
* <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
*
* <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
* the underlying set and determine which elements satisfy the filter. When a live view is
* <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
* use the copy.
*
* <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
* {@link Predicate#apply}. Do not provide a predicate such as {@code
* Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
* Iterables#filter(Iterable, Class)} for related functionality.)
*
* @since 14.0
*/
@GwtIncompatible // NavigableSet
@SuppressWarnings("unchecked")
public static <E> NavigableSet<E> filter(
NavigableSet<E> unfiltered, Predicate<? super E> predicate) {
if (unfiltered instanceof FilteredSet) {
// Support clear(), removeAll(), and retainAll() when filtering a filtered
// collection.
FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
return new FilteredNavigableSet<E>((NavigableSet<E>) filtered.unfiltered, combinedPredicate);
}
return new FilteredNavigableSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
}
private static class FilteredSet<E> extends FilteredCollection<E> implements Set<E> {
FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) {
super(unfiltered, predicate);
}
@Override
public boolean equals(@NullableDecl Object object) {
return equalsImpl(this, object);
}
@Override
public int hashCode() {
return hashCodeImpl(this);
}
}
private static class FilteredSortedSet<E> extends FilteredSet<E> implements SortedSet<E> {
FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) {
super(unfiltered, predicate);
}
@Override
public Comparator<? super E> comparator() {
return ((SortedSet<E>) unfiltered).comparator();
}
@Override
public SortedSet<E> subSet(E fromElement, E toElement) {
return new FilteredSortedSet<E>(
((SortedSet<E>) unfiltered).subSet(fromElement, toElement), predicate);
}
@Override
public SortedSet<E> headSet(E toElement) {
return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).headSet(toElement), predicate);
}
@Override
public SortedSet<E> tailSet(E fromElement) {
return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate);
}
@Override
public E first() {
return Iterators.find(unfiltered.iterator(), predicate);
}
@Override
public E last() {
SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered;
while (true) {
E element = sortedUnfiltered.last();
if (predicate.apply(element)) {
return element;
}
sortedUnfiltered = sortedUnfiltered.headSet(element);
}
}
}
@GwtIncompatible // NavigableSet
private static class FilteredNavigableSet<E> extends FilteredSortedSet<E>
implements NavigableSet<E> {
FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate<? super E> predicate) {
super(unfiltered, predicate);
}
NavigableSet<E> unfiltered() {
return (NavigableSet<E>) unfiltered;
}
@Override
@NullableDecl
public E lower(E e) {
return Iterators.find(unfiltered().headSet(e, false).descendingIterator(), predicate, null);
}
@Override
@NullableDecl
public E floor(E e) {
return Iterators.find(unfiltered().headSet(e, true).descendingIterator(), predicate, null);
}
@Override
public E ceiling(E e) {
return Iterables.find(unfiltered().tailSet(e, true), predicate, null);
}
@Override
public E higher(E e) {
return Iterables.find(unfiltered().tailSet(e, false), predicate, null);
}
@Override
public E pollFirst() {
return Iterables.removeFirstMatching(unfiltered(), predicate);
}
@Override
public E pollLast() {
return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate);
}
@Override
public NavigableSet<E> descendingSet() {
return Sets.filter(unfiltered().descendingSet(), predicate);
}
@Override
public Iterator<E> descendingIterator() {
return Iterators.filter(unfiltered().descendingIterator(), predicate);
}
@Override
public E last() {
return Iterators.find(unfiltered().descendingIterator(), predicate);
}
@Override
public NavigableSet<E> subSet(
E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
return filter(
unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate);
}
@Override
public NavigableSet<E> headSet(E toElement, boolean inclusive) {
return filter(unfiltered().headSet(toElement, inclusive), predicate);
}
@Override
public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
return filter(unfiltered().tailSet(fromElement, inclusive), predicate);
}
}
/**
* Returns every possible list that can be formed by choosing one element from each of the given
* sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
* product</a>" of the sets. For example:
*
* <pre>{@code
* Sets.cartesianProduct(ImmutableList.of(
* ImmutableSet.of(1, 2),
* ImmutableSet.of("A", "B", "C")))
* }</pre>
*
* <p>returns a set containing six lists:
*
* <ul>
* <li>{@code ImmutableList.of(1, "A")}
* <li>{@code ImmutableList.of(1, "B")}
* <li>{@code ImmutableList.of(1, "C")}
* <li>{@code ImmutableList.of(2, "A")}
* <li>{@code ImmutableList.of(2, "B")}
* <li>{@code ImmutableList.of(2, "C")}
* </ul>
*
* <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
* products that you would get from nesting for loops:
*
* <pre>{@code
* for (B b0 : sets.get(0)) {
* for (B b1 : sets.get(1)) {
* ...
* ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
* // operate on tuple
* }
* }
* }</pre>
*
* <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at
* all are provided (an empty list), the resulting Cartesian product has one element, an empty
* list (counter-intuitive, but mathematically consistent).
*
* <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a
* set of size {@code m x n x p}, its actual memory consumption is much smaller. When the
* cartesian set is constructed, the input sets are merely copied. Only as the resulting set is
* iterated are the individual lists created, and these are not retained after iteration.
*
* @param sets the sets to choose elements from, in the order that the elements chosen from those
* sets should appear in the resulting lists
* @param <B> any common base class shared by all axes (often just {@link Object})
* @return the Cartesian product, as an immutable set containing immutable lists
* @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a
* provided set is null
* @since 2.0
*/
public static <B> Set<List<B>> cartesianProduct(List<? extends Set<? extends B>> sets) {
return CartesianSet.create(sets);
}
/**
* Returns every possible list that can be formed by choosing one element from each of the given
* sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
* product</a>" of the sets. For example:
*
* <pre>{@code
* Sets.cartesianProduct(
* ImmutableSet.of(1, 2),
* ImmutableSet.of("A", "B", "C"))
* }</pre>
*
* <p>returns a set containing six lists:
*
* <ul>
* <li>{@code ImmutableList.of(1, "A")}
* <li>{@code ImmutableList.of(1, "B")}
* <li>{@code ImmutableList.of(1, "C")}
* <li>{@code ImmutableList.of(2, "A")}
* <li>{@code ImmutableList.of(2, "B")}
* <li>{@code ImmutableList.of(2, "C")}
* </ul>
*
* <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
* products that you would get from nesting for loops:
*
* <pre>{@code
* for (B b0 : sets.get(0)) {
* for (B b1 : sets.get(1)) {
* ...
* ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
* // operate on tuple
* }
* }
* }</pre>
*
* <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at
* all are provided (an empty list), the resulting Cartesian product has one element, an empty
* list (counter-intuitive, but mathematically consistent).
*
* <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a
* set of size {@code m x n x p}, its actual memory consumption is much smaller. When the
* cartesian set is constructed, the input sets are merely copied. Only as the resulting set is
* iterated are the individual lists created, and these are not retained after iteration.
*
* @param sets the sets to choose elements from, in the order that the elements chosen from those
* sets should appear in the resulting lists
* @param <B> any common base class shared by all axes (often just {@link Object})
* @return the Cartesian product, as an immutable set containing immutable lists
* @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a
* provided set is null
* @since 2.0
*/
@SafeVarargs
public static <B> Set<List<B>> cartesianProduct(Set<? extends B>... sets) {
return cartesianProduct(Arrays.asList(sets));
}
private static final class CartesianSet<E> extends ForwardingCollection<List<E>>
implements Set<List<E>> {
private final transient ImmutableList<ImmutableSet<E>> axes;
private final transient CartesianList<E> delegate;
static <E> Set<List<E>> create(List<? extends Set<? extends E>> sets) {
ImmutableList.Builder<ImmutableSet<E>> axesBuilder = new ImmutableList.Builder<>(sets.size());
for (Set<? extends E> set : sets) {
ImmutableSet<E> copy = ImmutableSet.copyOf(set);
if (copy.isEmpty()) {
return ImmutableSet.of();
}
axesBuilder.add(copy);
}
final ImmutableList<ImmutableSet<E>> axes = axesBuilder.build();
ImmutableList<List<E>> listAxes =
new ImmutableList<List<E>>() {
@Override
public int size() {
return axes.size();
}
@Override
public List<E> get(int index) {
return axes.get(index).asList();
}
@Override
boolean isPartialView() {
return true;
}
};
return new CartesianSet<E>(axes, new CartesianList<E>(listAxes));
}
private CartesianSet(ImmutableList<ImmutableSet<E>> axes, CartesianList<E> delegate) {
this.axes = axes;
this.delegate = delegate;
}
@Override
protected Collection<List<E>> delegate() {
return delegate;
}
@Override
public boolean equals(@NullableDecl Object object) {
// Warning: this is broken if size() == 0, so it is critical that we
// substitute an empty ImmutableSet to the user in place of this
if (object instanceof CartesianSet) {
CartesianSet<?> that = (CartesianSet<?>) object;
return this.axes.equals(that.axes);
}
return super.equals(object);
}
@Override
public int hashCode() {
// Warning: this is broken if size() == 0, so it is critical that we
// substitute an empty ImmutableSet to the user in place of this
// It's a weird formula, but tests prove it works.
int adjust = size() - 1;
for (int i = 0; i < axes.size(); i++) {
adjust *= 31;
adjust = ~~adjust;
// in GWT, we have to deal with integer overflow carefully
}
int hash = 1;
for (Set<E> axis : axes) {
hash = 31 * hash + (size() / axis.size() * axis.hashCode());
hash = ~~hash;
}
hash += adjust;
return ~~hash;
}
}
/**
* Returns the set of all possible subsets of {@code set}. For example, {@code
* powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{}, {1}, {2}, {1, 2}}}.
*
* <p>Elements appear in these subsets in the same iteration order as they appeared in the input
* set. The order in which these subsets appear in the outer set is undefined. Note that the power
* set of the empty set is not the empty set, but a one-element set containing the empty set.
*
* <p>The returned set and its constituent sets use {@code equals} to decide whether two elements
* are identical, even if the input set uses a different concept of equivalence.
*
* <p><i>Performance notes:</i> while the power set of a set with size {@code n} is of size {@code
* 2^n}, its memory usage is only {@code O(n)}. When the power set is constructed, the input set
* is merely copied. Only as the power set is iterated are the individual subsets created, and
* these subsets themselves occupy only a small constant amount of memory.
*
* @param set the set of elements to construct a power set from
* @return the power set, as an immutable set of immutable sets
* @throws IllegalArgumentException if {@code set} has more than 30 unique elements (causing the
* power set size to exceed the {@code int} range)
* @throws NullPointerException if {@code set} is or contains {@code null}
* @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at Wikipedia</a>
* @since 4.0
*/
@GwtCompatible(serializable = false)
public static <E> Set<Set<E>> powerSet(Set<E> set) {
return new PowerSet<E>(set);
}
private static final class SubSet<E> extends AbstractSet<E> {
private final ImmutableMap<E, Integer> inputSet;
private final int mask;
SubSet(ImmutableMap<E, Integer> inputSet, int mask) {
this.inputSet = inputSet;
this.mask = mask;
}
@Override
public Iterator<E> iterator() {
return new UnmodifiableIterator<E>() {
final ImmutableList<E> elements = inputSet.keySet().asList();
int remainingSetBits = mask;
@Override
public boolean hasNext() {
return remainingSetBits != 0;
}
@Override
public E next() {
int index = Integer.numberOfTrailingZeros(remainingSetBits);
if (index == 32) {
throw new NoSuchElementException();
}
remainingSetBits &= ~(1 << index);
return elements.get(index);
}
};
}
@Override
public int size() {
return Integer.bitCount(mask);
}
@Override
public boolean contains(@NullableDecl Object o) {
Integer index = inputSet.get(o);
return index != null && (mask & (1 << index)) != 0;
}
}
private static final class PowerSet<E> extends AbstractSet<Set<E>> {
final ImmutableMap<E, Integer> inputSet;
PowerSet(Set<E> input) {
checkArgument(
input.size() <= 30, "Too many elements to create power set: %s > 30", input.size());
this.inputSet = Maps.indexMap(input);
}
@Override
public int size() {
return 1 << inputSet.size();
}
@Override
public boolean isEmpty() {
return false;
}
@Override
public Iterator<Set<E>> iterator() {
return new AbstractIndexedListIterator<Set<E>>(size()) {
@Override
protected Set<E> get(final int setBits) {
return new SubSet<E>(inputSet, setBits);
}
};
}
@Override
public boolean contains(@NullableDecl Object obj) {
if (obj instanceof Set) {
Set<?> set = (Set<?>) obj;
return inputSet.keySet().containsAll(set);
}
return false;
}
@Override
public boolean equals(@NullableDecl Object obj) {
if (obj instanceof PowerSet) {
PowerSet<?> that = (PowerSet<?>) obj;
return inputSet.equals(that.inputSet);
}
return super.equals(obj);
}
@Override
public int hashCode() {
/*
* The sum of the sums of the hash codes in each subset is just the sum of
* each input element's hash code times the number of sets that element
* appears in. Each element appears in exactly half of the 2^n sets, so:
*/
return inputSet.keySet().hashCode() << (inputSet.size() - 1);
}
@Override
public String toString() {
return "powerSet(" + inputSet + ")";
}
}
/**
* Returns the set of all subsets of {@code set} of size {@code size}. For example, {@code
* combinations(ImmutableSet.of(1, 2, 3), 2)} returns the set {@code {{1, 2}, {1, 3}, {2, 3}}}.
*
* <p>Elements appear in these subsets in the same iteration order as they appeared in the input
* set. The order in which these subsets appear in the outer set is undefined.
*
* <p>The returned set and its constituent sets use {@code equals} to decide whether two elements
* are identical, even if the input set uses a different concept of equivalence.
*
* <p><i>Performance notes:</i> the memory usage of the returned set is only {@code O(n)}. When
* the result set is constructed, the input set is merely copied. Only as the result set is
* iterated are the individual subsets created. Each of these subsets occupies an additional O(n)
* memory but only for as long as the user retains a reference to it. That is, the set returned by
* {@code combinations} does not retain the individual subsets.
*
* @param set the set of elements to take combinations of
* @param size the number of elements per combination
* @return the set of all combinations of {@code size} elements from {@code set}
* @throws IllegalArgumentException if {@code size} is not between 0 and {@code set.size()}
* inclusive
* @throws NullPointerException if {@code set} is or contains {@code null}
* @since 23.0
*/
@Beta
public static <E> Set<Set<E>> combinations(Set<E> set, final int size) {
final ImmutableMap<E, Integer> index = Maps.indexMap(set);
checkNonnegative(size, "size");
checkArgument(size <= index.size(), "size (%s) must be <= set.size() (%s)", size, index.size());
if (size == 0) {
return ImmutableSet.<Set<E>>of(ImmutableSet.<E>of());
} else if (size == index.size()) {
return ImmutableSet.<Set<E>>of(index.keySet());
}
return new AbstractSet<Set<E>>() {
@Override
public boolean contains(@NullableDecl Object o) {
if (o instanceof Set) {
Set<?> s = (Set<?>) o;
return s.size() == size && index.keySet().containsAll(s);
}
return false;
}
@Override
public Iterator<Set<E>> iterator() {
return new AbstractIterator<Set<E>>() {
final BitSet bits = new BitSet(index.size());
@Override
protected Set<E> computeNext() {
if (bits.isEmpty()) {
bits.set(0, size);
} else {
int firstSetBit = bits.nextSetBit(0);
int bitToFlip = bits.nextClearBit(firstSetBit);
if (bitToFlip == index.size()) {
return endOfData();
}
/*
* The current set in sorted order looks like
* {firstSetBit, firstSetBit + 1, ..., bitToFlip - 1, ...}
* where it does *not* contain bitToFlip.
*
* The next combination is
*
* {0, 1, ..., bitToFlip - firstSetBit - 2, bitToFlip, ...}
*
* This is lexicographically next if you look at the combinations in descending order
* e.g. {2, 1, 0}, {3, 1, 0}, {3, 2, 0}, {3, 2, 1}, {4, 1, 0}...
*/
bits.set(0, bitToFlip - firstSetBit - 1);
bits.clear(bitToFlip - firstSetBit - 1, bitToFlip);
bits.set(bitToFlip);
}
final BitSet copy = (BitSet) bits.clone();
return new AbstractSet<E>() {
@Override
public boolean contains(@NullableDecl Object o) {
Integer i = index.get(o);
return i != null && copy.get(i);
}
@Override
public Iterator<E> iterator() {
return new AbstractIterator<E>() {
int i = -1;
@Override
protected E computeNext() {
i = copy.nextSetBit(i + 1);
if (i == -1) {
return endOfData();
}
return index.keySet().asList().get(i);
}
};
}
@Override
public int size() {
return size;
}
};
}
};
}
@Override
public int size() {
return IntMath.binomial(index.size(), size);
}
@Override
public String toString() {
return "Sets.combinations(" + index.keySet() + ", " + size + ")";
}
};
}
/** An implementation for {@link Set#hashCode()}. */
static int hashCodeImpl(Set<?> s) {
int hashCode = 0;
for (Object o : s) {
hashCode += o != null ? o.hashCode() : 0;
hashCode = ~~hashCode;
// Needed to deal with unusual integer overflow in GWT.
}
return hashCode;
}
/** An implementation for {@link Set#equals(Object)}. */
static boolean equalsImpl(Set<?> s, @NullableDecl Object object) {
if (s == object) {
return true;
}
if (object instanceof Set) {
Set<?> o = (Set<?>) object;
try {
return s.size() == o.size() && s.containsAll(o);
} catch (NullPointerException | ClassCastException ignored) {
return false;
}
}
return false;
}
/**
* Returns an unmodifiable view of the specified navigable set. This method allows modules to
* provide users with "read-only" access to internal navigable sets. Query operations on the
* returned set "read through" to the specified set, and attempts to modify the returned set,
* whether direct or via its collection views, result in an {@code UnsupportedOperationException}.
*
* <p>The returned navigable set will be serializable if the specified navigable set is
* serializable.
*
* @param set the navigable set for which an unmodifiable view is to be returned
* @return an unmodifiable view of the specified navigable set
* @since 12.0
*/
public static <E> NavigableSet<E> unmodifiableNavigableSet(NavigableSet<E> set) {
if (set instanceof ImmutableCollection || set instanceof UnmodifiableNavigableSet) {
return set;
}
return new UnmodifiableNavigableSet<E>(set);
}
static final class UnmodifiableNavigableSet<E> extends ForwardingSortedSet<E>
implements NavigableSet<E>, Serializable {
private final NavigableSet<E> delegate;
private final SortedSet<E> unmodifiableDelegate;
UnmodifiableNavigableSet(NavigableSet<E> delegate) {
this.delegate = checkNotNull(delegate);
this.unmodifiableDelegate = Collections.unmodifiableSortedSet(delegate);
}
@Override
protected SortedSet<E> delegate() {
return unmodifiableDelegate;
}
@Override
public E lower(E e) {
return delegate.lower(e);
}
@Override
public E floor(E e) {
return delegate.floor(e);
}
@Override
public E ceiling(E e) {
return delegate.ceiling(e);
}
@Override
public E higher(E e) {
return delegate.higher(e);
}
@Override
public E pollFirst() {
throw new UnsupportedOperationException();
}
@Override
public E pollLast() {
throw new UnsupportedOperationException();
}
@MonotonicNonNullDecl private transient UnmodifiableNavigableSet<E> descendingSet;
@Override
public NavigableSet<E> descendingSet() {
UnmodifiableNavigableSet<E> result = descendingSet;
if (result == null) {
result = descendingSet = new UnmodifiableNavigableSet<E>(delegate.descendingSet());
result.descendingSet = this;
}
return result;
}
@Override
public Iterator<E> descendingIterator() {
return Iterators.unmodifiableIterator(delegate.descendingIterator());
}
@Override
public NavigableSet<E> subSet(
E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
return unmodifiableNavigableSet(
delegate.subSet(fromElement, fromInclusive, toElement, toInclusive));
}
@Override
public NavigableSet<E> headSet(E toElement, boolean inclusive) {
return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive));
}
@Override
public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
return unmodifiableNavigableSet(delegate.tailSet(fromElement, inclusive));
}
private static final long serialVersionUID = 0;
}
/**
* Returns a synchronized (thread-safe) navigable set backed by the specified navigable set. In
* order to guarantee serial access, it is critical that <b>all</b> access to the backing
* navigable set is accomplished through the returned navigable set (or its views).
*
* <p>It is imperative that the user manually synchronize on the returned sorted set when
* iterating over it or any of its {@code descendingSet}, {@code subSet}, {@code headSet}, or
* {@code tailSet} views.
*
* <pre>{@code
* NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>());
* ...
* synchronized (set) {
* // Must be in the synchronized block
* Iterator<E> it = set.iterator();
* while (it.hasNext()) {
* foo(it.next());
* }
* }
* }</pre>
*
* <p>or:
*
* <pre>{@code
* NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>());
* NavigableSet<E> set2 = set.descendingSet().headSet(foo);
* ...
* synchronized (set) { // Note: set, not set2!!!
* // Must be in the synchronized block
* Iterator<E> it = set2.descendingIterator();
* while (it.hasNext())
* foo(it.next());
* }
* }
* }</pre>
*
* <p>Failure to follow this advice may result in non-deterministic behavior.
*
* <p>The returned navigable set will be serializable if the specified navigable set is
* serializable.
*
* @param navigableSet the navigable set to be "wrapped" in a synchronized navigable set.
* @return a synchronized view of the specified navigable set.
* @since 13.0
*/
@GwtIncompatible // NavigableSet
public static <E> NavigableSet<E> synchronizedNavigableSet(NavigableSet<E> navigableSet) {
return Synchronized.navigableSet(navigableSet);
}
/** Remove each element in an iterable from a set. */
static boolean removeAllImpl(Set<?> set, Iterator<?> iterator) {
boolean changed = false;
while (iterator.hasNext()) {
changed |= set.remove(iterator.next());
}
return changed;
}
static boolean removeAllImpl(Set<?> set, Collection<?> collection) {
checkNotNull(collection); // for GWT
if (collection instanceof Multiset) {
collection = ((Multiset<?>) collection).elementSet();
}
/*
* AbstractSet.removeAll(List) has quadratic behavior if the list size
* is just more than the set's size. We augment the test by
* assuming that sets have fast contains() performance, and other
* collections don't. See
* http://code.google.com/p/guava-libraries/issues/detail?id=1013
*/
if (collection instanceof Set && collection.size() > set.size()) {
return Iterators.removeAll(set.iterator(), collection);
} else {
return removeAllImpl(set, collection.iterator());
}
}
@GwtIncompatible // NavigableSet
static class DescendingSet<E> extends ForwardingNavigableSet<E> {
private final NavigableSet<E> forward;
DescendingSet(NavigableSet<E> forward) {
this.forward = forward;
}
@Override
protected NavigableSet<E> delegate() {
return forward;
}
@Override
public E lower(E e) {
return forward.higher(e);
}
@Override
public E floor(E e) {
return forward.ceiling(e);
}
@Override
public E ceiling(E e) {
return forward.floor(e);
}
@Override
public E higher(E e) {
return forward.lower(e);
}
@Override
public E pollFirst() {
return forward.pollLast();
}
@Override
public E pollLast() {
return forward.pollFirst();
}
@Override
public NavigableSet<E> descendingSet() {
return forward;
}
@Override
public Iterator<E> descendingIterator() {
return forward.iterator();
}
@Override
public NavigableSet<E> subSet(
E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet();
}
@Override
public SortedSet<E> subSet(E fromElement, E toElement) {
return standardSubSet(fromElement, toElement);
}
@Override
public NavigableSet<E> headSet(E toElement, boolean inclusive) {
return forward.tailSet(toElement, inclusive).descendingSet();
}
@Override
public SortedSet<E> headSet(E toElement) {
return standardHeadSet(toElement);
}
@Override
public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
return forward.headSet(fromElement, inclusive).descendingSet();
}
@Override
public SortedSet<E> tailSet(E fromElement) {
return standardTailSet(fromElement);
}
@SuppressWarnings("unchecked")
@Override
public Comparator<? super E> comparator() {
Comparator<? super E> forwardComparator = forward.comparator();
if (forwardComparator == null) {
return (Comparator) Ordering.natural().reverse();
} else {
return reverse(forwardComparator);
}
}
// If we inline this, we get a javac error.
private static <T> Ordering<T> reverse(Comparator<T> forward) {
return Ordering.from(forward).reverse();
}
@Override
public E first() {
return forward.last();
}
@Override
public E last() {
return forward.first();
}
@Override
public Iterator<E> iterator() {
return forward.descendingIterator();
}
@Override
public Object[] toArray() {
return standardToArray();
}
@Override
public <T> T[] toArray(T[] array) {
return standardToArray(array);
}
@Override
public String toString() {
return standardToString();
}
}
/**
* Returns a view of the portion of {@code set} whose elements are contained by {@code range}.
*
* <p>This method delegates to the appropriate methods of {@link NavigableSet} (namely {@link
* NavigableSet#subSet(Object, boolean, Object, boolean) subSet()}, {@link
* NavigableSet#tailSet(Object, boolean) tailSet()}, and {@link NavigableSet#headSet(Object,
* boolean) headSet()}) to actually construct the view. Consult these methods for a full
* description of the returned view's behavior.
*
* <p><b>Warning:</b> {@code Range}s always represent a range of values using the values' natural
* ordering. {@code NavigableSet} on the other hand can specify a custom ordering via a {@link
* Comparator}, which can violate the natural ordering. Using this method (or in general using
* {@code Range}) with unnaturally-ordered sets can lead to unexpected and undefined behavior.
*
* @since 20.0
*/
@Beta
@GwtIncompatible // NavigableSet
public static <K extends Comparable<? super K>> NavigableSet<K> subSet(
NavigableSet<K> set, Range<K> range) {
if (set.comparator() != null
&& set.comparator() != Ordering.natural()
&& range.hasLowerBound()
&& range.hasUpperBound()) {
checkArgument(
set.comparator().compare(range.lowerEndpoint(), range.upperEndpoint()) <= 0,
"set is using a custom comparator which is inconsistent with the natural ordering.");
}
if (range.hasLowerBound() && range.hasUpperBound()) {
return set.subSet(
range.lowerEndpoint(),
range.lowerBoundType() == BoundType.CLOSED,
range.upperEndpoint(),
range.upperBoundType() == BoundType.CLOSED);
} else if (range.hasLowerBound()) {
return set.tailSet(range.lowerEndpoint(), range.lowerBoundType() == BoundType.CLOSED);
} else if (range.hasUpperBound()) {
return set.headSet(range.upperEndpoint(), range.upperBoundType() == BoundType.CLOSED);
}
return checkNotNull(set);
}
}