| /* |
| * This file is part of the flashrom project. |
| * |
| * Copyright (C) 2000 Silicon Integrated System Corporation |
| * Copyright (C) 2004 Tyan Corp <yhlu@tyan.com> |
| * Copyright (C) 2005-2008 coresystems GmbH |
| * Copyright (C) 2008,2009 Carl-Daniel Hailfinger |
| * Copyright (C) 2016 secunet Security Networks AG |
| * (Written by Nico Huber <nico.huber@secunet.com> for secunet) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <stdbool.h> |
| #include <stdio.h> |
| #include <stdint.h> |
| #include <sys/types.h> |
| #include <string.h> |
| #include <unistd.h> |
| #include <stdlib.h> |
| #include <errno.h> |
| #include <ctype.h> |
| |
| #include "flash.h" |
| #include "flashchips.h" |
| #include "programmer.h" |
| #include "hwaccess_physmap.h" |
| #include "chipdrivers.h" |
| #include "erasure_layout.h" |
| |
| #include "action_descriptor.h" |
| #include "spi.h" |
| #include "power.h" |
| #include "big_lock.h" |
| |
| static bool use_legacy_erase_path = false; |
| |
| const char flashrom_version[] = FLASHROM_VERSION; |
| |
| #ifndef USE_BIG_LOCK |
| #define USE_BIG_LOCK 0 |
| #endif |
| |
| #define LOCK_TIMEOUT_SECS 180 |
| |
| static const struct programmer_entry *programmer = NULL; |
| |
| /* |
| * Programmers supporting multiple buses can have differing size limits on |
| * each bus. Store the limits for each bus in a common struct. |
| */ |
| struct decode_sizes max_rom_decode; |
| |
| /* If nonzero, used as the start address of bottom-aligned flash. */ |
| uintptr_t flashbase; |
| |
| /* Is writing allowed with this programmer? */ |
| bool programmer_may_write; |
| |
| #define SHUTDOWN_MAXFN 32 |
| static int shutdown_fn_count = 0; |
| /** @private */ |
| static struct shutdown_func_data { |
| int (*func) (void *data); |
| void *data; |
| } shutdown_fn[SHUTDOWN_MAXFN]; |
| /* Initialize to 0 to make sure nobody registers a shutdown function before |
| * programmer init. |
| */ |
| static bool may_register_shutdown = false; |
| |
| static struct bus_type_info { |
| enum chipbustype type; |
| const char *name; |
| } bustypes[] = { |
| { BUS_PARALLEL, "Parallel, " }, |
| { BUS_LPC, "LPC, " }, |
| { BUS_FWH, "FWH, " }, |
| { BUS_SPI, "SPI, " }, |
| { BUS_PROG, "Programmer-specific, " }, |
| }; |
| |
| /* Register a function to be executed on programmer shutdown. |
| * The advantage over atexit() is that you can supply a void pointer which will |
| * be used as parameter to the registered function upon programmer shutdown. |
| * This pointer can point to arbitrary data used by said function, e.g. undo |
| * information for GPIO settings etc. If unneeded, set data=NULL. |
| * Please note that the first (void *data) belongs to the function signature of |
| * the function passed as first parameter. |
| */ |
| int register_shutdown(int (*function) (void *data), void *data) |
| { |
| if (shutdown_fn_count >= SHUTDOWN_MAXFN) { |
| msg_perr("Tried to register more than %i shutdown functions.\n", |
| SHUTDOWN_MAXFN); |
| return 1; |
| } |
| if (!may_register_shutdown) { |
| msg_perr("Tried to register a shutdown function before " |
| "programmer init.\n"); |
| return 1; |
| } |
| shutdown_fn[shutdown_fn_count].func = function; |
| shutdown_fn[shutdown_fn_count].data = data; |
| shutdown_fn_count++; |
| |
| return 0; |
| } |
| |
| int register_chip_restore(chip_restore_fn_cb_t func, |
| struct flashctx *flash, void *data) |
| { |
| if (flash->chip_restore_fn_count >= MAX_CHIP_RESTORE_FUNCTIONS) { |
| msg_perr("Tried to register more than %i chip restore" |
| " functions.\n", MAX_CHIP_RESTORE_FUNCTIONS); |
| return 1; |
| } |
| flash->chip_restore_fn[flash->chip_restore_fn_count].func = func; |
| flash->chip_restore_fn[flash->chip_restore_fn_count].data = data; |
| flash->chip_restore_fn_count++; |
| |
| return 0; |
| } |
| |
| static int deregister_chip_restore(struct flashctx *flash) |
| { |
| int rc = 0; |
| |
| while (flash->chip_restore_fn_count > 0) { |
| int i = --flash->chip_restore_fn_count; |
| rc |= flash->chip_restore_fn[i].func( |
| flash, flash->chip_restore_fn[i].data); |
| } |
| |
| return rc; |
| } |
| |
| int programmer_init(const struct programmer_entry *prog, const char *param) |
| { |
| int ret; |
| #if CONFIG_DUMMY == 1 |
| const struct programmer_entry *dummy_programmer = &programmer_dummy; |
| #else |
| const struct programmer_entry *dummy_programmer = NULL; |
| #endif |
| |
| if (prog == NULL) { |
| msg_perr("Invalid programmer specified!\n"); |
| return -1; |
| } |
| |
| /* Only acquire the big lock for non-dummy programmer. */ |
| if (USE_BIG_LOCK && prog != dummy_programmer) { |
| /* Get big lock before doing any work that touches hardware. */ |
| if (acquire_big_lock(LOCK_TIMEOUT_SECS) < 0) |
| return 1; |
| } |
| |
| programmer = prog; |
| /* Initialize all programmer specific data. */ |
| /* Default to unlimited decode sizes. */ |
| max_rom_decode = (const struct decode_sizes) { |
| .parallel = 0xffffffff, |
| .lpc = 0xffffffff, |
| .fwh = 0xffffffff, |
| .spi = 0xffffffff, |
| }; |
| /* Default to top aligned flash at 4 GB. */ |
| flashbase = 0; |
| /* Registering shutdown functions is now allowed. */ |
| may_register_shutdown = true; |
| /* Default to allowing writes. Broken programmers set this to 0. */ |
| programmer_may_write = true; |
| |
| struct programmer_cfg cfg; |
| |
| if (param) { |
| cfg.params = strdup(param); |
| if (!cfg.params) { |
| msg_perr("Out of memory!\n"); |
| return ERROR_FLASHROM_FATAL; |
| } |
| } else { |
| cfg.params = NULL; |
| } |
| |
| msg_pdbg("Initializing %s programmer\n", prog->name); |
| ret = prog->init(&cfg); |
| if (cfg.params && strlen(cfg.params)) { |
| if (ret != 0) { |
| /* It is quite possible that any unhandled programmer parameter would have been valid, |
| * but an error in actual programmer init happened before the parameter was evaluated. |
| */ |
| msg_pwarn("Unhandled programmer parameters (possibly due to another failure): %s\n", |
| cfg.params); |
| } else { |
| /* Actual programmer init was successful, but the user specified an invalid or unusable |
| * (for the current programmer configuration) parameter. |
| */ |
| msg_perr("Unhandled programmer parameters: %s\n", cfg.params); |
| msg_perr("Aborting.\n"); |
| ret = ERROR_FLASHROM_FATAL; |
| } |
| } |
| free(cfg.params); |
| |
| /* Release lock if initialization is not succseeful. */ |
| if (USE_BIG_LOCK && ret != 0) |
| release_big_lock(); |
| |
| return ret; |
| } |
| |
| /** Calls registered shutdown functions and resets internal programmer-related variables. |
| * Calling it is safe even without previous initialization, but further interactions with programmer support |
| * require a call to programmer_init() (afterwards). |
| * |
| * @return The OR-ed result values of all shutdown functions (i.e. 0 on success). */ |
| int programmer_shutdown(void) |
| { |
| int ret = 0; |
| |
| /* Registering shutdown functions is no longer allowed. */ |
| may_register_shutdown = false; |
| while (shutdown_fn_count > 0) { |
| int i = --shutdown_fn_count; |
| ret |= shutdown_fn[i].func(shutdown_fn[i].data); |
| } |
| registered_master_count = 0; |
| |
| if (USE_BIG_LOCK) |
| release_big_lock(); |
| |
| return ret; |
| } |
| |
| void *master_map_flash_region(const struct registered_master *mst, |
| const char *descr, uintptr_t phys_addr, |
| size_t len) |
| { |
| /* Check the bus master for a specialized map_flash_region; default to |
| * fallback if it does not specialize it |
| */ |
| void *(*map_flash_region) (const char *descr, uintptr_t phys_addr, size_t len) = NULL; |
| if (mst->buses_supported & BUS_SPI) |
| map_flash_region = mst->spi.map_flash_region; |
| else if (mst->buses_supported & BUS_NONSPI) |
| map_flash_region = mst->par.map_flash_region; |
| |
| /* A result of NULL causes mapped addresses to be chip physical |
| * addresses, assuming only a single region is mapped (the entire flash |
| * space). Chips with a second region (like a register map) require a |
| * real memory mapping to distinguish the different ranges. Those chips |
| * are FWH/LPC, so the bus master provides a real mapping. |
| */ |
| void *ret = NULL; |
| if (map_flash_region) |
| ret = map_flash_region(descr, phys_addr, len); |
| msg_gspew("%s: mapping %s from 0x%0*" PRIxPTR " to 0x%0*" PRIxPTR "\n", |
| __func__, descr, PRIxPTR_WIDTH, phys_addr, PRIxPTR_WIDTH, (uintptr_t) ret); |
| return ret; |
| } |
| |
| void master_unmap_flash_region(const struct registered_master *mst, |
| void *virt_addr, size_t len) |
| { |
| void (*unmap_flash_region) (void *virt_addr, size_t len) = NULL; |
| if (mst->buses_supported & BUS_SPI) |
| unmap_flash_region = mst->spi.unmap_flash_region; |
| else if (mst->buses_supported & BUS_NONSPI) |
| unmap_flash_region = mst->par.unmap_flash_region; |
| |
| if (unmap_flash_region) |
| unmap_flash_region(virt_addr, len); |
| msg_gspew("%s: unmapped 0x%0*" PRIxPTR "\n", __func__, PRIxPTR_WIDTH, (uintptr_t)virt_addr); |
| } |
| |
| static bool master_uses_physmap(const struct registered_master *mst) |
| { |
| #if CONFIG_INTERNAL == 1 |
| if (mst->buses_supported & BUS_SPI) |
| return mst->spi.map_flash_region == physmap; |
| else if (mst->buses_supported & BUS_NONSPI) |
| return mst->par.map_flash_region == physmap; |
| #endif |
| return false; |
| } |
| |
| void programmer_delay(const struct flashctx *flash, unsigned int usecs) |
| { |
| if (usecs == 0) |
| return; |
| |
| /** |
| * Drivers should either use default_delay() directly or their |
| * own custom delay. Only core flashrom logic calls programmer_delay() |
| * which should always have a valid flash context. A NULL context |
| * more than likely indicates a layering violation or BUG however |
| * for now dispatch a default_delay() as a safe default for the NULL |
| * base case. |
| */ |
| if (!flash) { |
| msg_perr("%s called with NULL flash context. " |
| "Please report a bug at flashrom@flashrom.org\n", |
| __func__); |
| return default_delay(usecs); |
| } |
| |
| if (flash->mst->buses_supported & BUS_SPI) { |
| if (flash->mst->spi.delay) |
| return flash->mst->spi.delay(flash, usecs); |
| } else if (flash->mst->buses_supported & BUS_PARALLEL) { |
| if (flash->mst->par.delay) |
| return flash->mst->par.delay(flash, usecs); |
| } else if (flash->mst->buses_supported & BUS_PROG) { |
| if (flash->mst->opaque.delay) |
| return flash->mst->opaque.delay(flash, usecs); |
| } |
| |
| return default_delay(usecs); |
| } |
| |
| int read_memmapped(struct flashctx *flash, uint8_t *buf, unsigned int start, |
| int unsigned len) |
| { |
| chip_readn(flash, buf, flash->virtual_memory + start, len); |
| |
| return 0; |
| } |
| |
| /* This is a somewhat hacked function similar in some ways to strtok(). |
| * It will look for needle with a subsequent '=' in haystack, return a copy of |
| * needle and remove everything from the first occurrence of needle to the next |
| * delimiter from haystack. |
| */ |
| static char *extract_param(char *const *haystack, const char *needle, const char *delim) |
| { |
| char *param_pos, *opt_pos, *rest; |
| char *opt = NULL; |
| int optlen; |
| int needlelen; |
| |
| needlelen = strlen(needle); |
| if (!needlelen) { |
| msg_gerr("%s: empty needle! Please report a bug at " |
| "flashrom@flashrom.org\n", __func__); |
| return NULL; |
| } |
| /* No programmer parameters given. */ |
| if (*haystack == NULL) |
| return NULL; |
| param_pos = strstr(*haystack, needle); |
| do { |
| if (!param_pos) |
| return NULL; |
| /* Needle followed by '='? */ |
| if (param_pos[needlelen] == '=') { |
| /* Beginning of the string? */ |
| if (param_pos == *haystack) |
| break; |
| /* After a delimiter? */ |
| if (strchr(delim, *(param_pos - 1))) |
| break; |
| } |
| /* Continue searching. */ |
| param_pos++; |
| param_pos = strstr(param_pos, needle); |
| } while (1); |
| |
| if (param_pos) { |
| /* Get the string after needle and '='. */ |
| opt_pos = param_pos + needlelen + 1; |
| optlen = strcspn(opt_pos, delim); |
| /* Return an empty string if the parameter was empty. */ |
| opt = malloc(optlen + 1); |
| if (!opt) { |
| msg_gerr("Out of memory!\n"); |
| return NULL; |
| } |
| strncpy(opt, opt_pos, optlen); |
| opt[optlen] = '\0'; |
| rest = opt_pos + optlen; |
| /* Skip all delimiters after the current parameter. */ |
| rest += strspn(rest, delim); |
| memmove(param_pos, rest, strlen(rest) + 1); |
| /* We could shrink haystack, but the effort is not worth it. */ |
| } |
| |
| return opt; |
| } |
| |
| char *extract_programmer_param_str(const struct programmer_cfg *cfg, const char *param_name) |
| { |
| return extract_param(&cfg->params, param_name, ","); |
| } |
| |
| void get_flash_region(const struct flashctx *flash, int addr, struct flash_region *region) |
| { |
| if ((flash->mst->buses_supported & BUS_PROG) && flash->mst->opaque.get_region) { |
| flash->mst->opaque.get_region(flash, addr, region); |
| } else if (flash->mst->buses_supported & BUS_SPI && flash->mst->spi.get_region) { |
| flash->mst->spi.get_region(flash, addr, region); |
| } else { |
| region->name = strdup(""); |
| region->start = 0; |
| region->end = flashrom_flash_getsize(flash); |
| region->read_prot = false; |
| region->write_prot = false; |
| } |
| } |
| |
| int check_for_unwritable_regions(const struct flashctx *flash, unsigned int start, unsigned int len) |
| { |
| struct flash_region region; |
| for (unsigned int addr = start; addr < start + len; addr = region.end) { |
| get_flash_region(flash, addr, ®ion); |
| |
| if (region.write_prot) { |
| msg_gerr("%s: cannot write/erase inside %s region (%#08"PRIx32"..%#08"PRIx32").\n", |
| __func__, region.name, region.start, region.end - 1); |
| free(region.name); |
| return -1; |
| } |
| free(region.name); |
| } |
| return 0; |
| } |
| |
| /* special unit-test hook */ |
| erasefunc_t *g_test_erase_injector; |
| |
| erasefunc_t *lookup_erase_func_ptr(const struct block_eraser *const eraser) |
| { |
| switch (eraser->block_erase) { |
| case SPI_BLOCK_ERASE_EMULATION: return &spi_block_erase_emulation; |
| case SPI_BLOCK_ERASE_20: return &spi_block_erase_20; |
| case SPI_BLOCK_ERASE_21: return &spi_block_erase_21; |
| case SPI_BLOCK_ERASE_40: return NULL; // FIXME unhandled &spi_block_erase_40; |
| case SPI_BLOCK_ERASE_50: return &spi_block_erase_50; |
| case SPI_BLOCK_ERASE_52: return &spi_block_erase_52; |
| case SPI_BLOCK_ERASE_53: return &spi_block_erase_53; |
| case SPI_BLOCK_ERASE_5C: return &spi_block_erase_5c; |
| case SPI_BLOCK_ERASE_60: return &spi_block_erase_60; |
| case SPI_BLOCK_ERASE_62: return &spi_block_erase_62; |
| case SPI_BLOCK_ERASE_81: return &spi_block_erase_81; |
| case SPI_BLOCK_ERASE_C4: return &spi_block_erase_c4; |
| case SPI_BLOCK_ERASE_C7: return &spi_block_erase_c7; |
| case SPI_BLOCK_ERASE_D7: return &spi_block_erase_d7; |
| case SPI_BLOCK_ERASE_D8: return &spi_block_erase_d8; |
| case SPI_BLOCK_ERASE_DB: return &spi_block_erase_db; |
| case SPI_BLOCK_ERASE_DC: return &spi_block_erase_dc; |
| case S25FL_BLOCK_ERASE: return &s25fl_block_erase; |
| case S25FS_BLOCK_ERASE_D8: return &s25fs_block_erase_d8; |
| case JEDEC_SECTOR_ERASE: return &erase_sector_jedec; // TODO rename to &jedec_sector_erase; |
| case JEDEC_BLOCK_ERASE: return &erase_block_jedec; // TODO rename to &jedec_block_erase; |
| case JEDEC_CHIP_BLOCK_ERASE: return &erase_chip_block_jedec; // TODO rename to &jedec_chip_block_erase; |
| case OPAQUE_ERASE: return &erase_opaque; // TODO rename to &opqaue_erase; |
| case SPI_ERASE_AT45CS_SECTOR: return &spi_erase_at45cs_sector; |
| case SPI_ERASE_AT45DB_BLOCK: return &spi_erase_at45db_block; |
| case SPI_ERASE_AT45DB_CHIP: return &spi_erase_at45db_chip; |
| case SPI_ERASE_AT45DB_PAGE: return &spi_erase_at45db_page; |
| case SPI_ERASE_AT45DB_SECTOR: return &spi_erase_at45db_sector; |
| case ERASE_CHIP_28SF040: return &erase_chip_28sf040; |
| case ERASE_SECTOR_28SF040: return &erase_sector_28sf040; |
| case ERASE_BLOCK_82802AB: return &erase_block_82802ab; |
| case ERASE_SECTOR_49LFXXXC: return &erase_sector_49lfxxxc; |
| case STM50_SECTOR_ERASE: return &erase_sector_stm50; // TODO rename to &stm50_sector_erase; |
| case EDI_CHIP_BLOCK_ERASE: return &edi_chip_block_erase; |
| case CROS_EC_BLOCK_ERASE: return &cros_ec_block_erase; |
| case TEST_ERASE_INJECTOR: return g_test_erase_injector; |
| /* default: total function, 0 indicates no erase function set. |
| * We explicitly do not want a default catch-all case in the switch |
| * to ensure unhandled enum's are compiler warnings. |
| */ |
| case NO_BLOCK_ERASE_FUNC: return NULL; |
| }; |
| |
| return NULL; |
| } |
| |
| int check_block_eraser(const struct flashctx *flash, int k, int log) |
| { |
| struct block_eraser eraser = flash->chip->block_erasers[k]; |
| |
| if (eraser.block_erase == NO_BLOCK_ERASE_FUNC && !eraser.eraseblocks[0].count) { |
| if (log) |
| msg_cdbg("not defined. "); |
| return 1; |
| } |
| if (eraser.block_erase == NO_BLOCK_ERASE_FUNC && eraser.eraseblocks[0].count) { |
| if (log) |
| msg_cdbg("eraseblock layout is known, but matching " |
| "block erase function is not implemented. "); |
| return 1; |
| } |
| if (eraser.block_erase != NO_BLOCK_ERASE_FUNC && !eraser.eraseblocks[0].count) { |
| if (log) |
| msg_cdbg("block erase function found, but " |
| "eraseblock layout is not defined. "); |
| return 1; |
| } |
| |
| if (flash->mst->buses_supported & BUS_SPI) { |
| const uint8_t *opcode = spi_get_opcode_from_erasefn(eraser.block_erase); |
| for (int i = 0; opcode[i]; i++) { |
| if (!spi_probe_opcode(flash, opcode[i])) { |
| if (log) |
| msg_cdbg("block erase function and layout found " |
| "but SPI master doesn't support the function. "); |
| return 1; |
| } |
| } |
| } |
| // TODO: Once erase functions are annotated with allowed buses, check that as well. |
| return 0; |
| } |
| |
| /* Returns the number of well-defined erasers for a chip. */ |
| unsigned int count_usable_erasers(const struct flashctx *flash) |
| { |
| unsigned int usable_erasefunctions = 0; |
| int k; |
| for (k = 0; k < NUM_ERASEFUNCTIONS; k++) { |
| if (!check_block_eraser(flash, k, 0)) |
| usable_erasefunctions++; |
| } |
| return usable_erasefunctions; |
| } |
| |
| static int compare_range(const uint8_t *wantbuf, const uint8_t *havebuf, unsigned int start, unsigned int len) |
| { |
| int ret = 0, failcount = 0; |
| unsigned int i; |
| for (i = 0; i < len; i++) { |
| if (wantbuf[i] != havebuf[i]) { |
| /* Only print the first failure. */ |
| if (!failcount++) |
| msg_cerr("FAILED at 0x%08x! Expected=0x%02x, Found=0x%02x,", |
| start + i, wantbuf[i], havebuf[i]); |
| } |
| } |
| if (failcount) { |
| msg_cerr(" failed byte count from 0x%08x-0x%08x: 0x%x\n", |
| start, start + len - 1, failcount); |
| ret = -1; |
| } |
| return ret; |
| } |
| |
| /* start is an offset to the base address of the flash chip */ |
| int check_erased_range(struct flashctx *flash, unsigned int start, unsigned int len) |
| { |
| int ret; |
| const uint8_t erased_value = ERASED_VALUE(flash); |
| |
| uint8_t *cmpbuf = malloc(len); |
| if (!cmpbuf) { |
| msg_gerr("Out of memory!\n"); |
| return -1; |
| } |
| memset(cmpbuf, erased_value, len); |
| ret = verify_range(flash, cmpbuf, start, len); |
| |
| free(cmpbuf); |
| return ret; |
| } |
| |
| /* special unit-test hook */ |
| read_func_t *g_test_read_injector; |
| |
| static read_func_t *lookup_read_func_ptr(const struct flashchip *chip) |
| { |
| switch (chip->read) { |
| case SPI_CHIP_READ: return &spi_chip_read; |
| case READ_OPAQUE: return &read_opaque; |
| case READ_MEMMAPPED: return &read_memmapped; |
| case EDI_CHIP_READ: return &edi_chip_read; |
| case SPI_READ_AT45DB: return spi_read_at45db; |
| case SPI_READ_AT45DB_E8: return spi_read_at45db_e8; |
| case TEST_READ_INJECTOR: return g_test_read_injector; |
| /* default: total function, 0 indicates no read function set. |
| * We explicitly do not want a default catch-all case in the switch |
| * to ensure unhandled enum's are compiler warnings. |
| */ |
| case NO_READ_FUNC: return NULL; |
| }; |
| |
| return NULL; |
| } |
| |
| /* |
| * @brief Wrapper for flash->read() with additional high-level policy. |
| * |
| * @param flash flash chip |
| * @param buf buffer to store data in |
| * @param start start address |
| * @param len number of bytes to read |
| * @return 0 on success, |
| * -1 if any read fails. |
| * |
| * This wrapper simplifies most cases when the flash chip needs to be read |
| * since policy decisions such as non-fatal error handling is centralized. |
| */ |
| int read_flash(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len) |
| { |
| unsigned int read_len; |
| for (unsigned int addr = start; addr < start + len; addr += read_len) { |
| struct flash_region region; |
| get_flash_region(flash, addr, ®ion); |
| |
| read_len = min(start + len, region.end) - addr; |
| uint8_t *rbuf = buf + addr - start; |
| |
| if (region.read_prot) { |
| if (flash->flags.skip_unreadable_regions) { |
| msg_gdbg("%s: cannot read inside %s region (%#08"PRIx32"..%#08"PRIx32"), " |
| "filling (%#08x..%#08x) with erased value instead.\n", |
| __func__, region.name, region.start, region.end - 1, |
| addr, addr + read_len - 1); |
| free(region.name); |
| |
| memset(rbuf, ERASED_VALUE(flash), read_len); |
| continue; |
| } |
| |
| msg_gerr("%s: cannot read inside %s region (%#08"PRIx32"..%#08"PRIx32").\n", |
| __func__, region.name, region.start, region.end - 1); |
| free(region.name); |
| return -1; |
| } |
| msg_gdbg("%s: %s region (%#08"PRIx32"..%#08"PRIx32") is readable, reading range (%#08x..%#08x).\n", |
| __func__, region.name, region.start, region.end - 1, addr, addr + read_len - 1); |
| free(region.name); |
| |
| read_func_t *read_func = lookup_read_func_ptr(flash->chip); |
| int ret = read_func(flash, rbuf, addr, read_len); |
| if (ret) { |
| msg_gerr("%s: failed to read (%#08x..%#08x).\n", __func__, addr, addr + read_len - 1); |
| return -1; |
| } |
| |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * @cmpbuf buffer to compare against, cmpbuf[0] is expected to match the |
| * flash content at location start |
| * @start offset to the base address of the flash chip |
| * @len length of the verified area |
| * @return 0 for success, -1 for failure |
| */ |
| int verify_range(struct flashctx *flash, const uint8_t *cmpbuf, unsigned int start, unsigned int len) |
| { |
| if (!len) |
| return -1; |
| |
| if (start + len > flash->chip->total_size * 1024) { |
| msg_gerr("Error: %s called with start 0x%x + len 0x%x >" |
| " total_size 0x%x\n", __func__, start, len, |
| flash->chip->total_size * 1024); |
| return -1; |
| } |
| |
| uint8_t *readbuf = malloc(len); |
| if (!readbuf) { |
| msg_gerr("Out of memory!\n"); |
| return -1; |
| } |
| |
| int ret = 0; |
| |
| msg_gdbg("%#06x..%#06x ", start, start + len - 1); |
| |
| unsigned int read_len; |
| for (size_t addr = start; addr < start + len; addr += read_len) { |
| struct flash_region region; |
| get_flash_region(flash, addr, ®ion); |
| read_len = min(start + len, region.end) - addr; |
| |
| if ((region.write_prot && flash->flags.skip_unwritable_regions) || |
| (region.read_prot && flash->flags.skip_unreadable_regions)) { |
| msg_gdbg("%s: Skipping verification of %s region (%#08"PRIx32"..%#08"PRIx32")\n", |
| __func__, region.name, region.start, region.end - 1); |
| free(region.name); |
| continue; |
| } |
| |
| if (region.read_prot) { |
| msg_gerr("%s: Verification imposible because %s region (%#08"PRIx32"..%#08"PRIx32") is unreadable.\n", |
| __func__, region.name, region.start, region.end - 1); |
| free(region.name); |
| goto out_free; |
| } |
| |
| msg_gdbg("%s: Verifying %s region (%#08"PRIx32"..%#08"PRIx32")\n", |
| __func__, region.name, region.start, region.end - 1); |
| free(region.name); |
| |
| ret = read_flash(flash, readbuf, addr, read_len); |
| if (ret) { |
| msg_gerr("Verification impossible because read failed " |
| "at 0x%x (len 0x%x)\n", start, len); |
| ret = -1; |
| goto out_free; |
| } |
| |
| ret = compare_range(cmpbuf + (addr - start), readbuf, addr, read_len); |
| if (ret) |
| goto out_free; |
| |
| } |
| |
| out_free: |
| free(readbuf); |
| return ret; |
| } |
| |
| /* Helper function for need_erase() that focuses on granularities of gran bytes. */ |
| static int need_erase_gran_bytes(const uint8_t *have, const uint8_t *want, unsigned int len, |
| unsigned int gran, const uint8_t erased_value) |
| { |
| unsigned int i, j, limit; |
| for (j = 0; j < len / gran; j++) { |
| limit = min (gran, len - j * gran); |
| /* Are 'have' and 'want' identical? */ |
| if (!memcmp(have + j * gran, want + j * gran, limit)) |
| continue; |
| /* have needs to be in erased state. */ |
| for (i = 0; i < limit; i++) |
| if (have[j * gran + i] != erased_value) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Check if the buffer @have can be programmed to the content of @want without |
| * erasing. This is only possible if all chunks of size @gran are either kept |
| * as-is or changed from an all-ones state to any other state. |
| * |
| * Warning: This function assumes that @have and @want point to naturally |
| * aligned regions. |
| * |
| * @have buffer with current content |
| * @want buffer with desired content |
| * @len length of the checked area |
| * @gran write granularity (enum, not count) |
| * @return 0 if no erase is needed, 1 otherwise |
| */ |
| int need_erase(const uint8_t *have, const uint8_t *want, unsigned int len, |
| enum write_granularity gran, const uint8_t erased_value) |
| { |
| int result = 0; |
| unsigned int i; |
| |
| switch (gran) { |
| case WRITE_GRAN_1BIT: |
| for (i = 0; i < len; i++) |
| if ((have[i] & want[i]) != want[i]) { |
| result = 1; |
| break; |
| } |
| break; |
| case WRITE_GRAN_1BYTE: |
| for (i = 0; i < len; i++) |
| if ((have[i] != want[i]) && (have[i] != erased_value)) { |
| result = 1; |
| break; |
| } |
| break; |
| case WRITE_GRAN_128BYTES: |
| result = need_erase_gran_bytes(have, want, len, 128, erased_value); |
| break; |
| case WRITE_GRAN_256BYTES: |
| result = need_erase_gran_bytes(have, want, len, 256, erased_value); |
| break; |
| case WRITE_GRAN_264BYTES: |
| result = need_erase_gran_bytes(have, want, len, 264, erased_value); |
| break; |
| case WRITE_GRAN_512BYTES: |
| result = need_erase_gran_bytes(have, want, len, 512, erased_value); |
| break; |
| case WRITE_GRAN_528BYTES: |
| result = need_erase_gran_bytes(have, want, len, 528, erased_value); |
| break; |
| case WRITE_GRAN_1024BYTES: |
| result = need_erase_gran_bytes(have, want, len, 1024, erased_value); |
| break; |
| case WRITE_GRAN_1056BYTES: |
| result = need_erase_gran_bytes(have, want, len, 1056, erased_value); |
| break; |
| case WRITE_GRAN_1BYTE_IMPLICIT_ERASE: |
| /* Do not erase, handle content changes from anything->0xff by writing 0xff. */ |
| result = 0; |
| break; |
| default: |
| msg_cerr("%s: Unsupported granularity! Please report a bug at " |
| "flashrom@flashrom.org\n", __func__); |
| } |
| return result; |
| } |
| |
| /** |
| * Check if the buffer @have needs to be programmed to get the content of @want. |
| * If yes, return 1 and fill in first_start with the start address of the |
| * write operation and first_len with the length of the first to-be-written |
| * chunk. If not, return 0 and leave first_start and first_len undefined. |
| * |
| * Warning: This function assumes that @have and @want point to naturally |
| * aligned regions. |
| * |
| * @have buffer with current content |
| * @want buffer with desired content |
| * @len length of the checked area |
| * @gran write granularity (enum, not count) |
| * @first_start offset of the first byte which needs to be written (passed in |
| * value is increased by the offset of the first needed write |
| * relative to have/want or unchanged if no write is needed) |
| * @return length of the first contiguous area which needs to be written |
| * 0 if no write is needed |
| * |
| * FIXME: This function needs a parameter which tells it about coalescing |
| * in relation to the max write length of the programmer and the max write |
| * length of the chip. |
| */ |
| unsigned int get_next_write(const uint8_t *have, const uint8_t *want, unsigned int len, |
| unsigned int *first_start, |
| enum write_granularity gran) |
| { |
| bool need_write = false; |
| unsigned int rel_start = 0, first_len = 0; |
| unsigned int i, limit, stride; |
| |
| switch (gran) { |
| case WRITE_GRAN_1BIT: |
| case WRITE_GRAN_1BYTE: |
| case WRITE_GRAN_1BYTE_IMPLICIT_ERASE: |
| stride = 1; |
| break; |
| case WRITE_GRAN_128BYTES: |
| stride = 128; |
| break; |
| case WRITE_GRAN_256BYTES: |
| stride = 256; |
| break; |
| case WRITE_GRAN_264BYTES: |
| stride = 264; |
| break; |
| case WRITE_GRAN_512BYTES: |
| stride = 512; |
| break; |
| case WRITE_GRAN_528BYTES: |
| stride = 528; |
| break; |
| case WRITE_GRAN_1024BYTES: |
| stride = 1024; |
| break; |
| case WRITE_GRAN_1056BYTES: |
| stride = 1056; |
| break; |
| default: |
| msg_cerr("%s: Unsupported granularity! Please report a bug at " |
| "flashrom@flashrom.org\n", __func__); |
| /* Claim that no write was needed. A write with unknown |
| * granularity is too dangerous to try. |
| */ |
| return 0; |
| } |
| for (i = 0; i < len / stride; i++) { |
| limit = min(stride, len - i * stride); |
| /* Are 'have' and 'want' identical? */ |
| if (memcmp(have + i * stride, want + i * stride, limit)) { |
| if (!need_write) { |
| /* First location where have and want differ. */ |
| need_write = true; |
| rel_start = i * stride; |
| } |
| } else { |
| if (need_write) { |
| /* First location where have and want |
| * do not differ anymore. |
| */ |
| break; |
| } |
| } |
| } |
| if (need_write) |
| first_len = min(i * stride - rel_start, len); |
| *first_start += rel_start; |
| return first_len; |
| } |
| |
| void unmap_flash(struct flashctx *flash) |
| { |
| if (flash->virtual_registers != (chipaddr)ERROR_PTR) { |
| master_unmap_flash_region(flash->mst, (void *)flash->virtual_registers, flash->chip->total_size * 1024); |
| flash->physical_registers = 0; |
| flash->virtual_registers = (chipaddr)ERROR_PTR; |
| } |
| |
| if (flash->virtual_memory != (chipaddr)ERROR_PTR) { |
| master_unmap_flash_region(flash->mst, (void *)flash->virtual_memory, flash->chip->total_size * 1024); |
| flash->physical_memory = 0; |
| flash->virtual_memory = (chipaddr)ERROR_PTR; |
| } |
| } |
| |
| int map_flash(struct flashctx *flash) |
| { |
| /* Init pointers to the fail-safe state to distinguish them later from legit values. */ |
| flash->virtual_memory = (chipaddr)ERROR_PTR; |
| flash->virtual_registers = (chipaddr)ERROR_PTR; |
| |
| /* FIXME: This avoids mapping (and unmapping) of flash chip definitions with size 0. |
| * These are used for various probing-related hacks that would not map successfully anyway and should be |
| * removed ASAP. */ |
| if (flash->chip->total_size == 0) |
| return 0; |
| |
| const chipsize_t size = flash->chip->total_size * 1024; |
| uintptr_t base = flashbase ? flashbase : (0xffffffff - size + 1); |
| void *addr = master_map_flash_region(flash->mst, flash->chip->name, base, size); |
| if (addr == ERROR_PTR) { |
| msg_perr("Could not map flash chip %s at 0x%0*" PRIxPTR ".\n", |
| flash->chip->name, PRIxPTR_WIDTH, base); |
| return 1; |
| } |
| flash->physical_memory = base; |
| flash->virtual_memory = (chipaddr)addr; |
| |
| /* FIXME: Special function registers normally live 4 MByte below flash space, but it might be somewhere |
| * completely different on some chips and programmers, or not mappable at all. |
| * Ignore these problems for now and always report success. */ |
| if (flash->chip->feature_bits & FEATURE_REGISTERMAP) { |
| base = 0xffffffff - size - 0x400000 + 1; |
| addr = master_map_flash_region(flash->mst, "flash chip registers", base, size); |
| if (addr == ERROR_PTR) { |
| msg_pdbg2("Could not map flash chip registers %s at 0x%0*" PRIxPTR ".\n", |
| flash->chip->name, PRIxPTR_WIDTH, base); |
| return 0; |
| } |
| flash->physical_registers = base; |
| flash->virtual_registers = (chipaddr)addr; |
| } |
| return 0; |
| } |
| |
| /* |
| * Return a string corresponding to the bustype parameter. |
| * Memory to store the string is allocated. The caller is responsible to free memory. |
| * If there is not enough memory remaining, then NULL is returned. |
| */ |
| char *flashbuses_to_text(enum chipbustype bustype) |
| { |
| char *ret, *ptr; |
| |
| /* |
| * FIXME: Once all chipsets and flash chips have been updated, NONSPI |
| * will cease to exist and should be eliminated here as well. |
| */ |
| if (bustype == BUS_NONSPI) |
| return strdup("Non-SPI"); |
| if (bustype == BUS_NONE) |
| return strdup("None"); |
| |
| ret = calloc(1, 1); |
| if (!ret) |
| return NULL; |
| |
| for (unsigned int i = 0; i < ARRAY_SIZE(bustypes); i++) |
| { |
| if (bustype & bustypes[i].type) { |
| ptr = strcat_realloc(ret, bustypes[i].name); |
| if (!ptr) { |
| free(ret); |
| return NULL; |
| } |
| ret = ptr; |
| } |
| } |
| |
| /* Kill last comma. */ |
| ret[strlen(ret) - 2] = '\0'; |
| ptr = realloc(ret, strlen(ret) + 1); |
| if (!ptr) |
| free(ret); |
| return ptr; |
| } |
| |
| static int init_default_layout(struct flashctx *flash) |
| { |
| /* Fill default layout covering the whole chip. */ |
| if (flashrom_layout_new(&flash->default_layout) || |
| flashrom_layout_add_region(flash->default_layout, |
| 0, flash->chip->total_size * 1024 - 1, "complete flash") || |
| flashrom_layout_include_region(flash->default_layout, "complete flash")) |
| return -1; |
| return 0; |
| } |
| |
| /* special unit-test hook */ |
| write_func_t *g_test_write_injector; |
| |
| static write_func_t *lookup_write_func_ptr(const struct flashchip *chip) |
| { |
| switch (chip->write) { |
| case WRITE_JEDEC: return &write_jedec; |
| case WRITE_JEDEC1: return &write_jedec_1; |
| case WRITE_OPAQUE: return &write_opaque; |
| case SPI_CHIP_WRITE1: return &spi_chip_write_1; |
| case SPI_CHIP_WRITE256: return &spi_chip_write_256; |
| case SPI_WRITE_AAI: return &spi_aai_write; |
| case SPI_WRITE_AT45DB: return &spi_write_at45db; |
| case WRITE_28SF040: return &write_28sf040; |
| case WRITE_82802AB: return &write_82802ab; |
| case WRITE_EN29LV640B: return &write_en29lv640b; |
| case EDI_CHIP_WRITE: return &edi_chip_write; |
| case TEST_WRITE_INJECTOR: return g_test_write_injector; |
| /* default: total function, 0 indicates no write function set. |
| * We explicitly do not want a default catch-all case in the switch |
| * to ensure unhandled enum's are compiler warnings. |
| */ |
| case NO_WRITE_FUNC: return NULL; |
| }; |
| |
| return NULL; |
| } |
| |
| /* |
| * write_flash - wrapper for flash->write() with additional high-level policy |
| * |
| * @param flash flash chip |
| * @param buf buffer to write to flash |
| * @param start start address in flash |
| * @param len number of bytes to write |
| * @return 0 on success, |
| * -1 if any write fails. |
| * |
| * This wrapper simplifies most cases when the flash chip needs to be written |
| * since policy decisions such as non-fatal error handling is centralized. |
| */ |
| int write_flash(struct flashctx *flash, const uint8_t *buf, |
| unsigned int start, unsigned int len) |
| { |
| if (!flash->flags.skip_unwritable_regions) { |
| if (check_for_unwritable_regions(flash, start, len)) |
| return -1; |
| } |
| |
| unsigned int write_len; |
| for (unsigned int addr = start; addr < start + len; addr += write_len) { |
| struct flash_region region; |
| get_flash_region(flash, addr, ®ion); |
| |
| write_len = min(start + len, region.end) - addr; |
| const uint8_t *rbuf = buf + addr - start; |
| |
| if (region.write_prot) { |
| msg_gdbg("%s: cannot write inside %s region (%#08"PRIx32"..%#08"PRIx32"), skipping (%#08x..%#08x).\n", |
| __func__, region.name, region.start, region.end - 1, addr, addr + write_len - 1); |
| free(region.name); |
| continue; |
| } |
| |
| msg_gdbg("%s: %s region (%#08"PRIx32"..%#08"PRIx32") is writable, writing range (%#08x..%#08x).\n", |
| __func__, region.name, region.start, region.end - 1, addr, addr + write_len - 1); |
| |
| write_func_t *write_func = lookup_write_func_ptr(flash->chip); |
| int ret = write_func(flash, rbuf, addr, write_len); |
| if (ret) { |
| msg_gerr("%s: failed to write (%#08x..%#08x).\n", __func__, addr, addr + write_len - 1); |
| free(region.name); |
| return -1; |
| } |
| |
| free(region.name); |
| } |
| |
| return 0; |
| } |
| |
| typedef int (probe_func_t)(struct flashctx *flash); |
| |
| static probe_func_t *lookup_probe_func_ptr(const struct flashchip *chip) |
| { |
| switch (chip->probe) { |
| case PROBE_JEDEC: return &probe_jedec; |
| case PROBE_JEDEC_29GL: return &probe_jedec_29gl; |
| case PROBE_OPAQUE: return &probe_opaque; |
| case PROBE_EDI_KB9012: return &edi_probe_kb9012; |
| case PROBE_AT82802AB: return &probe_82802ab; |
| case PROBE_W29EE011: return &probe_w29ee011; |
| case PROBE_EN29LV640B: return &probe_en29lv640b; |
| case PROBE_SPI_AT25F: return &probe_spi_at25f; |
| case PROBE_SPI_AT45DB: return &probe_spi_at45db; |
| case PROBE_SPI_BIG_SPANSION: return &probe_spi_big_spansion; |
| case PROBE_SPI_RDID: return &probe_spi_rdid; |
| case PROBE_SPI_RDID4: return &probe_spi_rdid4; |
| case PROBE_SPI_REMS: return &probe_spi_rems; |
| case PROBE_SPI_RES1: return &probe_spi_res1; |
| case PROBE_SPI_RES2: return &probe_spi_res2; |
| case PROBE_SPI_SFDP: return &probe_spi_sfdp; |
| case PROBE_SPI_ST95: return &probe_spi_st95; |
| /* default: total function, 0 indicates no probe function set. |
| * We explicitly do not want a default catch-all case in the switch |
| * to ensure unhandled enum's are compiler warnings. |
| */ |
| case NO_PROBE_FUNC: return NULL; |
| }; |
| |
| return NULL; |
| } |
| |
| int probe_flash(struct registered_master *mst, int startchip, struct flashctx *flash, int force, const char *const chip_to_probe) |
| { |
| const struct flashchip *chip; |
| enum chipbustype buses_common; |
| char *tmp; |
| |
| for (chip = flashchips + startchip; chip && chip->name; chip++) { |
| if (is_chipname_duplicate(chip)) |
| continue; |
| |
| if (chip_to_probe && strcmp(chip->name, chip_to_probe) != 0) |
| continue; |
| buses_common = mst->buses_supported & chip->bustype; |
| if (!buses_common) |
| continue; |
| /* Only probe for SPI25 chips by default. */ |
| if (chip->bustype == BUS_SPI && !chip_to_probe && chip->spi_cmd_set != SPI25) |
| continue; |
| msg_gdbg("Probing for %s %s, %d kB: ", chip->vendor, chip->name, chip->total_size); |
| probe_func_t *probe_func = lookup_probe_func_ptr(chip); |
| if (!probe_func && !force) { |
| msg_gdbg("failed! flashrom has no probe function for this flash chip.\n"); |
| continue; |
| } |
| |
| /* Start filling in the dynamic data. */ |
| flash->chip = calloc(1, sizeof(*flash->chip)); |
| if (!flash->chip) { |
| msg_gerr("Out of memory!\n"); |
| return -1; |
| } |
| *flash->chip = *chip; |
| flash->mst = mst; |
| |
| if (map_flash(flash) != 0) |
| goto notfound; |
| |
| /* We handle a forced match like a real match, we just avoid probing. Note that probe_flash() |
| * is only called with force=1 after normal probing failed. |
| */ |
| if (force) |
| break; |
| |
| if (probe_func == &probe_w29ee011) |
| if (!w29ee011_can_override(flash->chip->name, chip_to_probe)) |
| goto notfound; |
| |
| if (probe_func(flash) != 1) |
| goto notfound; |
| |
| /* If this is the first chip found, accept it. |
| * If this is not the first chip found, accept it only if it is |
| * a non-generic match. SFDP and CFI are generic matches. |
| * startchip==0 means this call to probe_flash() is the first |
| * one for this programmer interface (master) and thus no other chip has |
| * been found on this interface. |
| */ |
| if (startchip == 0 && flash->chip->model_id == SFDP_DEVICE_ID) { |
| msg_cinfo("===\n" |
| "SFDP has autodetected a flash chip which is " |
| "not natively supported by flashrom yet.\n"); |
| if (count_usable_erasers(flash) == 0) |
| msg_cinfo("The standard operations read and " |
| "verify should work, but to support " |
| "erase, write and all other " |
| "possible features"); |
| else |
| msg_cinfo("All standard operations (read, " |
| "verify, erase and write) should " |
| "work, but to support all possible " |
| "features"); |
| |
| msg_cinfo(" we need to add them manually.\n" |
| "You can help us by mailing us the output of the following command to " |
| "flashrom@flashrom.org:\n" |
| "'flashrom -VV [plus the -p/--programmer parameter]'\n" |
| "Thanks for your help!\n" |
| "===\n"); |
| } |
| |
| /* First flash chip detected on this bus. */ |
| if (startchip == 0) |
| break; |
| /* Not the first flash chip detected on this bus, but not a generic match either. */ |
| if ((flash->chip->model_id != GENERIC_DEVICE_ID) && (flash->chip->model_id != SFDP_DEVICE_ID)) |
| break; |
| /* Not the first flash chip detected on this bus, and it's just a generic match. Ignore it. */ |
| notfound: |
| unmap_flash(flash); |
| free(flash->chip); |
| flash->chip = NULL; |
| } |
| |
| if (!flash->chip) |
| return -1; |
| |
| if (init_default_layout(flash) < 0) |
| return -1; |
| |
| tmp = flashbuses_to_text(flash->chip->bustype); |
| msg_cinfo("%s %s flash chip \"%s\" (%d kB, %s) ", force ? "Assuming" : "Found", |
| flash->chip->vendor, flash->chip->name, flash->chip->total_size, tmp ? tmp : "?"); |
| free(tmp); |
| if (master_uses_physmap(mst)) |
| msg_cinfo("mapped at physical address 0x%0*" PRIxPTR ".\n", |
| PRIxPTR_WIDTH, flash->physical_memory); |
| else |
| msg_cinfo("on %s.\n", programmer->name); |
| |
| /* Flash registers may more likely not be mapped if the chip was forced. |
| * Lock info may be stored in registers, so avoid lock info printing. */ |
| if (!force) { |
| printlockfunc_t *printlock = lookup_printlock_func_ptr(flash); |
| if (printlock) |
| printlock(flash); |
| } |
| |
| /* Get out of the way for later runs. */ |
| unmap_flash(flash); |
| |
| /* Return position of matching chip. */ |
| return chip - flashchips; |
| } |
| |
| /* |
| * Gets the lowest erase granularity; it is used when |
| * deciding if the layout map needs to be adjusted such that erase boundaries |
| * match this granularity. Returns -1 if unsuccessful. |
| */ |
| static int get_required_erase_size(struct flashctx *flash) |
| { |
| int i, erase_size_found = 0; |
| unsigned int required_erase_size; |
| |
| /* |
| * Find eraseable block size for read alignment. |
| * FIXME: This assumes the smallest block erase size is useable |
| * by erase_and_write_flash(). |
| */ |
| required_erase_size = ~0; |
| for (i = 0; i < NUM_ERASEFUNCTIONS; i++) { |
| struct block_eraser eraser = flash->chip->block_erasers[i]; |
| int j; |
| |
| for (j = 0; j < NUM_ERASEREGIONS; j++) { |
| unsigned int size = eraser.eraseblocks[j].size; |
| |
| if (size && (size < required_erase_size)) { |
| required_erase_size = size; |
| erase_size_found = 1; |
| } |
| } |
| } |
| |
| /* likely an error in flashchips[] */ |
| if (!erase_size_found) { |
| msg_cerr("%s: No usable erase size found.\n", __func__); |
| return -1; |
| } |
| |
| return required_erase_size; |
| } |
| |
| static int round_to_erasable_block_boundary(const int required_erase_size, |
| const struct romentry *entry, |
| chipoff_t *rounded_start, |
| chipsize_t* rounded_len) { |
| unsigned int start_align, len_align; |
| const struct flash_region *region = &entry->region; |
| |
| if (required_erase_size < 0) |
| return 1; |
| |
| /* round down to nearest eraseable block boundary */ |
| start_align = region->start % required_erase_size; |
| *rounded_start = region->start - start_align; |
| |
| /* round up to nearest eraseable block boundary */ |
| *rounded_len = region->end - *rounded_start + 1; |
| len_align = *rounded_len % required_erase_size; |
| if (len_align) |
| *rounded_len = *rounded_len + required_erase_size - len_align; |
| |
| if (start_align || len_align) { |
| msg_gdbg("\n%s: Re-aligned partial read due to eraseable " |
| "block size requirement:\n\tstart: 0x%06x, " |
| "len: 0x%06x, aligned start: 0x%06x, len: 0x%06x\n", |
| __func__, region->start, region->end - region->start + 1, |
| *rounded_start, *rounded_len); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * @brief Reads the included layout regions into a buffer. |
| * |
| * If there is no layout set in the given flash context, the whole chip will |
| * be read. |
| * |
| * @param flashctx Flash context to be used. |
| * @param buffer Buffer of full chip size to read into. |
| * @return 0 on success, |
| * 1 if any read fails. |
| */ |
| static int read_by_layout(struct flashctx *const flashctx, uint8_t *const buffer, |
| bool align_to_erasable_block_boundary) |
| { |
| const struct flashrom_layout *const layout = get_layout(flashctx); |
| const struct romentry *entry = NULL; |
| int required_erase_size = get_required_erase_size(flashctx); |
| |
| while ((entry = layout_next_included(layout, entry))) { |
| const struct flash_region *region = &entry->region; |
| chipoff_t region_start = region->start; |
| chipsize_t region_len = region->end - region->start + 1; |
| |
| if (align_to_erasable_block_boundary && |
| round_to_erasable_block_boundary(required_erase_size, entry, |
| ®ion_start, ®ion_len)) |
| return 1; |
| if (read_flash(flashctx, buffer + region_start, region_start, region_len)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Even if an error is found, the function will keep going and check the rest. */ |
| static int selfcheck_eraseblocks(const struct flashchip *chip) |
| { |
| int i, j, k; |
| int ret = 0; |
| unsigned int prev_eraseblock_count = chip->total_size * 1024; |
| |
| for (k = 0; k < NUM_ERASEFUNCTIONS; k++) { |
| unsigned int done = 0; |
| struct block_eraser eraser = chip->block_erasers[k]; |
| unsigned int curr_eraseblock_count = 0; |
| |
| for (i = 0; i < NUM_ERASEREGIONS; i++) { |
| /* Blocks with zero size are bugs in flashchips.c. */ |
| if (eraser.eraseblocks[i].count && |
| !eraser.eraseblocks[i].size) { |
| msg_gerr("ERROR: Flash chip %s erase function " |
| "%i region %i has size 0. Please report" |
| " a bug at flashrom@flashrom.org\n", |
| chip->name, k, i); |
| ret = 1; |
| } |
| /* Blocks with zero count are bugs in flashchips.c. */ |
| if (!eraser.eraseblocks[i].count && |
| eraser.eraseblocks[i].size) { |
| msg_gerr("ERROR: Flash chip %s erase function " |
| "%i region %i has count 0. Please report" |
| " a bug at flashrom@flashrom.org\n", |
| chip->name, k, i); |
| ret = 1; |
| } |
| done += eraser.eraseblocks[i].count * |
| eraser.eraseblocks[i].size; |
| curr_eraseblock_count += eraser.eraseblocks[i].count; |
| } |
| /* Empty eraseblock definition with erase function. */ |
| if (!done && eraser.block_erase) |
| msg_gspew("Strange: Empty eraseblock definition with " |
| "non-empty erase function. Not an error.\n"); |
| if (!done) |
| continue; |
| if (done != chip->total_size * 1024) { |
| msg_gerr("ERROR: Flash chip %s erase function %i " |
| "region walking resulted in 0x%06x bytes total," |
| " expected 0x%06x bytes. Please report a bug at" |
| " flashrom@flashrom.org\n", chip->name, k, |
| done, chip->total_size * 1024); |
| ret = 1; |
| } |
| if (!eraser.block_erase) |
| continue; |
| /* Check if there are identical erase functions for different |
| * layouts. That would imply "magic" erase functions. The |
| * easiest way to check this is with function pointers. |
| */ |
| for (j = k + 1; j < NUM_ERASEFUNCTIONS; j++) { |
| if (eraser.block_erase == |
| chip->block_erasers[j].block_erase) { |
| msg_gerr("ERROR: Flash chip %s erase function " |
| "%i and %i are identical. Please report" |
| " a bug at flashrom@flashrom.org\n", |
| chip->name, k, j); |
| ret = 1; |
| } |
| } |
| if (curr_eraseblock_count > prev_eraseblock_count) { |
| msg_gerr("ERROR: Flash chip %s erase function %i is not " |
| "in order. Please report a bug at flashrom@flashrom.org\n", |
| chip->name, k); |
| ret = 1; |
| } |
| prev_eraseblock_count = curr_eraseblock_count; |
| } |
| return ret; |
| } |
| |
| typedef int (*erasefn_t)(struct flashctx *, unsigned int addr, unsigned int len); |
| /** |
| * @private |
| * |
| * For read-erase-write, `curcontents` and `newcontents` shall point |
| * to buffers of the chip's size. Both are supposed to be prefilled |
| * with at least the included layout regions of the current flash |
| * contents (`curcontents`) and the data to be written to the flash |
| * (`newcontents`). |
| * |
| * For erase, `curcontents` and `newcontents` shall be NULL-pointers. |
| * |
| * The `chipoff_t` values are used internally by `walk_by_layout()`. |
| */ |
| struct walk_info { |
| uint8_t *curcontents; |
| const uint8_t *newcontents; |
| chipoff_t region_start; |
| chipoff_t region_end; |
| chipoff_t erase_start; |
| chipoff_t erase_end; |
| }; |
| /* returns 0 on success, 1 to retry with another erase function, 2 for immediate abort */ |
| typedef int (*per_blockfn_t)(struct flashctx *, const struct walk_info *, erasefn_t, bool *); |
| |
| static int walk_eraseblocks(struct flashctx *const flashctx, |
| struct walk_info *const info, |
| const size_t erasefunction, const per_blockfn_t per_blockfn, |
| bool *all_skipped) |
| { |
| int ret; |
| size_t i, j; |
| bool first = true; |
| struct block_eraser *const eraser = &flashctx->chip->block_erasers[erasefunction]; |
| |
| info->erase_start = 0; |
| for (i = 0; i < NUM_ERASEREGIONS; ++i) { |
| /* count==0 for all automatically initialized array |
| members so the loop below won't be executed for them. */ |
| for (j = 0; j < eraser->eraseblocks[i].count; ++j, info->erase_start = info->erase_end + 1) { |
| info->erase_end = info->erase_start + eraser->eraseblocks[i].size - 1; |
| |
| /* Skip any eraseblock that is completely outside the current region. */ |
| if (info->erase_end < info->region_start) |
| continue; |
| if (info->region_end < info->erase_start) |
| break; |
| |
| /* Print this for every block except the first one. */ |
| if (first) |
| first = false; |
| else |
| msg_cdbg(", "); |
| msg_cdbg("0x%06"PRIx32"-0x%06"PRIx32":", info->erase_start, info->erase_end); |
| |
| erasefunc_t *erase_func = lookup_erase_func_ptr(eraser); |
| ret = per_blockfn(flashctx, info, erase_func, all_skipped); |
| if (ret) |
| return ret; |
| } |
| if (info->region_end < info->erase_start) |
| break; |
| } |
| msg_cdbg("\n"); |
| return 0; |
| } |
| |
| static int walk_by_layout(struct flashctx *const flashctx, struct walk_info *const info, |
| const per_blockfn_t per_blockfn, bool *all_skipped) |
| { |
| const struct flashrom_layout *const layout = get_layout(flashctx); |
| const struct romentry *entry = NULL; |
| |
| *all_skipped = true; |
| msg_cinfo("Erasing and writing flash chip... "); |
| |
| while ((entry = layout_next_included(layout, entry))) { |
| const struct flash_region *region = &entry->region; |
| info->region_start = region->start; |
| info->region_end = region->end; |
| |
| size_t j; |
| int error = 1; /* retry as long as it's 1 */ |
| for (j = 0; j < NUM_ERASEFUNCTIONS; ++j) { |
| if (j != 0) |
| msg_cinfo("Looking for another erase function.\n"); |
| msg_cdbg("Trying erase function %zi... ", j); |
| if (check_block_eraser(flashctx, j, 1)) |
| continue; |
| |
| error = walk_eraseblocks(flashctx, info, j, per_blockfn, all_skipped); |
| if (error != 1) |
| break; |
| |
| if (info->curcontents) { |
| msg_cinfo("Reading current flash chip contents... "); |
| if (read_by_layout(flashctx, info->curcontents, false)) { |
| /* Now we are truly screwed. Read failed as well. */ |
| msg_cerr("Can't read anymore! Aborting.\n"); |
| /* We have no idea about the flash chip contents, so |
| retrying with another erase function is pointless. */ |
| error = 2; |
| break; |
| } |
| msg_cinfo("done. "); |
| } |
| } |
| if (error == 1) |
| msg_cinfo("No usable erase functions left.\n"); |
| if (error) { |
| msg_cerr("FAILED!\n"); |
| return 1; |
| } |
| } |
| if (*all_skipped) |
| msg_cinfo("\nWarning: Chip content is identical to the requested image.\n"); |
| msg_cinfo("Erase/write done.\n"); |
| return 0; |
| } |
| |
| static int erase_block(struct flashctx *const flashctx, |
| const struct walk_info *const info, const erasefn_t erasefn, |
| bool *all_skipped) |
| { |
| const unsigned int erase_len = info->erase_end + 1 - info->erase_start; |
| const bool region_unaligned = info->region_start > info->erase_start || |
| info->erase_end > info->region_end; |
| uint8_t *backup_contents = NULL, *erased_contents = NULL; |
| int ret = 2; |
| |
| /* |
| * If the region is not erase-block aligned, merge current flash con- |
| * tents into a new buffer `backup_contents`. |
| */ |
| if (region_unaligned) { |
| backup_contents = malloc(erase_len); |
| erased_contents = malloc(erase_len); |
| if (!backup_contents || !erased_contents) { |
| msg_cerr("Out of memory!\n"); |
| ret = 1; |
| goto _free_ret; |
| } |
| memset(backup_contents, ERASED_VALUE(flashctx), erase_len); |
| memset(erased_contents, ERASED_VALUE(flashctx), erase_len); |
| |
| msg_cdbg("R"); |
| /* Merge data preceding the current region. */ |
| if (info->region_start > info->erase_start) { |
| const chipoff_t start = info->erase_start; |
| const chipsize_t len = info->region_start - info->erase_start; |
| if (read_flash(flashctx, backup_contents, start, len)) { |
| msg_cerr("Can't read! Aborting.\n"); |
| goto _free_ret; |
| } |
| } |
| /* Merge data following the current region. */ |
| if (info->erase_end > info->region_end) { |
| const chipoff_t start = info->region_end + 1; |
| const chipoff_t rel_start = start - info->erase_start; /* within this erase block */ |
| const chipsize_t len = info->erase_end - info->region_end; |
| if (read_flash(flashctx, backup_contents + rel_start, start, len)) { |
| msg_cerr("Can't read! Aborting.\n"); |
| goto _free_ret; |
| } |
| } |
| } |
| |
| ret = 1; |
| *all_skipped = false; |
| |
| msg_cdbg("E"); |
| |
| if (!flashctx->flags.skip_unwritable_regions) { |
| if (check_for_unwritable_regions(flashctx, info->erase_start, erase_len)) |
| goto _free_ret; |
| } |
| |
| unsigned int len; |
| for (unsigned int addr = info->erase_start; addr < info->erase_start + erase_len; addr += len) { |
| struct flash_region region; |
| get_flash_region(flashctx, addr, ®ion); |
| |
| len = min(info->erase_start + erase_len, region.end) - addr; |
| |
| if (region.write_prot) { |
| msg_gdbg("%s: cannot erase inside %s region (%#08"PRIx32"..%#08"PRIx32"), skipping range (%#08x..%#08x).\n", |
| __func__, region.name, region.start, region.end - 1, addr, addr + len - 1); |
| free(region.name); |
| continue; |
| } |
| |
| msg_gdbg("%s: %s region (%#08"PRIx32"..%#08"PRIx32") is writable, erasing range (%#08x..%#08x).\n", |
| __func__, region.name, region.start, region.end - 1, addr, addr + len - 1); |
| free(region.name); |
| |
| if (erasefn(flashctx, addr, len)) |
| goto _free_ret; |
| if (check_erased_range(flashctx, addr, len)) { |
| msg_cerr("ERASE FAILED!\n"); |
| goto _free_ret; |
| } |
| } |
| |
| |
| if (region_unaligned) { |
| unsigned int starthere = 0, lenhere = 0, writecount = 0; |
| /* get_next_write() sets starthere to a new value after the call. */ |
| while ((lenhere = get_next_write(erased_contents + starthere, backup_contents + starthere, |
| erase_len - starthere, &starthere, flashctx->chip->gran))) { |
| if (!writecount++) |
| msg_cdbg("W"); |
| /* Needs the partial write function signature. */ |
| if (write_flash(flashctx, backup_contents + starthere, |
| info->erase_start + starthere, lenhere)) |
| goto _free_ret; |
| starthere += lenhere; |
| } |
| } |
| |
| ret = 0; |
| |
| _free_ret: |
| free(erased_contents); |
| free(backup_contents); |
| return ret; |
| } |
| |
| /** |
| * @brief Erases the included layout regions. |
| * |
| * If there is no layout set in the given flash context, the whole chip will |
| * be erased. |
| * |
| * @param flashctx Flash context to be used. |
| * @return 0 on success, |
| * 1 if all available erase functions failed. |
| */ |
| static int erase_by_layout_legacy(struct flashctx *const flashctx) |
| { |
| struct walk_info info = { 0 }; |
| bool all_skipped = true; |
| return walk_by_layout(flashctx, &info, &erase_block, &all_skipped); |
| } |
| |
| static int erase_by_layout_new(struct flashctx *const flashctx) |
| { |
| bool all_skipped = true; |
| const uint32_t flash_size = flashctx->chip->total_size * 1024; |
| uint8_t* curcontents = malloc(flash_size); |
| uint8_t* newcontents = malloc(flash_size); |
| struct erase_layout *erase_layout; |
| create_erase_layout(flashctx, &erase_layout); |
| int ret = 0; |
| |
| //erase layout creation failed |
| if (!erase_layout) { |
| ret = 1; |
| goto _ret; |
| } |
| |
| //not enough memory |
| if (!curcontents || !newcontents) { |
| ret = 1; |
| goto _ret; |
| } |
| |
| memset(curcontents, ~ERASED_VALUE(flashctx), flash_size); |
| memset(newcontents, ERASED_VALUE(flashctx), flash_size); |
| |
| const struct flashrom_layout *const flash_layout = get_layout(flashctx); |
| const struct romentry *entry = NULL; |
| while ((entry = layout_next_included(flash_layout, entry))) { |
| ret = erase_write(flashctx, entry->region.start, entry->region.end, curcontents, newcontents, erase_layout, &all_skipped); |
| if (ret) { |
| ret = 1; |
| msg_cerr("Erase Failed"); |
| goto _ret; |
| } |
| } |
| |
| _ret: |
| free(curcontents); |
| free(newcontents); |
| free_erase_layout(erase_layout, count_usable_erasers(flashctx)); |
| return ret; |
| } |
| |
| static int erase_by_layout(struct flashctx *const flashctx) |
| { |
| if (use_legacy_erase_path) |
| return erase_by_layout_legacy(flashctx); |
| return erase_by_layout_new(flashctx); |
| } |
| |
| static int read_erase_write_block(struct flashctx *const flashctx, |
| const struct walk_info *const info, const erasefn_t erasefn, |
| bool *all_skipped) |
| { |
| const chipsize_t erase_len = info->erase_end + 1 - info->erase_start; |
| const bool region_unaligned = info->region_start > info->erase_start || |
| info->erase_end > info->region_end; |
| const uint8_t *newcontents = NULL; |
| int ret = 2; |
| |
| /* |
| * If the region is not erase-block aligned, merge current flash con- |
| * tents into `info->curcontents` and a new buffer `newc`. The former |
| * is necessary since we have no guarantee that the full erase block |
| * was already read into `info->curcontents`. For the latter a new |
| * buffer is used since `info->newcontents` might contain data for |
| * other unaligned regions that touch this erase block too. |
| */ |
| if (region_unaligned) { |
| msg_cdbg("R"); |
| uint8_t *const newc = malloc(erase_len); |
| if (!newc) { |
| msg_cerr("Out of memory!\n"); |
| return 1; |
| } |
| memcpy(newc, info->newcontents + info->erase_start, erase_len); |
| |
| /* Merge data preceding the current region. */ |
| if (info->region_start > info->erase_start) { |
| const chipoff_t start = info->erase_start; |
| const chipsize_t len = info->region_start - info->erase_start; |
| if (read_flash(flashctx, newc, start, len)) { |
| msg_cerr("Can't read! Aborting.\n"); |
| goto _free_ret; |
| } |
| memcpy(info->curcontents + start, newc, len); |
| } |
| /* Merge data following the current region. */ |
| if (info->erase_end > info->region_end) { |
| const chipoff_t start = info->region_end + 1; |
| const chipoff_t rel_start = start - info->erase_start; /* within this erase block */ |
| const chipsize_t len = info->erase_end - info->region_end; |
| if (read_flash(flashctx, newc + rel_start, start, len)) { |
| msg_cerr("Can't read! Aborting.\n"); |
| goto _free_ret; |
| } |
| memcpy(info->curcontents + start, newc + rel_start, len); |
| } |
| |
| newcontents = newc; |
| } else { |
| newcontents = info->newcontents + info->erase_start; |
| } |
| |
| ret = 1; |
| bool skipped = true; |
| uint8_t *const curcontents = info->curcontents + info->erase_start; |
| const uint8_t erased_value = ERASED_VALUE(flashctx); |
| if (!(flashctx->chip->feature_bits & FEATURE_NO_ERASE) && |
| need_erase(curcontents, newcontents, erase_len, flashctx->chip->gran, erased_value)) { |
| if (erase_block(flashctx, info, erasefn, all_skipped)) |
| goto _free_ret; |
| /* Erase was successful. Adjust curcontents. */ |
| memset(curcontents, erased_value, erase_len); |
| skipped = false; |
| } |
| |
| unsigned int starthere = 0, lenhere = 0, writecount = 0; |
| /* get_next_write() sets starthere to a new value after the call. */ |
| while ((lenhere = get_next_write(curcontents + starthere, newcontents + starthere, |
| erase_len - starthere, &starthere, flashctx->chip->gran))) { |
| if (!writecount++) |
| msg_cdbg("W"); |
| /* Needs the partial write function signature. */ |
| if (write_flash(flashctx, newcontents + starthere, |
| info->erase_start + starthere, lenhere)) |
| goto _free_ret; |
| starthere += lenhere; |
| skipped = false; |
| } |
| if (skipped) |
| msg_cdbg("S"); |
| else |
| *all_skipped = false; |
| |
| /* Update curcontents, other regions with overlapping erase blocks |
| might rely on this. */ |
| memcpy(curcontents, newcontents, erase_len); |
| ret = 0; |
| |
| _free_ret: |
| if (region_unaligned) |
| free((void *)newcontents); |
| return ret; |
| } |
| |
| /** |
| * @brief Writes the included layout regions from a given image. |
| * |
| * If there is no layout set in the given flash context, the whole image |
| * will be written. |
| * |
| * @param flashctx Flash context to be used. |
| * @param curcontents A buffer of full chip size with current chip contents of included regions. |
| * @param newcontents The new image to be written. |
| * @return 0 on success, |
| * 1 if anything has gone wrong. |
| */ |
| static int write_by_layout_legacy(struct flashctx *const flashctx, |
| void *const curcontents, const void *const newcontents, |
| bool *all_skipped) |
| { |
| struct walk_info info; |
| info.curcontents = curcontents; |
| info.newcontents = newcontents; |
| return walk_by_layout(flashctx, &info, read_erase_write_block, all_skipped); |
| } |
| |
| /* |
| * Function to process processing units accumulated in the action descriptor. |
| * |
| * @flash pointer to the flash context to operate on |
| * @per_blockfn helper function which can erase and program a section of the |
| * flash chip. It receives the flash context, offset and length |
| * of the area to erase/program, before and after contents (to |
| * decide what exactly needs to be erased and or programmed) |
| * and a pointer to the erase function which can operate on the |
| * proper granularity. |
| * @descriptor action descriptor including pointers to before and after |
| * contents and an array of processing actions to take. |
| * |
| * Returns zero on success or an error code. |
| */ |
| static int walk_eraseregions(struct flashctx *flash, |
| const per_blockfn_t per_blockfn, |
| struct action_descriptor *descriptor, bool *all_skipped) |
| { |
| struct processing_unit *pu; |
| int rc = 0; |
| static int print_comma; |
| |
| for (pu = descriptor->processing_units; pu->num_blocks; pu++) { |
| unsigned base = pu->offset; |
| unsigned top = pu->offset + pu->block_size * pu->num_blocks; |
| struct block_eraser *const eraser = &flash->chip->block_erasers[pu->block_eraser_index]; |
| |
| while (base < top) { |
| |
| if (print_comma) |
| msg_cdbg(", "); |
| else |
| print_comma = 1; |
| |
| msg_cdbg("0x%06x-0x%06zx", base, base + pu->block_size - 1); |
| |
| struct walk_info info = { |
| .curcontents = descriptor->oldcontents + base, |
| .newcontents = descriptor->newcontents + base, |
| .erase_start = base, |
| .erase_end = base + pu->block_size - 1, |
| }; |
| erasefunc_t *erase_func = lookup_erase_func_ptr(eraser); |
| rc = per_blockfn(flash, &info, erase_func, all_skipped); |
| if (rc) |
| return rc; |
| |
| base += pu->block_size; |
| } |
| } |
| msg_cdbg("\n"); |
| return rc; |
| } |
| |
| /* |
| * Helper function called on each block to be erased and written. |
| * |
| * Returns 0 if erase and write operations succeed or if they are skipped |
| * because the block is in a non-writable region. |
| * Returns non-0 error code if erase or write operations fail unexpectedly. |
| */ |
| static int erase_and_write_block_helper(struct flashctx *const flash, |
| const struct walk_info *const info, |
| const erasefn_t erasefn, bool *all_skipped) |
| { |
| const unsigned int erase_len = info->erase_end + 1 - info->erase_start; |
| unsigned int starthere = 0, lenhere = 0; |
| int ret = 0, writecount = 0; |
| enum write_granularity gran = flash->chip->gran; |
| bool skipped = true; |
| msg_cdbg(":"); |
| if (need_erase(info->curcontents, info->newcontents, erase_len, gran, 0xff)) { |
| *all_skipped = false; |
| msg_cdbg(" E"); |
| |
| if (!flash->flags.skip_unwritable_regions) { |
| if (check_for_unwritable_regions(flash, info->erase_start, erase_len)) |
| return -1; |
| } |
| |
| unsigned int len; |
| for (unsigned int addr = info->erase_start; addr < info->erase_start + erase_len; addr += len) { |
| struct flash_region region; |
| get_flash_region(flash, addr, ®ion); |
| |
| len = min(info->erase_start + erase_len, region.end) - addr; |
| |
| if (region.write_prot) { |
| msg_gdbg("%s: cannot erase inside %s region (%#08x..%#08x), skipping range (%#08x..%#08x).\n", |
| __func__, region.name, region.start, region.end - 1, addr, addr + len - 1); |
| free(region.name); |
| continue; |
| } |
| |
| msg_gdbg("%s: %s region (%#08x..%#08x) is writable, erasing range (%#08x..%#08x).\n", |
| __func__, region.name, region.start, region.end - 1, addr, addr + len - 1); |
| free(region.name); |
| |
| ret = erasefn(flash, addr, len); |
| if (ret) { |
| msg_cerr(" ERASE_FAILED\n"); |
| return ret; |
| } |
| if (!ret && cros_ec_erasure_failed()) { /* from cros_ec erase path. */ |
| msg_cdbg(" DENIED"); |
| return ret; |
| } |
| if (flash->flags.verify_after_write) { /* FIXME(b/263909055): replace with upstream. */ |
| if (check_erased_range(flash, info->erase_start, erase_len)) { |
| msg_cerr(" ERASE_FAILED\n"); |
| return -1; |
| } |
| } |
| } |
| |
| /* Erase was successful. Adjust curcontents. */ |
| memset(info->curcontents, ERASED_VALUE(flash), erase_len); |
| skipped = false; |
| } |
| /* get_next_write() sets starthere to a new value after the call. */ |
| while ((lenhere = get_next_write(info->curcontents + starthere, |
| info->newcontents + starthere, |
| erase_len - starthere, &starthere, gran))) { |
| *all_skipped = false; |
| if (!writecount++) |
| msg_cdbg(" W"); |
| |
| /* Needs the partial write function signature. */ |
| ret = write_flash(flash, (uint8_t *)info->newcontents + starthere, |
| info->erase_start + starthere, lenhere); |
| if (ret) { |
| return ret; |
| } |
| |
| starthere += lenhere; |
| skipped = false; |
| } |
| if (skipped) |
| msg_cdbg("S"); |
| return ret; |
| } |
| |
| static int erase_and_write_flash(struct flashctx *flash, |
| void *const curcontents, void *const newcontents, bool *all_skipped) |
| { |
| int ret = 1; |
| struct action_descriptor *descriptor = |
| prepare_action_descriptor(flash, curcontents, newcontents); |
| |
| msg_cinfo("Erasing and writing flash chip... "); |
| |
| ret = walk_eraseregions(flash, &erase_and_write_block_helper, descriptor, all_skipped); |
| |
| if (ret) { |
| msg_cerr("FAILED!\n"); |
| } else { |
| msg_cinfo("SUCCESS.\n"); |
| } |
| |
| free(descriptor); |
| return ret; |
| } |
| |
| static int write_by_layout_new(struct flashctx *const flashctx, |
| void *const curcontents, const void *const newcontents, |
| bool *all_skipped) |
| { |
| const int erasefn_count = count_usable_erasers(flashctx); |
| int ret = 1; |
| |
| const struct flashrom_layout *const flash_layout = get_layout(flashctx); |
| struct erase_layout *erase_layout; |
| create_erase_layout(flashctx, &erase_layout); |
| |
| if (!flash_layout) { |
| goto _ret; |
| } |
| if (!erase_layout) { |
| goto _ret; |
| } |
| |
| const struct romentry *entry = NULL; |
| while ((entry = layout_next_included(flash_layout, entry))) { |
| ret = erase_write(flashctx, entry->region.start, |
| entry->region.end, |
| curcontents, |
| (uint8_t *)newcontents, |
| erase_layout, all_skipped); |
| if (ret) { |
| msg_cerr("Write Failed!"); |
| goto _ret; |
| } |
| } |
| _ret: |
| free_erase_layout(erase_layout, erasefn_count); |
| return ret; |
| } |
| |
| static int write_by_layout(struct flashctx *const flashctx, |
| uint8_t *const curcontents, const uint8_t *const newcontents, |
| bool *all_skipped) |
| { |
| if (use_legacy_erase_path) |
| return write_by_layout_legacy(flashctx, curcontents, newcontents, all_skipped); |
| return write_by_layout_new(flashctx, curcontents, newcontents, all_skipped); |
| } |
| |
| /** |
| * @brief Compares the included layout regions with content from a buffer. |
| * |
| * If there is no layout set in the given flash context, the whole chip's |
| * contents will be compared. |
| * |
| * @param flashctx Flash context to be used. |
| * @param layout Flash layout information. |
| * @param curcontents A buffer of full chip size to read current chip contents into. |
| * @param newcontents The new image to compare to. |
| * @return 0 on success, |
| * 1 if reading failed, |
| * 3 if the contents don't match. |
| */ |
| static int verify_by_layout( |
| struct flashctx *const flashctx, |
| const struct flashrom_layout *const layout, |
| void *const curcontents, const uint8_t *const newcontents) |
| { |
| const struct romentry *entry = NULL; |
| int ret = 0; |
| |
| while ((entry = layout_next_included(layout, entry))) { |
| const struct flash_region *region = &entry->region; |
| const chipoff_t region_start = region->start; |
| const chipsize_t region_len = region->end - region->start + 1; |
| |
| if ((ret = verify_range(flashctx, newcontents + region_start, |
| region_start, region_len))) |
| break; |
| } |
| |
| if (ret) |
| msg_gerr("Could not fully verify due to error, aborting\n"); |
| return ret; |
| } |
| |
| static bool is_internal_programmer() |
| { |
| #if CONFIG_INTERNAL == 1 |
| return programmer == &programmer_internal; |
| #else |
| return false; |
| #endif |
| } |
| |
| static void nonfatal_help_message(void) |
| { |
| msg_gerr("Good, writing to the flash chip apparently didn't do anything.\n"); |
| if (is_internal_programmer()) |
| msg_gerr("This means we have to add special support for your board, programmer or flash\n" |
| "chip. Please report this to the mailing list at flashrom@flashrom.org or on\n" |
| "IRC (see https://www.flashrom.org/Contact for details), thanks!\n" |
| "-------------------------------------------------------------------------------\n" |
| "You may now reboot or simply leave the machine running.\n"); |
| else |
| msg_gerr("Please check the connections (especially those to write protection pins) between\n" |
| "the programmer and the flash chip. If you think the error is caused by flashrom\n" |
| "please report this to the mailing list at flashrom@flashrom.org or on IRC (see\n" |
| "https://www.flashrom.org/Contact for details), thanks!\n"); |
| } |
| |
| void emergency_help_message(void) |
| { |
| msg_gerr("Your flash chip is in an unknown state.\n"); |
| if (is_internal_programmer()) |
| msg_gerr("Get help on IRC (see https://www.flashrom.org/Contact) or mail\n" |
| "flashrom@flashrom.org with the subject \"FAILED: <your board name>\"!" |
| "-------------------------------------------------------------------------------\n" |
| "DO NOT REBOOT OR POWEROFF!\n"); |
| else |
| msg_gerr("Please report this to the mailing list at flashrom@flashrom.org or\n" |
| "on IRC (see https://www.flashrom.org/Contact for details), thanks!\n"); |
| } |
| |
| void list_programmers_linebreak(int startcol, int cols, int paren) |
| { |
| const char *pname; |
| int pnamelen; |
| int remaining = 0, firstline = 1; |
| size_t p; |
| int i; |
| |
| for (p = 0; p < programmer_table_size; p++) { |
| pname = programmer_table[p]->name; |
| pnamelen = strlen(pname); |
| if (remaining - pnamelen - 2 < 0) { |
| if (firstline) |
| firstline = 0; |
| else |
| msg_ginfo("\n"); |
| for (i = 0; i < startcol; i++) |
| msg_ginfo(" "); |
| remaining = cols - startcol; |
| } else { |
| msg_ginfo(" "); |
| remaining--; |
| } |
| if (paren && (p == 0)) { |
| msg_ginfo("("); |
| remaining--; |
| } |
| msg_ginfo("%s", pname); |
| remaining -= pnamelen; |
| if (p < programmer_table_size - 1) { |
| msg_ginfo(","); |
| remaining--; |
| } else { |
| if (paren) |
| msg_ginfo(")"); |
| } |
| } |
| } |
| |
| int selfcheck(void) |
| { |
| unsigned int i; |
| int ret = 0; |
| |
| for (i = 0; i < programmer_table_size; i++) { |
| const struct programmer_entry *const p = programmer_table[i]; |
| if (p == NULL) { |
| msg_gerr("Programmer with index %d is NULL instead of a valid pointer!\n", i); |
| ret = 1; |
| continue; |
| } |
| if (p->name == NULL) { |
| msg_gerr("All programmers need a valid name, but the one with index %d does not!\n", i); |
| ret = 1; |
| /* This might hide other problems with this programmer, but allows for better error |
| * messages below without jumping through hoops. */ |
| continue; |
| } |
| switch (p->type) { |
| case USB: |
| case PCI: |
| case OTHER: |
| if (p->devs.note == NULL) { |
| if (strcmp("internal", p->name) == 0) |
| break; /* This one has its device list stored separately. */ |
| msg_gerr("Programmer %s has neither a device list nor a textual description!\n", |
| p->name); |
| ret = 1; |
| } |
| break; |
| default: |
| msg_gerr("Programmer %s does not have a valid type set!\n", p->name); |
| ret = 1; |
| break; |
| } |
| if (p->init == NULL) { |
| msg_gerr("Programmer %s does not have a valid init function!\n", p->name); |
| ret = 1; |
| } |
| } |
| |
| /* It would be favorable if we could check for the correct layout (especially termination) of various |
| * constant arrays: flashchips, chipset_enables, board_matches, boards_known, laptops_known. |
| * They are all defined as externs in this compilation unit so we don't know their sizes which vary |
| * depending on compiler flags, e.g. the target architecture, and can sometimes be 0. |
| * For 'flashchips' we export the size explicitly to work around this and to be able to implement the |
| * checks below. */ |
| if (flashchips_size <= 1 || flashchips[flashchips_size - 1].name != NULL) { |
| msg_gerr("Flashchips table miscompilation!\n"); |
| ret = 1; |
| } else { |
| for (i = 0; i < flashchips_size - 1; i++) { |
| const struct flashchip *chip = &flashchips[i]; |
| if (chip->vendor == NULL || chip->name == NULL || chip->bustype == BUS_NONE) { |
| ret = 1; |
| msg_gerr("ERROR: Some field of flash chip #%d (%s) is misconfigured.\n" |
| "Please report a bug at flashrom@flashrom.org\n", i, |
| chip->name == NULL ? "unnamed" : chip->name); |
| } |
| if (selfcheck_eraseblocks(chip)) { |
| ret = 1; |
| } |
| } |
| } |
| |
| #if CONFIG_INTERNAL == 1 |
| ret |= selfcheck_board_enables(); |
| #endif |
| |
| /* TODO: implement similar sanity checks for other arrays where deemed necessary. */ |
| return ret; |
| } |
| |
| /* FIXME: This function signature needs to be improved once prepare_flash_access() |
| * has a better function signature. |
| */ |
| static int chip_safety_check(const struct flashctx *flash, int force, |
| int read_it, int write_it, int erase_it, int verify_it) |
| { |
| const struct flashchip *chip = flash->chip; |
| |
| if (!programmer_may_write && (write_it || erase_it)) { |
| msg_perr("Write/erase is not working yet on your programmer in " |
| "its current configuration.\n"); |
| /* --force is the wrong approach, but it's the best we can do |
| * until the generic programmer parameter parser is merged. |
| */ |
| if (!force) |
| return 1; |
| msg_cerr("Continuing anyway.\n"); |
| } |
| |
| if (read_it || erase_it || write_it || verify_it) { |
| /* Everything needs read. */ |
| if (chip->tested.read == BAD) { |
| msg_cerr("Read is not working on this chip. "); |
| if (!force) |
| return 1; |
| msg_cerr("Continuing anyway.\n"); |
| } |
| if (!lookup_read_func_ptr(chip)) { |
| msg_cerr("flashrom has no read function for this " |
| "flash chip.\n"); |
| return 1; |
| } |
| } |
| if (erase_it || write_it) { |
| /* Write needs erase. */ |
| if (chip->tested.erase == NA) { |
| msg_cerr("Erase is not possible on this chip.\n"); |
| return 1; |
| } |
| if (chip->tested.erase == BAD) { |
| msg_cerr("Erase is not working on this chip. "); |
| if (!force) |
| return 1; |
| msg_cerr("Continuing anyway.\n"); |
| } |
| if(count_usable_erasers(flash) == 0) { |
| msg_cerr("flashrom has no erase function for this " |
| "flash chip.\n"); |
| return 1; |
| } |
| } |
| if (write_it) { |
| if (chip->tested.write == NA) { |
| msg_cerr("Write is not possible on this chip.\n"); |
| return 1; |
| } |
| if (chip->tested.write == BAD) { |
| msg_cerr("Write is not working on this chip. "); |
| if (!force) |
| return 1; |
| msg_cerr("Continuing anyway.\n"); |
| } |
| if (!lookup_write_func_ptr(chip)) { |
| msg_cerr("flashrom has no write function for this " |
| "flash chip.\n"); |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static int restore_flash_wp(struct flashctx *const flash, void *data) |
| { |
| struct flashrom_wp_cfg *wp_cfg = data; |
| enum flashrom_wp_result ret = flashrom_wp_write_cfg(flash, wp_cfg); |
| flashrom_wp_cfg_release(wp_cfg); |
| |
| return (ret == FLASHROM_WP_OK) ? 0 : -1; |
| } |
| |
| static int save_initial_flash_wp(struct flashctx *const flash) |
| { |
| struct flashrom_wp_cfg *initial_wp_cfg; |
| if (flashrom_wp_cfg_new(&initial_wp_cfg) != FLASHROM_WP_OK) |
| return -1; |
| |
| if (flashrom_wp_read_cfg(initial_wp_cfg, flash) != FLASHROM_WP_OK) { |
| flashrom_wp_cfg_release(initial_wp_cfg); |
| return -1; |
| } |
| |
| if (register_chip_restore(restore_flash_wp, flash, initial_wp_cfg)) { |
| flashrom_wp_cfg_release(initial_wp_cfg); |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int unlock_flash_wp(struct flashctx *const flash, |
| const bool write_it, const bool erase_it) |
| |
| { |
| int ret = 0; |
| |
| /* WP only disables write protection, so only use WP to unlock |
| * for write/erase operations. |
| * |
| * For read/verify operations, we still call the chip's unlock |
| * function, which may disable read locks if the chip has them. |
| */ |
| if (!write_it && !erase_it) { |
| msg_cdbg("Skipping writeprotect-based unlocking for read/verify operations.\n"); |
| return -1; |
| } |
| |
| /* Save original WP state to be restored later */ |
| if (save_initial_flash_wp(flash)) { |
| ret = -1; |
| goto warn_out; |
| } |
| |
| /* Disable WP */ |
| struct flashrom_wp_cfg *unlocked_wp_cfg; |
| if (flashrom_wp_cfg_new(&unlocked_wp_cfg) != FLASHROM_WP_OK) { |
| ret = -1; |
| goto warn_out; |
| } |
| |
| flashrom_wp_set_range(unlocked_wp_cfg, 0, 0); |
| flashrom_wp_set_mode(unlocked_wp_cfg, FLASHROM_WP_MODE_DISABLED); |
| if (flashrom_wp_write_cfg(flash, unlocked_wp_cfg) != FLASHROM_WP_OK) { |
| ret = -1; |
| } |
| |
| flashrom_wp_cfg_release(unlocked_wp_cfg); |
| |
| warn_out: |
| if (ret) |
| msg_cwarn("Failed to unlock flash status reg with wp support.\n"); |
| |
| return ret; |
| } |
| |
| int prepare_flash_access(struct flashctx *const flash, |
| const bool read_it, const bool write_it, |
| const bool erase_it, const bool verify_it) |
| { |
| if (chip_safety_check(flash, flash->flags.force, read_it, write_it, erase_it, verify_it)) { |
| msg_cerr("Aborting.\n"); |
| return 1; |
| } |
| |
| if (layout_sanity_checks(flash)) { |
| msg_cerr("Requested regions can not be handled. Aborting.\n"); |
| return 1; |
| } |
| |
| /* FIXME(b/207787495): replace this with locking in futility. */ |
| /* Let powerd know that we're updating firmware so machine stays awake. */ |
| if (write_it || erase_it) { |
| if (disable_power_management() == 2) /* FIXME(b:314677563): check ret */ |
| return 1; |
| } |
| |
| if (map_flash(flash) != 0) |
| return 1; |
| |
| /* Initialize chip_restore_fn_count before chip unlock calls. */ |
| flash->chip_restore_fn_count = 0; |
| |
| int ret = 1; |
| if (flash->chip->decode_range != NO_DECODE_RANGE_FUNC || |
| (flash->mst->buses_supported & BUS_PROG && flash->mst->opaque.wp_write_cfg)) { |
| ret = unlock_flash_wp(flash, write_it, erase_it); |
| } |
| /* |
| * Fall back to chip unlock function if we haven't already successfully |
| * unlocked using WP (e.g. WP unlocking failed, chip had no WP support, |
| * WP was skipped for read/verify ops). |
| * |
| * Given the existence of read locks, we want to unlock for read, |
| * erase, write, and verify. |
| */ |
| blockprotect_func_t *bp_func = lookup_blockprotect_func_ptr(flash->chip); |
| if (ret && bp_func) |
| bp_func(flash); |
| |
| flash->address_high_byte = -1; |
| flash->in_4ba_mode = false; |
| |
| /* Be careful about 4BA chips and broken masters */ |
| if (flash->chip->total_size > 16 * 1024 && spi_master_no_4ba_modes(flash)) { |
| /* If we can't use native instructions, bail out */ |
| if ((flash->chip->feature_bits & FEATURE_4BA_NATIVE) != FEATURE_4BA_NATIVE |
| || !spi_master_4ba(flash)) { |
| msg_cerr("Programmer doesn't support this chip. Aborting.\n"); |
| return 1; |
| } |
| } |
| |
| /* Enable/disable 4-byte addressing mode if flash chip supports it */ |
| if (spi_chip_4ba(flash)) { |
| if (spi_master_4ba(flash)) |
| ret = spi_enter_4ba(flash); |
| else |
| ret = spi_exit_4ba(flash); |
| if (ret) { |
| msg_cerr("Failed to set correct 4BA mode! Aborting.\n"); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| void finalize_flash_access(struct flashctx *const flash) |
| { |
| deregister_chip_restore(flash); |
| unmap_flash(flash); |
| |
| /* FIXME(b/207787495): replace this with locking in futility. */ |
| if (restore_power_management()) { |
| msg_gerr("Unable to re-enable power management\n"); |
| } |
| } |
| |
| static int setup_curcontents(struct flashctx *flashctx, void *curcontents, |
| const void *const refcontents) |
| { |
| const size_t flash_size = flashctx->chip->total_size * 1024; |
| const bool verify_all = flashctx->flags.verify_whole_chip; |
| |
| memset(curcontents, UNERASED_VALUE(flashctx), flash_size); |
| |
| /* If given, assume flash chip contains same data as `refcontents`. */ |
| if (refcontents) { |
| msg_cinfo("Assuming old flash chip contents as ref-file...\n"); |
| memcpy(curcontents, refcontents, flash_size); |
| } else { |
| /* |
| * Read the whole chip to be able to check whether regions need to be |
| * erased and to give better diagnostics in case write fails. |
| * The alternative is to read only the regions which are to be |
| * preserved, but in that case we might perform unneeded erase which |
| * takes time as well. |
| */ |
| msg_cinfo("Reading old flash chip contents... "); |
| if (verify_all) { |
| if (read_flash(flashctx, curcontents, 0, flash_size)) { |
| msg_cinfo("FAILED.\n"); |
| return 1; |
| } |
| } else { |
| /* WARNING: See FIXME on get_required_erase_size() */ |
| if (read_by_layout(flashctx, curcontents, true)) { |
| msg_cinfo("FAILED.\n"); |
| return 1; |
| } |
| } |
| msg_cinfo("done.\n"); |
| } |
| return 0; |
| } |
| |
| static void combine_image_by_layout(const struct flashctx *const flashctx, |
| uint8_t *const newcontents, const uint8_t *const oldcontents); |
| |
| /** |
| * @brief Erases the included layout regions. |
| * |
| * If there is no layout set in the given flash context, the whole chip will |
| * be erased. |
| * |
| * @param flashctx Flash context to be used. |
| * @return 0 on success, |
| * 1 if all available erase functions failed. |
| */ |
| static int erase_by_layout_downstream(struct flashctx *const flashctx) |
| { |
| const size_t flash_size = flashctx->chip->total_size * 1024; |
| int ret = 1; |
| |
| uint8_t *curcontents = malloc(flash_size); |
| uint8_t *newcontents = malloc(flash_size); |
| if (!curcontents || !newcontents) { |
| msg_gerr("Out of memory!\n"); |
| goto _free_ret; |
| } |
| |
| if (setup_curcontents(flashctx, curcontents, NULL)) |
| goto _free_ret; |
| |
| memset(newcontents, ERASED_VALUE(flashctx), flash_size); |
| combine_image_by_layout(flashctx, newcontents, curcontents); |
| |
| bool all_skipped = true; |
| ret = erase_and_write_flash(flashctx, curcontents, newcontents, &all_skipped); |
| |
| _free_ret: |
| free(curcontents); |
| free(newcontents); |
| return ret; |
| } |
| static bool g_use_upstream_erase_path = false; |
| |
| int flashrom_flash_erase(struct flashctx *const flashctx) |
| { |
| int ret; |
| if (prepare_flash_access(flashctx, false, false, true, false)) |
| return 1; |
| |
| if (g_use_upstream_erase_path) |
| ret = erase_by_layout(flashctx); |
| else |
| ret = erase_by_layout_downstream(flashctx); |
| |
| finalize_flash_access(flashctx); |
| |
| return ret; |
| } |
| |
| int flashrom_image_read(struct flashctx *const flashctx, void *const buffer, const size_t buffer_len) |
| { |
| const size_t flash_size = flashctx->chip->total_size * 1024; |
| |
| if (flash_size > buffer_len) |
| return 2; |
| |
| if (prepare_flash_access(flashctx, true, false, false, false)) |
| return 1; |
| |
| msg_cinfo("Reading flash... "); |
| |
| int ret = 1; |
| if (read_by_layout(flashctx, buffer, false)) { |
| msg_cerr("Read operation failed!\n"); |
| msg_cinfo("FAILED.\n"); |
| goto _finalize_ret; |
| } |
| msg_cinfo("done.\n"); |
| ret = 0; |
| |
| _finalize_ret: |
| finalize_flash_access(flashctx); |
| return ret; |
| } |
| |
| static void combine_image_by_layout(const struct flashctx *const flashctx, |
| uint8_t *const newcontents, const uint8_t *const oldcontents) |
| { |
| const struct flashrom_layout *const layout = get_layout(flashctx); |
| const struct romentry *included; |
| chipoff_t start = 0; |
| |
| while ((included = layout_next_included_region(layout, start))) { |
| const struct flash_region *region = &included->region; |
| if (region->start > start) { |
| /* copy everything up to the start of this included region */ |
| memcpy(newcontents + start, oldcontents + start, region->start - start); |
| } |
| /* skip this included region */ |
| start = region->end + 1; |
| if (start == 0) |
| return; |
| } |
| |
| /* copy the rest of the chip */ |
| const chipsize_t copy_len = flashctx->chip->total_size * 1024 - start; |
| memcpy(newcontents + start, oldcontents + start, copy_len); |
| } |
| |
| static bool g_use_upstream_erasewrite_path = false; |
| |
| int flashrom_image_write(struct flashctx *const flashctx, void *const buffer, const size_t buffer_len, |
| const void *const refbuffer) |
| { |
| const size_t flash_size = flashctx->chip->total_size * 1024; |
| const bool verify_all = flashctx->flags.verify_whole_chip; |
| const bool verify = flashctx->flags.verify_after_write; |
| const struct flashrom_layout *const verify_layout = |
| verify_all ? get_default_layout(flashctx) : get_layout(flashctx); |
| |
| if (buffer_len != flash_size) |
| return 4; |
| |
| int ret = 1; |
| int tmp = 0; |
| |
| uint8_t *curcontents = malloc(flash_size); |
| uint8_t *newcontents = malloc(flash_size); |
| uint8_t *oldcontents = NULL; |
| if (verify_all) |
| oldcontents = malloc(flash_size); |
| if (!curcontents || !newcontents || (verify_all && !oldcontents)) { |
| msg_gerr("Out of memory!\n"); |
| goto _free_ret; |
| } |
| |
| #if CONFIG_INTERNAL == 1 |
| if (is_internal_programmer() && cb_check_image(newcontents, flash_size) < 0) { |
| if (flashctx->flags.force_boardmismatch) { |
| msg_pinfo("Proceeding anyway because user forced us to.\n"); |
| } else { |
| msg_perr("Aborting. You can override this with " |
| "-p internal:boardmismatch=force.\n"); |
| goto _free_ret; |
| } |
| } |
| #endif |
| |
| if (prepare_flash_access(flashctx, false, true, false, verify)) |
| goto _free_ret; |
| |
| if (setup_curcontents(flashctx, curcontents, refbuffer)) |
| goto _finalize_ret; |
| if (oldcontents) |
| memcpy(oldcontents, curcontents, flash_size); |
| |
| memcpy(newcontents, buffer, flash_size); |
| combine_image_by_layout(flashctx, newcontents, curcontents); |
| |
| // parse the new fmap and disable soft WP if necessary |
| if ((tmp = cros_ec_prepare(flashctx, newcontents, flash_size))) { |
| msg_cerr("CROS_EC prepare failed, ret=%d.\n", tmp); |
| goto _finalize_ret; |
| } |
| |
| bool all_skipped = true; |
| if (g_use_upstream_erasewrite_path) |
| ret = write_by_layout(flashctx, curcontents, newcontents, &all_skipped); |
| else |
| ret = erase_and_write_flash(flashctx, curcontents, newcontents, &all_skipped); |
| if (ret) { |
| msg_cerr("Uh oh. Erase/write failed. "); |
| ret = 2; |
| if (verify_all) { |
| msg_cerr("Checking if anything has changed.\n"); |
| msg_cinfo("Reading current flash chip contents... "); |
| if (!read_flash(flashctx, curcontents, 0, flash_size)) { |
| msg_cinfo("done.\n"); |
| if (!memcmp(oldcontents, curcontents, flash_size)) { |
| nonfatal_help_message(); |
| goto _finalize_ret; |
| } |
| msg_cerr("Apparently at least some data has changed.\n"); |
| } else |
| msg_cerr("Can't even read anymore!\n"); |
| emergency_help_message(); |
| goto _finalize_ret; |
| } else { |
| msg_cerr("\n"); |
| } |
| emergency_help_message(); |
| goto _finalize_ret; |
| } |
| |
| tmp = cros_ec_need_2nd_pass(); |
| if (tmp < 0) { |
| // Jump failed |
| msg_cerr("cros_ec_need_2nd_pass() failed. Stop.\n"); |
| emergency_help_message(); |
| goto _finalize_ret; |
| } else if (tmp > 0) { |
| // Need 2nd pass. Get the just written content. |
| msg_pdbg("CROS_EC needs 2nd pass.\n"); |
| if (setup_curcontents(flashctx, curcontents, NULL)) { |
| emergency_help_message(); |
| goto _finalize_ret; |
| } |
| |
| // write 2nd pass |
| if (g_use_upstream_erasewrite_path) |
| ret = write_by_layout(flashctx, curcontents, newcontents, &all_skipped); |
| else |
| ret = erase_and_write_flash(flashctx, curcontents, newcontents, &all_skipped); |
| if (ret) { |
| msg_cerr("Uh oh. CROS_EC 2nd pass failed.\n"); |
| ret = 2; |
| emergency_help_message(); |
| goto _finalize_ret; |
| } |
| } |
| |
| /* Verify only if we actually changed something. */ |
| if (verify && !all_skipped) { |
| msg_cinfo("Verifying flash... "); |
| |
| /* |
| * Work around chips which "need some time to calm down." |
| * |
| * Frankly, it's not 100% clear why this delay is here at all, |
| * except for a terse message from 2009 of "a few reports where |
| * verify directly after erase had unpleasant side effects like |
| * corrupting flash or at least getting incorrect verify |
| * results". Ideally, if there were a few known problematic |
| * chips or programmers, we could add quirks flags for those |
| * specific implementations without penalizing all other |
| * flashrom users. But alas, we don't know which systems |
| * experienced those issues. |
| * |
| * Out of an extreme abundance of caution, we retain this |
| * delay, but only for a few non-SPI bus types that were the |
| * likely prevalent targets at the time. This is a complete |
| * guess, which conveniently avoids wasting time on common |
| * BUS_SPI and BUS_PROG systems. |
| * |
| * Background thread: |
| * Subject: RFC: removing 1 second verification delay |
| * https://mail.coreboot.org/hyperkitty/list/flashrom@flashrom.org/thread/SFV3OJBVVMDKRLI3FQA3DDDGEXJ7W4ED/ |
| */ |
| if (flashctx->chip->bustype & (BUS_PARALLEL | BUS_LPC | BUS_FWH)) |
| programmer_delay(flashctx, 1000*1000); |
| |
| ret = verify_by_layout(flashctx, verify_layout, curcontents, newcontents); |
| /* If we tried to write, and verification now fails, we |
| might have an emergency situation. */ |
| if (ret) { |
| emergency_help_message(); |
| goto _finalize_ret; |
| } |
| else |
| msg_cinfo("VERIFIED.\n"); |
| } else { |
| /* We didn't change anything. */ |
| ret = 0; |
| } |
| |
| if (cros_ec_finish() < 0) { |
| msg_cerr("cros_ec_finish() failed. Stop.\n"); |
| ret = 1; |
| emergency_help_message(); |
| } |
| |
| _finalize_ret: |
| finalize_flash_access(flashctx); |
| _free_ret: |
| free(oldcontents); |
| free(curcontents); |
| free(newcontents); |
| return ret; |
| } |
| |
| int flashrom_image_verify(struct flashctx *const flashctx, const void *const buffer, const size_t buffer_len) |
| { |
| const struct flashrom_layout *const layout = get_layout(flashctx); |
| const size_t flash_size = flashctx->chip->total_size * 1024; |
| |
| if (buffer_len != flash_size) |
| return 2; |
| |
| const uint8_t *const newcontents = buffer; |
| uint8_t *const curcontents = malloc(flash_size); |
| if (!curcontents) { |
| msg_gerr("Out of memory!\n"); |
| return 1; |
| } |
| |
| int ret = 1; |
| |
| if (prepare_flash_access(flashctx, false, false, false, true)) |
| goto _free_ret; |
| |
| msg_cinfo("Verifying flash... "); |
| ret = verify_by_layout(flashctx, layout, curcontents, newcontents); |
| if (!ret) |
| msg_cinfo("VERIFIED.\n"); |
| |
| finalize_flash_access(flashctx); |
| _free_ret: |
| free(curcontents); |
| return ret; |
| } |