blob: 24e9db9cf062da307cd50cc11c17416152efdc73 [file] [log] [blame]
/*
* Copyright (c) International Business Machines Corp., 2006
* Copyright (C) 2009 Nokia Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Author: Artem Bityutskiy
*
* MTD library.
*/
/* Imported from mtd-utils by dehrenberg */
#include <limits.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <dirent.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <inttypes.h>
#include <mtd/mtd-user.h>
#include "libmtd.h"
#include "libmtd_int.h"
#include "libmtd_common.h"
/**
* mkpath - compose full path from 2 given components.
* @path: the first component
* @name: the second component
*
* This function returns the resulting path in case of success and %NULL in
* case of failure.
*/
static char *mkpath(const char *path, const char *name)
{
char *n;
size_t len1 = strlen(path);
size_t len2 = strlen(name);
n = xmalloc(len1 + len2 + 6);
memcpy(n, path, len1);
if (n[len1 - 1] != '/')
n[len1++] = '/';
memcpy(n + len1, name, len2 + 1);
return n;
}
/**
* read_data - read data from a file.
* @file: the file to read from
* @buf: the buffer to read to
* @buf_len: buffer length
*
* This function returns number of read bytes in case of success and %-1 in
* case of failure. Note, if the file contains more then @buf_len bytes of
* date, this function fails with %EINVAL error code.
*/
static int read_data(const char *file, void *buf, int buf_len)
{
int fd, rd, tmp, tmp1;
fd = open(file, O_RDONLY | O_CLOEXEC);
if (fd == -1)
return -1;
rd = read(fd, buf, buf_len);
if (rd == -1) {
sys_errmsg("cannot read \"%s\"", file);
goto out_error;
}
if (rd == buf_len) {
errmsg("contents of \"%s\" is too long", file);
errno = EINVAL;
goto out_error;
}
((char *)buf)[rd] = '\0';
/* Make sure all data is read */
tmp1 = read(fd, &tmp, 1);
if (tmp1 == 1) {
sys_errmsg("cannot read \"%s\"", file);
goto out_error;
}
if (tmp1) {
errmsg("file \"%s\" contains too much data (> %d bytes)",
file, buf_len);
errno = EINVAL;
goto out_error;
}
if (close(fd)) {
sys_errmsg("close failed on \"%s\"", file);
return -1;
}
return rd;
out_error:
close(fd);
return -1;
}
/**
* read_major - read major and minor numbers from a file.
* @file: name of the file to read from
* @major: major number is returned here
* @minor: minor number is returned here
*
* This function returns % in case of success, and %-1 in case of failure.
*/
static int read_major(const char *file, int *major, int *minor)
{
int ret;
char buf[50];
ret = read_data(file, buf, 50);
if (ret < 0)
return ret;
ret = sscanf(buf, "%d:%d\n", major, minor);
if (ret != 2) {
errno = EINVAL;
return errmsg("\"%s\" does not have major:minor format", file);
}
if (*major < 0 || *minor < 0) {
errno = EINVAL;
return errmsg("bad major:minor %d:%d in \"%s\"",
*major, *minor, file);
}
return 0;
}
/**
* dev_get_major - get major and minor numbers of an MTD device.
* @lib: libmtd descriptor
* @mtd_num: MTD device number
* @major: major number is returned here
* @minor: minor number is returned here
*
* This function returns zero in case of success and %-1 in case of failure.
*/
static int dev_get_major(struct libmtd *lib, int mtd_num, int *major, int *minor)
{
char file[strlen(lib->mtd_dev) + 50];
sprintf(file, lib->mtd_dev, mtd_num);
return read_major(file, major, minor);
}
/**
* dev_read_data - read data from an MTD device's sysfs file.
* @patt: file pattern to read from
* @mtd_num: MTD device number
* @buf: buffer to read to
* @buf_len: buffer length
*
* This function returns number of read bytes in case of success and %-1 in
* case of failure.
*/
static int dev_read_data(const char *patt, int mtd_num, void *buf, int buf_len)
{
char file[strlen(patt) + 100];
sprintf(file, patt, mtd_num);
return read_data(file, buf, buf_len);
}
/**
* read_hex_ll - read a hex 'long long' value from a file.
* @file: the file to read from
* @value: the result is stored here
*
* This function reads file @file and interprets its contents as hexadecimal
* 'long long' integer. If this is not true, it fails with %EINVAL error code.
* Returns %0 in case of success and %-1 in case of failure.
*/
static int read_hex_ll(const char *file, long long *value)
{
int fd, rd;
char buf[50];
fd = open(file, O_RDONLY | O_CLOEXEC);
if (fd == -1)
return -1;
rd = read(fd, buf, sizeof(buf));
if (rd == -1) {
sys_errmsg("cannot read \"%s\"", file);
goto out_error;
}
if (rd == sizeof(buf)) {
errmsg("contents of \"%s\" is too long", file);
errno = EINVAL;
goto out_error;
}
buf[rd] = '\0';
if (sscanf(buf, "%llx\n", value) != 1) {
errmsg("cannot read integer from \"%s\"\n", file);
errno = EINVAL;
goto out_error;
}
if (*value < 0) {
errmsg("negative value %lld in \"%s\"", *value, file);
errno = EINVAL;
goto out_error;
}
if (close(fd))
return sys_errmsg("close failed on \"%s\"", file);
return 0;
out_error:
close(fd);
return -1;
}
/**
* read_pos_ll - read a positive 'long long' value from a file.
* @file: the file to read from
* @value: the result is stored here
*
* This function reads file @file and interprets its contents as a positive
* 'long long' integer. If this is not true, it fails with %EINVAL error code.
* Returns %0 in case of success and %-1 in case of failure.
*/
static int read_pos_ll(const char *file, long long *value)
{
int fd, rd;
char buf[50];
fd = open(file, O_RDONLY | O_CLOEXEC);
if (fd == -1)
return -1;
rd = read(fd, buf, 50);
if (rd == -1) {
sys_errmsg("cannot read \"%s\"", file);
goto out_error;
}
if (rd == 50) {
errmsg("contents of \"%s\" is too long", file);
errno = EINVAL;
goto out_error;
}
if (sscanf(buf, "%lld\n", value) != 1) {
errmsg("cannot read integer from \"%s\"\n", file);
errno = EINVAL;
goto out_error;
}
if (*value < 0) {
errmsg("negative value %lld in \"%s\"", *value, file);
errno = EINVAL;
goto out_error;
}
if (close(fd))
return sys_errmsg("close failed on \"%s\"", file);
return 0;
out_error:
close(fd);
return -1;
}
/**
* read_hex_int - read an 'int' value from a file.
* @file: the file to read from
* @value: the result is stored here
*
* This function is the same as 'read_pos_ll()', but it reads an 'int'
* value, not 'long long'.
*/
static int read_hex_int(const char *file, int *value)
{
long long res;
if (read_hex_ll(file, &res))
return -1;
/* Make sure the value has correct range */
if (res > INT_MAX || res < INT_MIN) {
errmsg("value %lld read from file \"%s\" is out of range",
res, file);
errno = EINVAL;
return -1;
}
*value = res;
return 0;
}
/**
* read_pos_int - read a positive 'int' value from a file.
* @file: the file to read from
* @value: the result is stored here
*
* This function is the same as 'read_pos_ll()', but it reads an 'int'
* value, not 'long long'.
*/
static int read_pos_int(const char *file, int *value)
{
long long res;
if (read_pos_ll(file, &res))
return -1;
/* Make sure the value is not too big */
if (res > INT_MAX) {
errmsg("value %lld read from file \"%s\" is out of range",
res, file);
errno = EINVAL;
return -1;
}
*value = res;
return 0;
}
/**
* dev_read_hex_int - read an hex 'int' value from an MTD device sysfs file.
* @patt: file pattern to read from
* @mtd_num: MTD device number
* @value: the result is stored here
*
* This function returns %0 in case of success and %-1 in case of failure.
*/
static int dev_read_hex_int(const char *patt, int mtd_num, int *value)
{
char file[strlen(patt) + 50];
sprintf(file, patt, mtd_num);
return read_hex_int(file, value);
}
/**
* dev_read_pos_int - read a positive 'int' value from an MTD device sysfs file.
* @patt: file pattern to read from
* @mtd_num: MTD device number
* @value: the result is stored here
*
* This function returns %0 in case of success and %-1 in case of failure.
*/
static int dev_read_pos_int(const char *patt, int mtd_num, int *value)
{
char file[strlen(patt) + 50];
sprintf(file, patt, mtd_num);
return read_pos_int(file, value);
}
/**
* dev_read_pos_ll - read a positive 'long long' value from an MTD device sysfs file.
* @patt: file pattern to read from
* @mtd_num: MTD device number
* @value: the result is stored here
*
* This function returns %0 in case of success and %-1 in case of failure.
*/
static int dev_read_pos_ll(const char *patt, int mtd_num, long long *value)
{
char file[strlen(patt) + 50];
sprintf(file, patt, mtd_num);
return read_pos_ll(file, value);
}
/**
* type_str2int - convert MTD device type to integer.
* @str: MTD device type string to convert
*
* This function converts MTD device type string @str, read from sysfs, into an
* integer.
*/
static int type_str2int(const char *str)
{
if (!strcmp(str, "nand"))
return MTD_NANDFLASH;
if (!strcmp(str, "mlc-nand"))
return MTD_MLCNANDFLASH;
if (!strcmp(str, "nor"))
return MTD_NORFLASH;
if (!strcmp(str, "rom"))
return MTD_ROM;
if (!strcmp(str, "absent"))
return MTD_ABSENT;
if (!strcmp(str, "dataflash"))
return MTD_DATAFLASH;
if (!strcmp(str, "ram"))
return MTD_RAM;
if (!strcmp(str, "ubi"))
return MTD_UBIVOLUME;
return -1;
}
/**
* dev_node2num - find UBI device number by its character device node.
* @lib: MTD library descriptor
* @node: name of the MTD device node
* @mtd_num: MTD device number is returned here
*
* This function returns %0 in case of success and %-1 in case of failure.
*/
static int dev_node2num(struct libmtd *lib, const char *node, int *mtd_num)
{
struct stat st;
int i, mjr, mnr;
struct mtd_info info;
if (stat(node, &st))
return sys_errmsg("cannot get information about \"%s\"", node);
if (!S_ISCHR(st.st_mode)) {
errmsg("\"%s\" is not a character device", node);
errno = EINVAL;
return -1;
}
mjr = major(st.st_rdev);
mnr = minor(st.st_rdev);
if (mtd_get_info((libmtd_t *)lib, &info))
return -1;
for (i = info.lowest_mtd_num; i <= info.highest_mtd_num; i++) {
int mjr1, mnr1, ret;
ret = dev_get_major(lib, i, &mjr1, &mnr1);
if (ret) {
if (errno == ENOENT)
continue;
if (!errno)
break;
return -1;
}
if (mjr1 == mjr && mnr1 == mnr) {
errno = 0;
*mtd_num = i;
return 0;
}
}
errno = ENODEV;
return -1;
}
/**
* sysfs_is_supported - check whether the MTD sub-system supports MTD.
* @lib: MTD library descriptor
*
* The Linux kernel MTD subsystem gained MTD support starting from kernel
* 2.6.30 and libmtd tries to use sysfs interface if possible, because the NAND
* sub-page size is available there (and not available at all in pre-sysfs
* kernels).
*
* Very old kernels did not have "/sys/class/mtd" directory. Not very old
* kernels (e.g., 2.6.29) did have "/sys/class/mtd/mtdX" directories, by there
* were no files there, e.g., the "name" file was not present. So all we can do
* is to check for a "/sys/class/mtd/mtdX/name" file. But this is not a
* reliable check, because if this is a new system with no MTD devices - we'll
* treat it as a pre-sysfs system.
*/
static int sysfs_is_supported(struct libmtd *lib)
{
int fd, num = -1;
DIR *sysfs_mtd;
char file[strlen(lib->mtd_name) + 10];
sysfs_mtd = opendir(lib->sysfs_mtd);
if (!sysfs_mtd) {
if (errno == ENOENT) {
errno = 0;
return 0;
}
return sys_errmsg("cannot open \"%s\"", lib->sysfs_mtd);
}
/*
* First of all find an "mtdX" directory. This is needed because there
* may be, for example, mtd1 but no mtd0.
*/
while (1) {
int ret, mtd_num;
char tmp_buf[256];
struct dirent *dirent;
dirent = readdir(sysfs_mtd);
if (!dirent)
break;
if (strlen(dirent->d_name) >= 255) {
errmsg("invalid entry in %s: \"%s\"",
lib->sysfs_mtd, dirent->d_name);
errno = EINVAL;
closedir(sysfs_mtd);
return -1;
}
ret = sscanf(dirent->d_name, MTD_NAME_PATT"%s",
&mtd_num, tmp_buf);
if (ret == 1) {
num = mtd_num;
break;
}
}
if (closedir(sysfs_mtd))
return sys_errmsg("closedir failed on \"%s\"", lib->sysfs_mtd);
if (num == -1)
/* No mtd device, treat this as pre-sysfs system */
return 0;
sprintf(file, lib->mtd_name, num);
fd = open(file, O_RDONLY | O_CLOEXEC);
if (fd == -1)
return 0;
if (close(fd)) {
sys_errmsg("close failed on \"%s\"", file);
return -1;
}
return 1;
}
libmtd_t libmtd_open(void)
{
struct libmtd *lib;
lib = xzalloc(sizeof(*lib));
lib->offs64_ioctls = OFFS64_IOCTLS_UNKNOWN;
lib->sysfs_mtd = mkpath("/sys", SYSFS_MTD);
if (!lib->sysfs_mtd)
goto out_error;
lib->mtd = mkpath(lib->sysfs_mtd, MTD_NAME_PATT);
if (!lib->mtd)
goto out_error;
lib->mtd_name = mkpath(lib->mtd, MTD_NAME);
if (!lib->mtd_name)
goto out_error;
if (!sysfs_is_supported(lib)) {
free(lib->mtd);
free(lib->sysfs_mtd);
free(lib->mtd_name);
lib->mtd_name = lib->mtd = lib->sysfs_mtd = NULL;
return lib;
}
lib->mtd_dev = mkpath(lib->mtd, MTD_DEV);
if (!lib->mtd_dev)
goto out_error;
lib->mtd_type = mkpath(lib->mtd, MTD_TYPE);
if (!lib->mtd_type)
goto out_error;
lib->mtd_eb_size = mkpath(lib->mtd, MTD_EB_SIZE);
if (!lib->mtd_eb_size)
goto out_error;
lib->mtd_size = mkpath(lib->mtd, MTD_SIZE);
if (!lib->mtd_size)
goto out_error;
lib->mtd_min_io_size = mkpath(lib->mtd, MTD_MIN_IO_SIZE);
if (!lib->mtd_min_io_size)
goto out_error;
lib->mtd_subpage_size = mkpath(lib->mtd, MTD_SUBPAGE_SIZE);
if (!lib->mtd_subpage_size)
goto out_error;
lib->mtd_oob_size = mkpath(lib->mtd, MTD_OOB_SIZE);
if (!lib->mtd_oob_size)
goto out_error;
lib->mtd_region_cnt = mkpath(lib->mtd, MTD_REGION_CNT);
if (!lib->mtd_region_cnt)
goto out_error;
lib->mtd_flags = mkpath(lib->mtd, MTD_FLAGS);
if (!lib->mtd_flags)
goto out_error;
lib->sysfs_supported = 1;
return lib;
out_error:
libmtd_close((libmtd_t)lib);
return NULL;
}
void libmtd_close(libmtd_t desc)
{
struct libmtd *lib = (struct libmtd *)desc;
free(lib->mtd_flags);
free(lib->mtd_region_cnt);
free(lib->mtd_oob_size);
free(lib->mtd_subpage_size);
free(lib->mtd_min_io_size);
free(lib->mtd_size);
free(lib->mtd_eb_size);
free(lib->mtd_type);
free(lib->mtd_dev);
free(lib->mtd_name);
free(lib->mtd);
free(lib->sysfs_mtd);
free(lib);
}
int mtd_dev_present(libmtd_t desc, int mtd_num) {
struct stat st;
struct libmtd *lib = (struct libmtd *)desc;
if (!lib->sysfs_supported) {
return legacy_dev_present(mtd_num) == 1;
} else {
char file[strlen(lib->mtd) + 10];
sprintf(file, lib->mtd, mtd_num);
return !stat(file, &st);
}
}
int mtd_get_info(libmtd_t desc, struct mtd_info *info)
{
DIR *sysfs_mtd;
struct dirent *dirent;
struct libmtd *lib = (struct libmtd *)desc;
memset(info, 0, sizeof(struct mtd_info));
if (!lib->sysfs_supported)
return legacy_mtd_get_info(info);
info->sysfs_supported = 1;
/*
* We have to scan the MTD sysfs directory to identify how many MTD
* devices are present.
*/
sysfs_mtd = opendir(lib->sysfs_mtd);
if (!sysfs_mtd) {
if (errno == ENOENT) {
errno = ENODEV;
return -1;
}
return sys_errmsg("cannot open \"%s\"", lib->sysfs_mtd);
}
info->lowest_mtd_num = INT_MAX;
while (1) {
int mtd_num, ret;
char tmp_buf[256];
errno = 0;
dirent = readdir(sysfs_mtd);
if (!dirent)
break;
if (strlen(dirent->d_name) >= 255) {
errmsg("invalid entry in %s: \"%s\"",
lib->sysfs_mtd, dirent->d_name);
errno = EINVAL;
goto out_close;
}
ret = sscanf(dirent->d_name, MTD_NAME_PATT"%s",
&mtd_num, tmp_buf);
if (ret == 1) {
info->mtd_dev_cnt += 1;
if (mtd_num > info->highest_mtd_num)
info->highest_mtd_num = mtd_num;
if (mtd_num < info->lowest_mtd_num)
info->lowest_mtd_num = mtd_num;
}
}
if (!dirent && errno) {
sys_errmsg("readdir failed on \"%s\"", lib->sysfs_mtd);
goto out_close;
}
if (closedir(sysfs_mtd))
return sys_errmsg("closedir failed on \"%s\"", lib->sysfs_mtd);
if (info->lowest_mtd_num == INT_MAX)
info->lowest_mtd_num = 0;
return 0;
out_close:
closedir(sysfs_mtd);
return -1;
}
int mtd_get_dev_info1(libmtd_t desc, int mtd_num, struct mtd_dev_info *mtd)
{
int ret;
struct libmtd *lib = (struct libmtd *)desc;
memset(mtd, 0, sizeof(struct mtd_dev_info));
mtd->mtd_num = mtd_num;
if (!mtd_dev_present(desc, mtd_num)) {
errno = ENODEV;
return -1;
} else if (!lib->sysfs_supported)
return legacy_get_dev_info1(mtd_num, mtd);
if (dev_get_major(lib, mtd_num, &mtd->major, &mtd->minor))
return -1;
ret = dev_read_data(lib->mtd_name, mtd_num, &mtd->name,
MTD_NAME_MAX + 1);
if (ret < 0)
return -1;
((char *)mtd->name)[ret - 1] = '\0';
ret = dev_read_data(lib->mtd_type, mtd_num, &mtd->type_str,
MTD_TYPE_MAX + 1);
if (ret < 0)
return -1;
((char *)mtd->type_str)[ret - 1] = '\0';
if (dev_read_pos_int(lib->mtd_eb_size, mtd_num, &mtd->eb_size))
return -1;
if (dev_read_pos_ll(lib->mtd_size, mtd_num, &mtd->size))
return -1;
if (dev_read_pos_int(lib->mtd_min_io_size, mtd_num, &mtd->min_io_size))
return -1;
if (dev_read_pos_int(lib->mtd_subpage_size, mtd_num, &mtd->subpage_size))
return -1;
if (dev_read_pos_int(lib->mtd_oob_size, mtd_num, &mtd->oob_size))
return -1;
if (dev_read_pos_int(lib->mtd_region_cnt, mtd_num, &mtd->region_cnt))
return -1;
if (dev_read_hex_int(lib->mtd_flags, mtd_num, &ret))
return -1;
mtd->writable = !!(ret & MTD_WRITEABLE);
mtd->eb_cnt = mtd->size / mtd->eb_size;
mtd->type = type_str2int(mtd->type_str);
mtd->bb_allowed = !!(mtd->type == MTD_NANDFLASH ||
mtd->type == MTD_MLCNANDFLASH);
return 0;
}
int mtd_get_dev_info(libmtd_t desc, const char *node, struct mtd_dev_info *mtd)
{
int mtd_num;
struct libmtd *lib = (struct libmtd *)desc;
if (!lib->sysfs_supported)
return legacy_get_dev_info(node, mtd);
if (dev_node2num(lib, node, &mtd_num))
return -1;
return mtd_get_dev_info1(desc, mtd_num, mtd);
}
static inline int mtd_ioctl_error(const struct mtd_dev_info *mtd, int eb,
const char *sreq)
{
return sys_errmsg("%s ioctl failed for eraseblock %d (mtd%d)",
sreq, eb, mtd->mtd_num);
}
static int mtd_valid_erase_block(const struct mtd_dev_info *mtd, int eb)
{
if (eb < 0 || eb >= mtd->eb_cnt) {
errmsg("bad eraseblock number %d, mtd%d has %d eraseblocks",
eb, mtd->mtd_num, mtd->eb_cnt);
errno = EINVAL;
return -1;
}
return 0;
}
static int mtd_xlock(const struct mtd_dev_info *mtd, int fd, int eb, int req,
const char *sreq)
{
int ret;
struct erase_info_user ei;
ret = mtd_valid_erase_block(mtd, eb);
if (ret)
return ret;
ei.start = eb * mtd->eb_size;
ei.length = mtd->eb_size;
ret = ioctl(fd, req, &ei);
if (ret < 0)
return mtd_ioctl_error(mtd, eb, sreq);
return 0;
}
#define mtd_xlock(mtd, fd, eb, req) mtd_xlock(mtd, fd, eb, req, #req)
int mtd_lock(const struct mtd_dev_info *mtd, int fd, int eb)
{
return mtd_xlock(mtd, fd, eb, MEMLOCK);
}
int mtd_unlock(const struct mtd_dev_info *mtd, int fd, int eb)
{
return mtd_xlock(mtd, fd, eb, MEMUNLOCK);
}
int mtd_erase(libmtd_t desc, const struct mtd_dev_info *mtd, int fd, int eb)
{
int ret;
struct libmtd *lib = (struct libmtd *)desc;
struct erase_info_user64 ei64;
struct erase_info_user ei;
ret = mtd_valid_erase_block(mtd, eb);
if (ret)
return ret;
ei64.start = (__u64)eb * mtd->eb_size;
ei64.length = mtd->eb_size;
if (lib->offs64_ioctls == OFFS64_IOCTLS_SUPPORTED ||
lib->offs64_ioctls == OFFS64_IOCTLS_UNKNOWN) {
ret = ioctl(fd, MEMERASE64, &ei64);
if (ret == 0)
return ret;
if (errno != ENOTTY ||
lib->offs64_ioctls != OFFS64_IOCTLS_UNKNOWN)
return mtd_ioctl_error(mtd, eb, "MEMERASE64");
/*
* MEMERASE64 support was added in kernel version 2.6.31, so
* probably we are working with older kernel and this ioctl is
* not supported.
*/
lib->offs64_ioctls = OFFS64_IOCTLS_NOT_SUPPORTED;
}
if (ei64.start + ei64.length > 0xFFFFFFFF) {
errmsg("this system can address only %u eraseblocks",
0xFFFFFFFFU / mtd->eb_size);
errno = EINVAL;
return -1;
}
ei.start = ei64.start;
ei.length = ei64.length;
ret = ioctl(fd, MEMERASE, &ei);
if (ret < 0)
return mtd_ioctl_error(mtd, eb, "MEMERASE");
return 0;
}
int mtd_regioninfo(int fd, int regidx, struct region_info_user *reginfo)
{
int ret;
if (regidx < 0) {
errno = ENODEV;
return -1;
}
reginfo->regionindex = regidx;
ret = ioctl(fd, MEMGETREGIONINFO, reginfo);
if (ret < 0)
return sys_errmsg("%s ioctl failed for erase region %d",
"MEMGETREGIONINFO", regidx);
return 0;
}
int mtd_is_locked(const struct mtd_dev_info *mtd, int fd, int eb)
{
int ret;
erase_info_t ei;
ei.start = eb * mtd->eb_size;
ei.length = mtd->eb_size;
ret = ioctl(fd, MEMISLOCKED, &ei);
if (ret < 0) {
if (errno != ENOTTY && errno != EOPNOTSUPP)
return mtd_ioctl_error(mtd, eb, "MEMISLOCKED");
else
errno = EOPNOTSUPP;
}
return ret;
}
/* Patterns to write to a physical eraseblock when torturing it */
static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
/**
* check_pattern - check if buffer contains only a certain byte pattern.
* @buf: buffer to check
* @patt: the pattern to check
* @size: buffer size in bytes
*
* This function returns %1 in there are only @patt bytes in @buf, and %0 if
* something else was also found.
*/
static int check_pattern(const void *buf, uint8_t patt, int size)
{
int i;
for (i = 0; i < size; i++)
if (((const uint8_t *)buf)[i] != patt)
return 0;
return 1;
}
int mtd_torture(libmtd_t desc, const struct mtd_dev_info *mtd, int fd, int eb)
{
int err, i, patt_count;
void *buf;
normsg("run torture test for PEB %d", eb);
patt_count = ARRAY_SIZE(patterns);
buf = xmalloc(mtd->eb_size);
for (i = 0; i < patt_count; i++) {
err = mtd_erase(desc, mtd, fd, eb);
if (err)
goto out;
/* Make sure the PEB contains only 0xFF bytes */
err = mtd_read(mtd, fd, eb, 0, buf, mtd->eb_size);
if (err)
goto out;
err = check_pattern(buf, 0xFF, mtd->eb_size);
if (err == 0) {
errmsg("erased PEB %d, but a non-0xFF byte found", eb);
errno = EIO;
goto out;
}
/* Write a pattern and check it */
memset(buf, patterns[i], mtd->eb_size);
err = mtd_write(desc, mtd, fd, eb, 0, buf, mtd->eb_size, NULL,
0, 0);
if (err)
goto out;
memset(buf, ~patterns[i], mtd->eb_size);
err = mtd_read(mtd, fd, eb, 0, buf, mtd->eb_size);
if (err)
goto out;
err = check_pattern(buf, patterns[i], mtd->eb_size);
if (err == 0) {
errmsg("pattern %x checking failed for PEB %d",
patterns[i], eb);
errno = EIO;
goto out;
}
}
err = 0;
normsg("PEB %d passed torture test, do not mark it a bad", eb);
out:
free(buf);
return -1;
}
int mtd_is_bad(const struct mtd_dev_info *mtd, int fd, int eb)
{
int ret;
loff_t seek;
ret = mtd_valid_erase_block(mtd, eb);
if (ret)
return ret;
if (!mtd->bb_allowed)
return 0;
seek = (loff_t)eb * mtd->eb_size;
ret = ioctl(fd, MEMGETBADBLOCK, &seek);
if (ret == -1)
return mtd_ioctl_error(mtd, eb, "MEMGETBADBLOCK");
return ret;
}
int mtd_mark_bad(const struct mtd_dev_info *mtd, int fd, int eb)
{
int ret;
loff_t seek;
if (!mtd->bb_allowed) {
errno = EINVAL;
return -1;
}
ret = mtd_valid_erase_block(mtd, eb);
if (ret)
return ret;
seek = (loff_t)eb * mtd->eb_size;
ret = ioctl(fd, MEMSETBADBLOCK, &seek);
if (ret == -1)
return mtd_ioctl_error(mtd, eb, "MEMSETBADBLOCK");
return 0;
}
int mtd_read(const struct mtd_dev_info *mtd, int fd, int eb, int offs,
void *buf, int len)
{
int ret, rd = 0;
off_t seek;
ret = mtd_valid_erase_block(mtd, eb);
if (ret)
return ret;
if (offs < 0 || offs + len > mtd->eb_size) {
errmsg("bad offset %d or length %d, mtd%d eraseblock size is %d",
offs, len, mtd->mtd_num, mtd->eb_size);
errno = EINVAL;
return -1;
}
/* Seek to the beginning of the eraseblock */
seek = (off_t)eb * mtd->eb_size + offs;
if (lseek(fd, seek, SEEK_SET) != seek)
return sys_errmsg("cannot seek mtd%d to offset %"PRIdoff_t,
mtd->mtd_num, seek);
while (rd < len) {
ret = read(fd, buf, len);
if (ret < 0)
return sys_errmsg("cannot read %d bytes from mtd%d (eraseblock %d, offset %d)",
len, mtd->mtd_num, eb, offs);
rd += ret;
}
return 0;
}
static int legacy_auto_oob_layout(const struct mtd_dev_info *mtd, int fd,
int ooblen, void *oob) {
struct nand_oobinfo old_oobinfo;
int start, len;
uint8_t *tmp_buf;
/* Read the current oob info */
if (ioctl(fd, MEMGETOOBSEL, &old_oobinfo))
return sys_errmsg("MEMGETOOBSEL failed");
tmp_buf = malloc(ooblen);
memcpy(tmp_buf, oob, ooblen);
/*
* We use autoplacement and have the oobinfo with the autoplacement
* information from the kernel available
*/
if (old_oobinfo.useecc == MTD_NANDECC_AUTOPLACE) {
int i, tags_pos = 0;
for (i = 0; old_oobinfo.oobfree[i][1]; i++) {
/* Set the reserved bytes to 0xff */
start = old_oobinfo.oobfree[i][0];
len = old_oobinfo.oobfree[i][1];
memcpy(oob + start, tmp_buf + tags_pos, len);
tags_pos += len;
}
} else {
/* Set at least the ecc byte positions to 0xff */
start = old_oobinfo.eccbytes;
len = mtd->oob_size - start;
memcpy(oob + start, tmp_buf + start, len);
}
free(tmp_buf);
return 0;
}
int mtd_write(libmtd_t desc, const struct mtd_dev_info *mtd, int fd, int eb,
int offs, void *data, int len, void *oob, int ooblen,
uint8_t mode)
{
int ret;
off_t seek;
struct mtd_write_req ops;
ret = mtd_valid_erase_block(mtd, eb);
if (ret)
return ret;
if (offs < 0 || offs + len > mtd->eb_size) {
errmsg("bad offset %d or length %d, mtd%d eraseblock size is %d",
offs, len, mtd->mtd_num, mtd->eb_size);
errno = EINVAL;
return -1;
}
if (offs % mtd->subpage_size) {
errmsg("write offset %d is not aligned to mtd%d min. I/O size %d",
offs, mtd->mtd_num, mtd->subpage_size);
errno = EINVAL;
return -1;
}
if (len % mtd->subpage_size) {
errmsg("write length %d is not aligned to mtd%d min. I/O size %d",
len, mtd->mtd_num, mtd->subpage_size);
errno = EINVAL;
return -1;
}
/* Calculate seek address */
seek = (off_t)eb * mtd->eb_size + offs;
if (oob) {
ops.start = seek;
ops.len = len;
ops.ooblen = ooblen;
ops.usr_data = (uint64_t)(unsigned long)data;
ops.usr_oob = (uint64_t)(unsigned long)oob;
ops.mode = mode;
ret = ioctl(fd, MEMWRITE, &ops);
if (ret == 0)
return 0;
else if (errno != ENOTTY && errno != EOPNOTSUPP)
return mtd_ioctl_error(mtd, eb, "MEMWRITE");
/* Fall back to old OOB ioctl() if necessary */
if (mode == MTD_OPS_AUTO_OOB)
if (legacy_auto_oob_layout(mtd, fd, ooblen, oob))
return -1;
if (mtd_write_oob(desc, mtd, fd, seek, ooblen, oob) < 0)
return sys_errmsg("cannot write to OOB");
}
if (data) {
/* Seek to the beginning of the eraseblock */
if (lseek(fd, seek, SEEK_SET) != seek)
return sys_errmsg("cannot seek mtd%d to offset %"PRIdoff_t,
mtd->mtd_num, seek);
ret = write(fd, data, len);
if (ret != len)
return sys_errmsg("cannot write %d bytes to mtd%d "
"(eraseblock %d, offset %d)",
len, mtd->mtd_num, eb, offs);
}
return 0;
}
static int do_oob_op(libmtd_t desc, const struct mtd_dev_info *mtd, int fd,
uint64_t start, uint64_t length, void *data, unsigned int cmd64,
unsigned int cmd)
{
int ret, oob_offs;
struct mtd_oob_buf64 oob64;
struct mtd_oob_buf oob;
unsigned long long max_offs;
const char *cmd64_str, *cmd_str;
struct libmtd *lib = (struct libmtd *)desc;
if (cmd64 == MEMREADOOB64) {
cmd64_str = "MEMREADOOB64";
cmd_str = "MEMREADOOB";
} else {
cmd64_str = "MEMWRITEOOB64";
cmd_str = "MEMWRITEOOB";
}
max_offs = (unsigned long long)mtd->eb_cnt * mtd->eb_size;
if (start >= max_offs) {
errmsg("bad page address %" PRIu64 ", mtd%d has %d eraseblocks (%llu bytes)",
start, mtd->mtd_num, mtd->eb_cnt, max_offs);
errno = EINVAL;
return -1;
}
oob_offs = start & (mtd->min_io_size - 1);
if (oob_offs + length > mtd->oob_size || length == 0) {
errmsg("Cannot write %" PRIu64 " OOB bytes to address %" PRIu64 " (OOB offset %u) - mtd%d OOB size is only %d bytes",
length, start, oob_offs, mtd->mtd_num, mtd->oob_size);
errno = EINVAL;
return -1;
}
oob64.start = start;
oob64.length = length;
oob64.usr_ptr = (uint64_t)(unsigned long)data;
if (lib->offs64_ioctls == OFFS64_IOCTLS_SUPPORTED ||
lib->offs64_ioctls == OFFS64_IOCTLS_UNKNOWN) {
ret = ioctl(fd, cmd64, &oob64);
if (ret == 0)
return ret;
if (errno != ENOTTY ||
lib->offs64_ioctls != OFFS64_IOCTLS_UNKNOWN) {
sys_errmsg("%s ioctl failed for mtd%d, offset %" PRIu64 " (eraseblock %" PRIu64 ")",
cmd64_str, mtd->mtd_num, start, start / mtd->eb_size);
}
/*
* MEMREADOOB64/MEMWRITEOOB64 support was added in kernel
* version 2.6.31, so probably we are working with older kernel
* and these ioctls are not supported.
*/
lib->offs64_ioctls = OFFS64_IOCTLS_NOT_SUPPORTED;
}
if (oob64.start > 0xFFFFFFFFULL) {
errmsg("this system can address only up to address %lu",
0xFFFFFFFFUL);
errno = EINVAL;
return -1;
}
oob.start = oob64.start;
oob.length = oob64.length;
oob.ptr = data;
ret = ioctl(fd, cmd, &oob);
if (ret < 0)
sys_errmsg("%s ioctl failed for mtd%d, offset %" PRIu64 " (eraseblock %" PRIu64 ")",
cmd_str, mtd->mtd_num, start, start / mtd->eb_size);
return ret;
}
int mtd_read_oob(libmtd_t desc, const struct mtd_dev_info *mtd, int fd,
uint64_t start, uint64_t length, void *data)
{
return do_oob_op(desc, mtd, fd, start, length, data,
MEMREADOOB64, MEMREADOOB);
}
int mtd_write_oob(libmtd_t desc, const struct mtd_dev_info *mtd, int fd,
uint64_t start, uint64_t length, void *data)
{
return do_oob_op(desc, mtd, fd, start, length, data,
MEMWRITEOOB64, MEMWRITEOOB);
}
int mtd_write_img(const struct mtd_dev_info *mtd, int fd, int eb, int offs,
const char *img_name)
{
int tmp, ret, in_fd, len, written = 0;
off_t seek;
struct stat st;
char *buf;
ret = mtd_valid_erase_block(mtd, eb);
if (ret)
return ret;
if (offs < 0 || offs >= mtd->eb_size) {
errmsg("bad offset %d, mtd%d eraseblock size is %d",
offs, mtd->mtd_num, mtd->eb_size);
errno = EINVAL;
return -1;
}
if (offs % mtd->subpage_size) {
errmsg("write offset %d is not aligned to mtd%d min. I/O size %d",
offs, mtd->mtd_num, mtd->subpage_size);
errno = EINVAL;
return -1;
}
in_fd = open(img_name, O_RDONLY | O_CLOEXEC);
if (in_fd == -1)
return sys_errmsg("cannot open \"%s\"", img_name);
if (fstat(in_fd, &st)) {
sys_errmsg("cannot stat %s", img_name);
goto out_close;
}
len = st.st_size;
if (len % mtd->subpage_size) {
errmsg("size of \"%s\" is %d byte, which is not aligned to "
"mtd%d min. I/O size %d", img_name, len, mtd->mtd_num,
mtd->subpage_size);
errno = EINVAL;
goto out_close;
}
tmp = (offs + len + mtd->eb_size - 1) / mtd->eb_size;
if (eb + tmp > mtd->eb_cnt) {
errmsg("\"%s\" image size is %d bytes, mtd%d size is %d "
"eraseblocks, the image does not fit if we write it "
"starting from eraseblock %d, offset %d",
img_name, len, mtd->mtd_num, mtd->eb_cnt, eb, offs);
errno = EINVAL;
goto out_close;
}
/* Seek to the beginning of the eraseblock */
seek = (off_t)eb * mtd->eb_size + offs;
if (lseek(fd, seek, SEEK_SET) != seek) {
sys_errmsg("cannot seek mtd%d to offset %"PRIdoff_t,
mtd->mtd_num, seek);
goto out_close;
}
buf = xmalloc(mtd->eb_size);
while (written < len) {
int rd = 0;
do {
ret = read(in_fd, buf, mtd->eb_size - offs - rd);
if (ret == -1) {
sys_errmsg("cannot read \"%s\"", img_name);
goto out_free;
}
rd += ret;
} while (ret && rd < mtd->eb_size - offs);
ret = write(fd, buf, rd);
if (ret != rd) {
sys_errmsg("cannot write %d bytes to mtd%d (eraseblock %d, offset %d)",
len, mtd->mtd_num, eb, offs);
goto out_free;
}
offs = 0;
eb += 1;
written += rd;
}
free(buf);
close(in_fd);
return 0;
out_free:
free(buf);
out_close:
close(in_fd);
return -1;
}
int mtd_probe_node(libmtd_t desc, const char *node)
{
struct stat st;
struct mtd_info info;
int i, mjr, mnr;
struct libmtd *lib = (struct libmtd *)desc;
if (stat(node, &st))
return sys_errmsg("cannot get information about \"%s\"", node);
if (!S_ISCHR(st.st_mode)) {
errmsg("\"%s\" is not a character device", node);
errno = EINVAL;
return -1;
}
mjr = major(st.st_rdev);
mnr = minor(st.st_rdev);
if (mtd_get_info((libmtd_t *)lib, &info))
return -1;
if (!lib->sysfs_supported)
return 0;
for (i = info.lowest_mtd_num; i <= info.highest_mtd_num; i++) {
int mjr1, mnr1, ret;
ret = dev_get_major(lib, i, &mjr1, &mnr1);
if (ret) {
if (errno == ENOENT)
continue;
if (!errno)
break;
return -1;
}
if (mjr1 == mjr && mnr1 == mnr)
return 1;
}
errno = 0;
return -1;
}