blob: ab6e399db5208d81689c0ec9752fa0a7e4adeda1 [file] [log] [blame]
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <ctype.h>
#include <string.h>
#include <assert.h>
#include <libgen.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "fio.h"
#include "verify.h"
#include "parse.h"
#include "lib/fls.h"
#include "options.h"
#include "crc/crc32c.h"
/*
* Check if mmap/mmaphuge has a :/foo/bar/file at the end. If so, return that.
*/
static char *get_opt_postfix(const char *str)
{
char *p = strstr(str, ":");
if (!p)
return NULL;
p++;
strip_blank_front(&p);
strip_blank_end(p);
return strdup(p);
}
static int converthexchartoint(char a)
{
int base;
switch (a) {
case '0'...'9':
base = '0';
break;
case 'A'...'F':
base = 'A' - 10;
break;
case 'a'...'f':
base = 'a' - 10;
break;
default:
base = 0;
}
return a - base;
}
static int bs_cmp(const void *p1, const void *p2)
{
const struct bssplit *bsp1 = p1;
const struct bssplit *bsp2 = p2;
return bsp1->perc < bsp2->perc;
}
static int bssplit_ddir(struct thread_options *o, int ddir, char *str)
{
struct bssplit *bssplit;
unsigned int i, perc, perc_missing;
unsigned int max_bs, min_bs;
long long val;
char *fname;
o->bssplit_nr[ddir] = 4;
bssplit = malloc(4 * sizeof(struct bssplit));
i = 0;
max_bs = 0;
min_bs = -1;
while ((fname = strsep(&str, ":")) != NULL) {
char *perc_str;
if (!strlen(fname))
break;
/*
* grow struct buffer, if needed
*/
if (i == o->bssplit_nr[ddir]) {
o->bssplit_nr[ddir] <<= 1;
bssplit = realloc(bssplit, o->bssplit_nr[ddir]
* sizeof(struct bssplit));
}
perc_str = strstr(fname, "/");
if (perc_str) {
*perc_str = '\0';
perc_str++;
perc = atoi(perc_str);
if (perc > 100)
perc = 100;
else if (!perc)
perc = -1U;
} else
perc = -1U;
if (str_to_decimal(fname, &val, 1, o, 0, 0)) {
log_err("fio: bssplit conversion failed\n");
free(bssplit);
return 1;
}
if (val > max_bs)
max_bs = val;
if (val < min_bs)
min_bs = val;
bssplit[i].bs = val;
bssplit[i].perc = perc;
i++;
}
o->bssplit_nr[ddir] = i;
/*
* Now check if the percentages add up, and how much is missing
*/
perc = perc_missing = 0;
for (i = 0; i < o->bssplit_nr[ddir]; i++) {
struct bssplit *bsp = &bssplit[i];
if (bsp->perc == -1U)
perc_missing++;
else
perc += bsp->perc;
}
if (perc > 100 && perc_missing > 1) {
log_err("fio: bssplit percentages add to more than 100%%\n");
free(bssplit);
return 1;
}
/*
* If values didn't have a percentage set, divide the remains between
* them.
*/
if (perc_missing) {
if (perc_missing == 1 && o->bssplit_nr[ddir] == 1)
perc = 100;
for (i = 0; i < o->bssplit_nr[ddir]; i++) {
struct bssplit *bsp = &bssplit[i];
if (bsp->perc == -1U)
bsp->perc = (100 - perc) / perc_missing;
}
}
o->min_bs[ddir] = min_bs;
o->max_bs[ddir] = max_bs;
/*
* now sort based on percentages, for ease of lookup
*/
qsort(bssplit, o->bssplit_nr[ddir], sizeof(struct bssplit), bs_cmp);
o->bssplit[ddir] = bssplit;
return 0;
}
static int str_bssplit_cb(void *data, const char *input)
{
struct thread_data *td = data;
char *str, *p, *odir, *ddir;
int ret = 0;
if (parse_dryrun())
return 0;
p = str = strdup(input);
strip_blank_front(&str);
strip_blank_end(str);
odir = strchr(str, ',');
if (odir) {
ddir = strchr(odir + 1, ',');
if (ddir) {
ret = bssplit_ddir(&td->o, DDIR_TRIM, ddir + 1);
if (!ret)
*ddir = '\0';
} else {
char *op;
op = strdup(odir + 1);
ret = bssplit_ddir(&td->o, DDIR_TRIM, op);
free(op);
}
if (!ret)
ret = bssplit_ddir(&td->o, DDIR_WRITE, odir + 1);
if (!ret) {
*odir = '\0';
ret = bssplit_ddir(&td->o, DDIR_READ, str);
}
} else {
char *op;
op = strdup(str);
ret = bssplit_ddir(&td->o, DDIR_WRITE, op);
free(op);
if (!ret) {
op = strdup(str);
ret = bssplit_ddir(&td->o, DDIR_TRIM, op);
free(op);
}
ret = bssplit_ddir(&td->o, DDIR_READ, str);
}
free(p);
return ret;
}
static int str2error(char *str)
{
const char *err[] = { "EPERM", "ENOENT", "ESRCH", "EINTR", "EIO",
"ENXIO", "E2BIG", "ENOEXEC", "EBADF",
"ECHILD", "EAGAIN", "ENOMEM", "EACCES",
"EFAULT", "ENOTBLK", "EBUSY", "EEXIST",
"EXDEV", "ENODEV", "ENOTDIR", "EISDIR",
"EINVAL", "ENFILE", "EMFILE", "ENOTTY",
"ETXTBSY","EFBIG", "ENOSPC", "ESPIPE",
"EROFS","EMLINK", "EPIPE", "EDOM", "ERANGE" };
int i = 0, num = sizeof(err) / sizeof(void *);
while (i < num) {
if (!strcmp(err[i], str))
return i + 1;
i++;
}
return 0;
}
static int ignore_error_type(struct thread_data *td, int etype, char *str)
{
unsigned int i;
int *error;
char *fname;
if (etype >= ERROR_TYPE_CNT) {
log_err("Illegal error type\n");
return 1;
}
td->o.ignore_error_nr[etype] = 4;
error = malloc(4 * sizeof(struct bssplit));
i = 0;
while ((fname = strsep(&str, ":")) != NULL) {
if (!strlen(fname))
break;
/*
* grow struct buffer, if needed
*/
if (i == td->o.ignore_error_nr[etype]) {
td->o.ignore_error_nr[etype] <<= 1;
error = realloc(error, td->o.ignore_error_nr[etype]
* sizeof(int));
}
if (fname[0] == 'E') {
error[i] = str2error(fname);
} else {
error[i] = atoi(fname);
if (error[i] < 0)
error[i] = -error[i];
}
if (!error[i]) {
log_err("Unknown error %s, please use number value \n",
fname);
free(error);
return 1;
}
i++;
}
if (i) {
td->o.continue_on_error |= 1 << etype;
td->o.ignore_error_nr[etype] = i;
td->o.ignore_error[etype] = error;
} else
free(error);
return 0;
}
static int str_ignore_error_cb(void *data, const char *input)
{
struct thread_data *td = data;
char *str, *p, *n;
int type = 0, ret = 1;
if (parse_dryrun())
return 0;
p = str = strdup(input);
strip_blank_front(&str);
strip_blank_end(str);
while (p) {
n = strchr(p, ',');
if (n)
*n++ = '\0';
ret = ignore_error_type(td, type, p);
if (ret)
break;
p = n;
type++;
}
free(str);
return ret;
}
static int str_rw_cb(void *data, const char *str)
{
struct thread_data *td = data;
struct thread_options *o = &td->o;
char *nr;
if (parse_dryrun())
return 0;
o->ddir_seq_nr = 1;
o->ddir_seq_add = 0;
nr = get_opt_postfix(str);
if (!nr)
return 0;
if (td_random(td))
o->ddir_seq_nr = atoi(nr);
else {
long long val;
if (str_to_decimal(nr, &val, 1, o, 0, 0)) {
log_err("fio: rw postfix parsing failed\n");
free(nr);
return 1;
}
o->ddir_seq_add = val;
}
free(nr);
return 0;
}
static int str_mem_cb(void *data, const char *mem)
{
struct thread_data *td = data;
if (td->o.mem_type == MEM_MMAPHUGE || td->o.mem_type == MEM_MMAP)
td->o.mmapfile = get_opt_postfix(mem);
return 0;
}
static int fio_clock_source_cb(void *data, const char *str)
{
struct thread_data *td = data;
fio_clock_source = td->o.clocksource;
fio_clock_source_set = 1;
fio_clock_init();
return 0;
}
static int str_rwmix_read_cb(void *data, unsigned long long *val)
{
struct thread_data *td = data;
td->o.rwmix[DDIR_READ] = *val;
td->o.rwmix[DDIR_WRITE] = 100 - *val;
return 0;
}
static int str_rwmix_write_cb(void *data, unsigned long long *val)
{
struct thread_data *td = data;
td->o.rwmix[DDIR_WRITE] = *val;
td->o.rwmix[DDIR_READ] = 100 - *val;
return 0;
}
static int str_exitall_cb(void)
{
exitall_on_terminate = 1;
return 0;
}
#ifdef FIO_HAVE_CPU_AFFINITY
int fio_cpus_split(os_cpu_mask_t *mask, unsigned int cpu_index)
{
unsigned int i, index, cpus_in_mask;
const long max_cpu = cpus_online();
cpus_in_mask = fio_cpu_count(mask);
cpu_index = cpu_index % cpus_in_mask;
index = 0;
for (i = 0; i < max_cpu; i++) {
if (!fio_cpu_isset(mask, i))
continue;
if (cpu_index != index)
fio_cpu_clear(mask, i);
index++;
}
return fio_cpu_count(mask);
}
static int str_cpumask_cb(void *data, unsigned long long *val)
{
struct thread_data *td = data;
unsigned int i;
long max_cpu;
int ret;
if (parse_dryrun())
return 0;
ret = fio_cpuset_init(&td->o.cpumask);
if (ret < 0) {
log_err("fio: cpuset_init failed\n");
td_verror(td, ret, "fio_cpuset_init");
return 1;
}
max_cpu = cpus_online();
for (i = 0; i < sizeof(int) * 8; i++) {
if ((1 << i) & *val) {
if (i > max_cpu) {
log_err("fio: CPU %d too large (max=%ld)\n", i,
max_cpu);
return 1;
}
dprint(FD_PARSE, "set cpu allowed %d\n", i);
fio_cpu_set(&td->o.cpumask, i);
}
}
return 0;
}
static int set_cpus_allowed(struct thread_data *td, os_cpu_mask_t *mask,
const char *input)
{
char *cpu, *str, *p;
long max_cpu;
int ret = 0;
ret = fio_cpuset_init(mask);
if (ret < 0) {
log_err("fio: cpuset_init failed\n");
td_verror(td, ret, "fio_cpuset_init");
return 1;
}
p = str = strdup(input);
strip_blank_front(&str);
strip_blank_end(str);
max_cpu = cpus_online();
while ((cpu = strsep(&str, ",")) != NULL) {
char *str2, *cpu2;
int icpu, icpu2;
if (!strlen(cpu))
break;
str2 = cpu;
icpu2 = -1;
while ((cpu2 = strsep(&str2, "-")) != NULL) {
if (!strlen(cpu2))
break;
icpu2 = atoi(cpu2);
}
icpu = atoi(cpu);
if (icpu2 == -1)
icpu2 = icpu;
while (icpu <= icpu2) {
if (icpu >= FIO_MAX_CPUS) {
log_err("fio: your OS only supports up to"
" %d CPUs\n", (int) FIO_MAX_CPUS);
ret = 1;
break;
}
if (icpu > max_cpu) {
log_err("fio: CPU %d too large (max=%ld)\n",
icpu, max_cpu);
ret = 1;
break;
}
dprint(FD_PARSE, "set cpu allowed %d\n", icpu);
fio_cpu_set(mask, icpu);
icpu++;
}
if (ret)
break;
}
free(p);
return ret;
}
static int str_cpus_allowed_cb(void *data, const char *input)
{
struct thread_data *td = data;
if (parse_dryrun())
return 0;
return set_cpus_allowed(td, &td->o.cpumask, input);
}
static int str_verify_cpus_allowed_cb(void *data, const char *input)
{
struct thread_data *td = data;
return set_cpus_allowed(td, &td->o.verify_cpumask, input);
}
#endif
#ifdef CONFIG_LIBNUMA
static int str_numa_cpunodes_cb(void *data, char *input)
{
struct thread_data *td = data;
struct bitmask *verify_bitmask;
if (parse_dryrun())
return 0;
/* numa_parse_nodestring() parses a character string list
* of nodes into a bit mask. The bit mask is allocated by
* numa_allocate_nodemask(), so it should be freed by
* numa_free_nodemask().
*/
verify_bitmask = numa_parse_nodestring(input);
if (verify_bitmask == NULL) {
log_err("fio: numa_parse_nodestring failed\n");
td_verror(td, 1, "str_numa_cpunodes_cb");
return 1;
}
numa_free_nodemask(verify_bitmask);
td->o.numa_cpunodes = strdup(input);
return 0;
}
static int str_numa_mpol_cb(void *data, char *input)
{
struct thread_data *td = data;
const char * const policy_types[] =
{ "default", "prefer", "bind", "interleave", "local", NULL };
int i;
char *nodelist;
struct bitmask *verify_bitmask;
if (parse_dryrun())
return 0;
nodelist = strchr(input, ':');
if (nodelist) {
/* NUL-terminate mode */
*nodelist++ = '\0';
}
for (i = 0; i <= MPOL_LOCAL; i++) {
if (!strcmp(input, policy_types[i])) {
td->o.numa_mem_mode = i;
break;
}
}
if (i > MPOL_LOCAL) {
log_err("fio: memory policy should be: default, prefer, bind, interleave, local\n");
goto out;
}
switch (td->o.numa_mem_mode) {
case MPOL_PREFERRED:
/*
* Insist on a nodelist of one node only
*/
if (nodelist) {
char *rest = nodelist;
while (isdigit(*rest))
rest++;
if (*rest) {
log_err("fio: one node only for \'prefer\'\n");
goto out;
}
} else {
log_err("fio: one node is needed for \'prefer\'\n");
goto out;
}
break;
case MPOL_INTERLEAVE:
/*
* Default to online nodes with memory if no nodelist
*/
if (!nodelist)
nodelist = strdup("all");
break;
case MPOL_LOCAL:
case MPOL_DEFAULT:
/*
* Don't allow a nodelist
*/
if (nodelist) {
log_err("fio: NO nodelist for \'local\'\n");
goto out;
}
break;
case MPOL_BIND:
/*
* Insist on a nodelist
*/
if (!nodelist) {
log_err("fio: a nodelist is needed for \'bind\'\n");
goto out;
}
break;
}
/* numa_parse_nodestring() parses a character string list
* of nodes into a bit mask. The bit mask is allocated by
* numa_allocate_nodemask(), so it should be freed by
* numa_free_nodemask().
*/
switch (td->o.numa_mem_mode) {
case MPOL_PREFERRED:
td->o.numa_mem_prefer_node = atoi(nodelist);
break;
case MPOL_INTERLEAVE:
case MPOL_BIND:
verify_bitmask = numa_parse_nodestring(nodelist);
if (verify_bitmask == NULL) {
log_err("fio: numa_parse_nodestring failed\n");
td_verror(td, 1, "str_numa_memnodes_cb");
return 1;
}
td->o.numa_memnodes = strdup(nodelist);
numa_free_nodemask(verify_bitmask);
break;
case MPOL_LOCAL:
case MPOL_DEFAULT:
default:
break;
}
return 0;
out:
return 1;
}
#endif
static int str_fst_cb(void *data, const char *str)
{
struct thread_data *td = data;
char *nr = get_opt_postfix(str);
td->file_service_nr = 1;
if (nr) {
td->file_service_nr = atoi(nr);
free(nr);
}
return 0;
}
#ifdef CONFIG_SYNC_FILE_RANGE
static int str_sfr_cb(void *data, const char *str)
{
struct thread_data *td = data;
char *nr = get_opt_postfix(str);
td->sync_file_range_nr = 1;
if (nr) {
td->sync_file_range_nr = atoi(nr);
free(nr);
}
return 0;
}
#endif
static int str_random_distribution_cb(void *data, const char *str)
{
struct thread_data *td = data;
double val;
char *nr;
if (parse_dryrun())
return 0;
if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
val = FIO_DEF_ZIPF;
else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
val = FIO_DEF_PARETO;
else
return 0;
nr = get_opt_postfix(str);
if (nr && !str_to_float(nr, &val, 0)) {
log_err("fio: random postfix parsing failed\n");
free(nr);
return 1;
}
free(nr);
if (td->o.random_distribution == FIO_RAND_DIST_ZIPF) {
if (val == 1.00) {
log_err("fio: zipf theta must different than 1.0\n");
return 1;
}
td->o.zipf_theta.u.f = val;
} else {
if (val <= 0.00 || val >= 1.00) {
log_err("fio: pareto input out of range (0 < input < 1.0)\n");
return 1;
}
td->o.pareto_h.u.f = val;
}
return 0;
}
/*
* Return next name in the string. Files are separated with ':'. If the ':'
* is escaped with a '\', then that ':' is part of the filename and does not
* indicate a new file.
*/
static char *get_next_name(char **ptr)
{
char *str = *ptr;
char *p, *start;
if (!str || !strlen(str))
return NULL;
start = str;
do {
/*
* No colon, we are done
*/
p = strchr(str, ':');
if (!p) {
*ptr = NULL;
break;
}
/*
* We got a colon, but it's the first character. Skip and
* continue
*/
if (p == start) {
str = ++start;
continue;
}
if (*(p - 1) != '\\') {
*p = '\0';
*ptr = p + 1;
break;
}
memmove(p - 1, p, strlen(p) + 1);
str = p;
} while (1);
return start;
}
static int get_max_name_idx(char *input)
{
unsigned int cur_idx;
char *str, *p;
p = str = strdup(input);
for (cur_idx = 0; ; cur_idx++)
if (get_next_name(&str) == NULL)
break;
free(p);
return cur_idx;
}
/*
* Returns the directory at the index, indexes > entires will be
* assigned via modulo division of the index
*/
int set_name_idx(char *target, char *input, int index)
{
unsigned int cur_idx;
int len;
char *fname, *str, *p;
p = str = strdup(input);
index %= get_max_name_idx(input);
for (cur_idx = 0; cur_idx <= index; cur_idx++)
fname = get_next_name(&str);
len = sprintf(target, "%s/", fname);
free(p);
return len;
}
static int str_filename_cb(void *data, const char *input)
{
struct thread_data *td = data;
char *fname, *str, *p;
p = str = strdup(input);
strip_blank_front(&str);
strip_blank_end(str);
if (!td->files_index)
td->o.nr_files = 0;
while ((fname = get_next_name(&str)) != NULL) {
if (!strlen(fname))
break;
add_file(td, fname, 0, 1);
}
free(p);
return 0;
}
static int str_directory_cb(void *data, const char fio_unused *unused)
{
struct thread_data *td = data;
struct stat sb;
char *dirname, *str, *p;
int ret = 0;
if (parse_dryrun())
return 0;
p = str = strdup(td->o.directory);
while ((dirname = get_next_name(&str)) != NULL) {
if (lstat(dirname, &sb) < 0) {
ret = errno;
log_err("fio: %s is not a directory\n", dirname);
td_verror(td, ret, "lstat");
goto out;
}
if (!S_ISDIR(sb.st_mode)) {
log_err("fio: %s is not a directory\n", dirname);
ret = 1;
goto out;
}
}
out:
free(p);
return ret;
}
static int str_opendir_cb(void *data, const char fio_unused *str)
{
struct thread_data *td = data;
if (parse_dryrun())
return 0;
if (!td->files_index)
td->o.nr_files = 0;
return add_dir_files(td, td->o.opendir);
}
static int pattern_cb(char *pattern, unsigned int max_size,
const char *input, unsigned int *pattern_bytes)
{
long off;
int i = 0, j = 0, len, k, base = 10;
uint32_t pattern_length;
char *loc1, *loc2;
/*
* Check if it's a string input
*/
loc1 = strchr(input, '\"');
if (loc1) {
do {
loc1++;
if (*loc1 == '\0' || *loc1 == '\"')
break;
pattern[i] = *loc1;
i++;
} while (i < max_size);
if (!i)
return 1;
goto fill;
}
/*
* No string, find out if it's decimal or hexidecimal
*/
loc1 = strstr(input, "0x");
loc2 = strstr(input, "0X");
if (loc1 || loc2)
base = 16;
off = strtol(input, NULL, base);
if (off != LONG_MAX || errno != ERANGE) {
while (off) {
pattern[i] = off & 0xff;
off >>= 8;
i++;
}
} else {
len = strlen(input);
k = len - 1;
if (base == 16) {
if (loc1)
j = loc1 - input + 2;
else
j = loc2 - input + 2;
} else
return 1;
if (len - j < max_size * 2) {
while (k >= j) {
off = converthexchartoint(input[k--]);
if (k >= j)
off += (converthexchartoint(input[k--])
* 16);
pattern[i++] = (char) off;
}
}
}
/*
* Fill the pattern all the way to the end. This greatly reduces
* the number of memcpy's we have to do when verifying the IO.
*/
fill:
pattern_length = i;
while (i > 1 && i * 2 <= max_size) {
memcpy(&pattern[i], &pattern[0], i);
i *= 2;
}
/*
* Fill remainder, if the pattern multiple ends up not being
* max_size.
*/
while (i > 1 && i < max_size) {
unsigned int b = min(pattern_length, max_size - i);
memcpy(&pattern[i], &pattern[0], b);
i += b;
}
if (i == 1) {
/*
* The code in verify_io_u_pattern assumes a single byte
* pattern fills the whole verify pattern buffer.
*/
memset(pattern, pattern[0], max_size);
}
*pattern_bytes = i;
return 0;
}
static int str_buffer_pattern_cb(void *data, const char *input)
{
struct thread_data *td = data;
int ret;
ret = pattern_cb(td->o.buffer_pattern, MAX_PATTERN_SIZE, input,
&td->o.buffer_pattern_bytes);
if (!ret && td->o.buffer_pattern_bytes) {
if (!td->o.compress_percentage)
td->o.refill_buffers = 0;
td->o.scramble_buffers = 0;
td->o.zero_buffers = 0;
} else {
log_err("fio: failed parsing pattern `%s`\n", input);
ret = 1;
}
return ret;
}
static int str_buffer_compress_cb(void *data, unsigned long long *il)
{
struct thread_data *td = data;
td->flags |= TD_F_COMPRESS;
td->o.compress_percentage = *il;
return 0;
}
static int str_dedupe_cb(void *data, unsigned long long *il)
{
struct thread_data *td = data;
td->flags |= TD_F_COMPRESS;
td->o.dedupe_percentage = *il;
td->o.refill_buffers = 1;
return 0;
}
static int str_verify_pattern_cb(void *data, const char *input)
{
struct thread_data *td = data;
int ret;
ret = pattern_cb(td->o.verify_pattern, MAX_PATTERN_SIZE, input,
&td->o.verify_pattern_bytes);
/*
* VERIFY_META could already be set
*/
if (!ret && td->o.verify == VERIFY_NONE)
td->o.verify = VERIFY_PATTERN;
return ret;
}
static int str_gtod_reduce_cb(void *data, int *il)
{
struct thread_data *td = data;
int val = *il;
td->o.disable_lat = !!val;
td->o.disable_clat = !!val;
td->o.disable_slat = !!val;
td->o.disable_bw = !!val;
td->o.clat_percentiles = !val;
if (val)
td->tv_cache_mask = 63;
return 0;
}
static int str_size_cb(void *data, unsigned long long *__val)
{
struct thread_data *td = data;
unsigned long long v = *__val;
if (parse_is_percent(v)) {
td->o.size = 0;
td->o.size_percent = -1ULL - v;
} else
td->o.size = v;
return 0;
}
static int rw_verify(struct fio_option *o, void *data)
{
struct thread_data *td = data;
if (read_only && td_write(td)) {
log_err("fio: job <%s> has write bit set, but fio is in"
" read-only mode\n", td->o.name);
return 1;
}
return 0;
}
static int gtod_cpu_verify(struct fio_option *o, void *data)
{
#ifndef FIO_HAVE_CPU_AFFINITY
struct thread_data *td = data;
if (td->o.gtod_cpu) {
log_err("fio: platform must support CPU affinity for"
"gettimeofday() offloading\n");
return 1;
}
#endif
return 0;
}
/*
* Option grouping
*/
static struct opt_group fio_opt_groups[] = {
{
.name = "General",
.mask = FIO_OPT_C_GENERAL,
},
{
.name = "I/O",
.mask = FIO_OPT_C_IO,
},
{
.name = "File",
.mask = FIO_OPT_C_FILE,
},
{
.name = "Statistics",
.mask = FIO_OPT_C_STAT,
},
{
.name = "Logging",
.mask = FIO_OPT_C_LOG,
},
{
.name = "Profiles",
.mask = FIO_OPT_C_PROFILE,
},
{
.name = NULL,
},
};
static struct opt_group *__opt_group_from_mask(struct opt_group *ogs, unsigned int *mask,
unsigned int inv_mask)
{
struct opt_group *og;
int i;
if (*mask == inv_mask || !*mask)
return NULL;
for (i = 0; ogs[i].name; i++) {
og = &ogs[i];
if (*mask & og->mask) {
*mask &= ~(og->mask);
return og;
}
}
return NULL;
}
struct opt_group *opt_group_from_mask(unsigned int *mask)
{
return __opt_group_from_mask(fio_opt_groups, mask, FIO_OPT_C_INVALID);
}
static struct opt_group fio_opt_cat_groups[] = {
{
.name = "Latency profiling",
.mask = FIO_OPT_G_LATPROF,
},
{
.name = "Rate",
.mask = FIO_OPT_G_RATE,
},
{
.name = "Zone",
.mask = FIO_OPT_G_ZONE,
},
{
.name = "Read/write mix",
.mask = FIO_OPT_G_RWMIX,
},
{
.name = "Verify",
.mask = FIO_OPT_G_VERIFY,
},
{
.name = "Trim",
.mask = FIO_OPT_G_TRIM,
},
{
.name = "I/O Logging",
.mask = FIO_OPT_G_IOLOG,
},
{
.name = "I/O Depth",
.mask = FIO_OPT_G_IO_DEPTH,
},
{
.name = "I/O Flow",
.mask = FIO_OPT_G_IO_FLOW,
},
{
.name = "Description",
.mask = FIO_OPT_G_DESC,
},
{
.name = "Filename",
.mask = FIO_OPT_G_FILENAME,
},
{
.name = "General I/O",
.mask = FIO_OPT_G_IO_BASIC,
},
{
.name = "Cgroups",
.mask = FIO_OPT_G_CGROUP,
},
{
.name = "Runtime",
.mask = FIO_OPT_G_RUNTIME,
},
{
.name = "Process",
.mask = FIO_OPT_G_PROCESS,
},
{
.name = "Job credentials / priority",
.mask = FIO_OPT_G_CRED,
},
{
.name = "Clock settings",
.mask = FIO_OPT_G_CLOCK,
},
{
.name = "I/O Type",
.mask = FIO_OPT_G_IO_TYPE,
},
{
.name = "I/O Thinktime",
.mask = FIO_OPT_G_THINKTIME,
},
{
.name = "Randomizations",
.mask = FIO_OPT_G_RANDOM,
},
{
.name = "I/O buffers",
.mask = FIO_OPT_G_IO_BUF,
},
{
.name = "Tiobench profile",
.mask = FIO_OPT_G_TIOBENCH,
},
{
.name = NULL,
}
};
struct opt_group *opt_group_cat_from_mask(unsigned int *mask)
{
return __opt_group_from_mask(fio_opt_cat_groups, mask, FIO_OPT_G_INVALID);
}
/*
* Map of job/command line options
*/
struct fio_option fio_options[FIO_MAX_OPTS] = {
{
.name = "description",
.lname = "Description of job",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(description),
.help = "Text job description",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_DESC,
},
{
.name = "name",
.lname = "Job name",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(name),
.help = "Name of this job",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_DESC,
},
{
.name = "filename",
.lname = "Filename(s)",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(filename),
.cb = str_filename_cb,
.prio = -1, /* must come after "directory" */
.help = "File(s) to use for the workload",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_FILENAME,
},
{
.name = "directory",
.lname = "Directory",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(directory),
.cb = str_directory_cb,
.help = "Directory to store files in",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_FILENAME,
},
{
.name = "filename_format",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(filename_format),
.prio = -1, /* must come after "directory" */
.help = "Override default $jobname.$jobnum.$filenum naming",
.def = "$jobname.$jobnum.$filenum",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_FILENAME,
},
{
.name = "lockfile",
.lname = "Lockfile",
.type = FIO_OPT_STR,
.off1 = td_var_offset(file_lock_mode),
.help = "Lock file when doing IO to it",
.prio = 1,
.parent = "filename",
.hide = 0,
.def = "none",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_FILENAME,
.posval = {
{ .ival = "none",
.oval = FILE_LOCK_NONE,
.help = "No file locking",
},
{ .ival = "exclusive",
.oval = FILE_LOCK_EXCLUSIVE,
.help = "Exclusive file lock",
},
{
.ival = "readwrite",
.oval = FILE_LOCK_READWRITE,
.help = "Read vs write lock",
},
},
},
{
.name = "opendir",
.lname = "Open directory",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(opendir),
.cb = str_opendir_cb,
.help = "Recursively add files from this directory and down",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_FILENAME,
},
{
.name = "rw",
.lname = "Read/write",
.alias = "readwrite",
.type = FIO_OPT_STR,
.cb = str_rw_cb,
.off1 = td_var_offset(td_ddir),
.help = "IO direction",
.def = "read",
.verify = rw_verify,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_BASIC,
.posval = {
{ .ival = "read",
.oval = TD_DDIR_READ,
.help = "Sequential read",
},
{ .ival = "write",
.oval = TD_DDIR_WRITE,
.help = "Sequential write",
},
{ .ival = "trim",
.oval = TD_DDIR_TRIM,
.help = "Sequential trim",
},
{ .ival = "randread",
.oval = TD_DDIR_RANDREAD,
.help = "Random read",
},
{ .ival = "randwrite",
.oval = TD_DDIR_RANDWRITE,
.help = "Random write",
},
{ .ival = "randtrim",
.oval = TD_DDIR_RANDTRIM,
.help = "Random trim",
},
{ .ival = "rw",
.oval = TD_DDIR_RW,
.help = "Sequential read and write mix",
},
{ .ival = "readwrite",
.oval = TD_DDIR_RW,
.help = "Sequential read and write mix",
},
{ .ival = "randrw",
.oval = TD_DDIR_RANDRW,
.help = "Random read and write mix"
},
},
},
{
.name = "rw_sequencer",
.lname = "RW Sequencer",
.type = FIO_OPT_STR,
.off1 = td_var_offset(rw_seq),
.help = "IO offset generator modifier",
.def = "sequential",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_BASIC,
.posval = {
{ .ival = "sequential",
.oval = RW_SEQ_SEQ,
.help = "Generate sequential offsets",
},
{ .ival = "identical",
.oval = RW_SEQ_IDENT,
.help = "Generate identical offsets",
},
},
},
{
.name = "ioengine",
.lname = "IO Engine",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(ioengine),
.help = "IO engine to use",
.def = FIO_PREFERRED_ENGINE,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_BASIC,
.posval = {
{ .ival = "sync",
.help = "Use read/write",
},
{ .ival = "psync",
.help = "Use pread/pwrite",
},
{ .ival = "vsync",
.help = "Use readv/writev",
},
#ifdef CONFIG_PWRITEV
{ .ival = "pvsync",
.help = "Use preadv/pwritev",
},
#endif
#ifdef CONFIG_LIBAIO
{ .ival = "libaio",
.help = "Linux native asynchronous IO",
},
#endif
#ifdef CONFIG_POSIXAIO
{ .ival = "posixaio",
.help = "POSIX asynchronous IO",
},
#endif
#ifdef CONFIG_SOLARISAIO
{ .ival = "solarisaio",
.help = "Solaris native asynchronous IO",
},
#endif
#ifdef CONFIG_WINDOWSAIO
{ .ival = "windowsaio",
.help = "Windows native asynchronous IO"
},
#endif
#ifdef CONFIG_RBD
{ .ival = "rbd",
.help = "Rados Block Device asynchronous IO"
},
#endif
{ .ival = "mmap",
.help = "Memory mapped IO"
},
#ifdef CONFIG_LINUX_SPLICE
{ .ival = "splice",
.help = "splice/vmsplice based IO",
},
{ .ival = "netsplice",
.help = "splice/vmsplice to/from the network",
},
#endif
#ifdef FIO_HAVE_SGIO
{ .ival = "sg",
.help = "SCSI generic v3 IO",
},
#endif
{ .ival = "null",
.help = "Testing engine (no data transfer)",
},
{ .ival = "net",
.help = "Network IO",
},
{ .ival = "cpuio",
.help = "CPU cycle burner engine",
},
#ifdef CONFIG_GUASI
{ .ival = "guasi",
.help = "GUASI IO engine",
},
#endif
#ifdef FIO_HAVE_BINJECT
{ .ival = "binject",
.help = "binject direct inject block engine",
},
#endif
#ifdef CONFIG_RDMA
{ .ival = "rdma",
.help = "RDMA IO engine",
},
#endif
#ifdef CONFIG_FUSION_AW
{ .ival = "fusion-aw-sync",
.help = "Fusion-io atomic write engine",
},
#endif
#ifdef CONFIG_LINUX_EXT4_MOVE_EXTENT
{ .ival = "e4defrag",
.help = "ext4 defrag engine",
},
#endif
#ifdef CONFIG_LINUX_FALLOCATE
{ .ival = "falloc",
.help = "fallocate() file based engine",
},
#endif
#ifdef CONFIG_GFAPI
{ .ival = "gfapi",
.help = "Glusterfs libgfapi(sync) based engine"
},
{ .ival = "gfapi_async",
.help = "Glusterfs libgfapi(async) based engine"
},
#endif
#ifdef CONFIG_LIBHDFS
{ .ival = "libhdfs",
.help = "Hadoop Distributed Filesystem (HDFS) engine"
},
#endif
{ .ival = "external",
.help = "Load external engine (append name)",
},
},
},
{
.name = "iodepth",
.lname = "IO Depth",
.type = FIO_OPT_INT,
.off1 = td_var_offset(iodepth),
.help = "Number of IO buffers to keep in flight",
.minval = 1,
.interval = 1,
.def = "1",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_BASIC,
},
{
.name = "iodepth_batch",
.lname = "IO Depth batch",
.alias = "iodepth_batch_submit",
.type = FIO_OPT_INT,
.off1 = td_var_offset(iodepth_batch),
.help = "Number of IO buffers to submit in one go",
.parent = "iodepth",
.hide = 1,
.minval = 1,
.interval = 1,
.def = "1",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_BASIC,
},
{
.name = "iodepth_batch_complete",
.lname = "IO Depth batch complete",
.type = FIO_OPT_INT,
.off1 = td_var_offset(iodepth_batch_complete),
.help = "Number of IO buffers to retrieve in one go",
.parent = "iodepth",
.hide = 1,
.minval = 0,
.interval = 1,
.def = "1",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_BASIC,
},
{
.name = "iodepth_low",
.lname = "IO Depth batch low",
.type = FIO_OPT_INT,
.off1 = td_var_offset(iodepth_low),
.help = "Low water mark for queuing depth",
.parent = "iodepth",
.hide = 1,
.interval = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_BASIC,
},
{
.name = "size",
.lname = "Size",
.type = FIO_OPT_STR_VAL,
.cb = str_size_cb,
.off1 = td_var_offset(size),
.help = "Total size of device or files",
.interval = 1024 * 1024,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_INVALID,
},
{
.name = "io_size",
.alias = "io_limit",
.lname = "IO Size",
.type = FIO_OPT_STR_VAL,
.off1 = td_var_offset(io_limit),
.interval = 1024 * 1024,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_INVALID,
},
{
.name = "fill_device",
.lname = "Fill device",
.alias = "fill_fs",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(fill_device),
.help = "Write until an ENOSPC error occurs",
.def = "0",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_INVALID,
},
{
.name = "filesize",
.lname = "File size",
.type = FIO_OPT_STR_VAL,
.off1 = td_var_offset(file_size_low),
.off2 = td_var_offset(file_size_high),
.minval = 1,
.help = "Size of individual files",
.interval = 1024 * 1024,
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_INVALID,
},
{
.name = "file_append",
.lname = "File append",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(file_append),
.help = "IO will start at the end of the file(s)",
.def = "0",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_INVALID,
},
{
.name = "offset",
.lname = "IO offset",
.alias = "fileoffset",
.type = FIO_OPT_STR_VAL,
.off1 = td_var_offset(start_offset),
.help = "Start IO from this offset",
.def = "0",
.interval = 1024 * 1024,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_INVALID,
},
{
.name = "offset_increment",
.lname = "IO offset increment",
.type = FIO_OPT_STR_VAL,
.off1 = td_var_offset(offset_increment),
.help = "What is the increment from one offset to the next",
.parent = "offset",
.hide = 1,
.def = "0",
.interval = 1024 * 1024,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_INVALID,
},
{
.name = "number_ios",
.lname = "Number of IOs to perform",
.type = FIO_OPT_STR_VAL,
.off1 = td_var_offset(number_ios),
.help = "Force job completion after this number of IOs",
.def = "0",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_INVALID,
},
{
.name = "bs",
.lname = "Block size",
.alias = "blocksize",
.type = FIO_OPT_INT,
.off1 = td_var_offset(bs[DDIR_READ]),
.off2 = td_var_offset(bs[DDIR_WRITE]),
.off3 = td_var_offset(bs[DDIR_TRIM]),
.minval = 1,
.help = "Block size unit",
.def = "4k",
.parent = "rw",
.hide = 1,
.interval = 512,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_INVALID,
},
{
.name = "ba",
.lname = "Block size align",
.alias = "blockalign",
.type = FIO_OPT_INT,
.off1 = td_var_offset(ba[DDIR_READ]),
.off2 = td_var_offset(ba[DDIR_WRITE]),
.off3 = td_var_offset(ba[DDIR_TRIM]),
.minval = 1,
.help = "IO block offset alignment",
.parent = "rw",
.hide = 1,
.interval = 512,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_INVALID,
},
{
.name = "bsrange",
.lname = "Block size range",
.alias = "blocksize_range",
.type = FIO_OPT_RANGE,
.off1 = td_var_offset(min_bs[DDIR_READ]),
.off2 = td_var_offset(max_bs[DDIR_READ]),
.off3 = td_var_offset(min_bs[DDIR_WRITE]),
.off4 = td_var_offset(max_bs[DDIR_WRITE]),
.off5 = td_var_offset(min_bs[DDIR_TRIM]),
.off6 = td_var_offset(max_bs[DDIR_TRIM]),
.minval = 1,
.help = "Set block size range (in more detail than bs)",
.parent = "rw",
.hide = 1,
.interval = 4096,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_INVALID,
},
{
.name = "bssplit",
.lname = "Block size split",
.type = FIO_OPT_STR,
.cb = str_bssplit_cb,
.off1 = td_var_offset(bssplit),
.help = "Set a specific mix of block sizes",
.parent = "rw",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_INVALID,
},
{
.name = "bs_unaligned",
.lname = "Block size unaligned",
.alias = "blocksize_unaligned",
.type = FIO_OPT_STR_SET,
.off1 = td_var_offset(bs_unaligned),
.help = "Don't sector align IO buffer sizes",
.parent = "rw",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_INVALID,
},
{
.name = "bs_is_seq_rand",
.lname = "Block size division is seq/random (not read/write)",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(bs_is_seq_rand),
.help = "Consider any blocksize setting to be sequential,random",
.def = "0",
.parent = "blocksize",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_INVALID,
},
{
.name = "randrepeat",
.lname = "Random repeatable",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(rand_repeatable),
.help = "Use repeatable random IO pattern",
.def = "1",
.parent = "rw",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_RANDOM,
},
{
.name = "randseed",
.lname = "The random generator seed",
.type = FIO_OPT_STR_VAL,
.off1 = td_var_offset(rand_seed),
.help = "Set the random generator seed value",
.parent = "rw",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_RANDOM,
},
{
.name = "use_os_rand",
.lname = "Use OS random",
.type = FIO_OPT_DEPRECATED,
.off1 = td_var_offset(dep_use_os_rand),
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_RANDOM,
},
{
.name = "norandommap",
.lname = "No randommap",
.type = FIO_OPT_STR_SET,
.off1 = td_var_offset(norandommap),
.help = "Accept potential duplicate random blocks",
.parent = "rw",
.hide = 1,
.hide_on_set = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_RANDOM,
},
{
.name = "softrandommap",
.lname = "Soft randommap",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(softrandommap),
.help = "Set norandommap if randommap allocation fails",
.parent = "norandommap",
.hide = 1,
.def = "0",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_RANDOM,
},
{
.name = "random_generator",
.type = FIO_OPT_STR,
.off1 = td_var_offset(random_generator),
.help = "Type of random number generator to use",
.def = "tausworthe",
.posval = {
{ .ival = "tausworthe",
.oval = FIO_RAND_GEN_TAUSWORTHE,
.help = "Strong Tausworthe generator",
},
{ .ival = "lfsr",
.oval = FIO_RAND_GEN_LFSR,
.help = "Variable length LFSR",
},
},
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_RANDOM,
},
{
.name = "random_distribution",
.type = FIO_OPT_STR,
.off1 = td_var_offset(random_distribution),
.cb = str_random_distribution_cb,
.help = "Random offset distribution generator",
.def = "random",
.posval = {
{ .ival = "random",
.oval = FIO_RAND_DIST_RANDOM,
.help = "Completely random",
},
{ .ival = "zipf",
.oval = FIO_RAND_DIST_ZIPF,
.help = "Zipf distribution",
},
{ .ival = "pareto",
.oval = FIO_RAND_DIST_PARETO,
.help = "Pareto distribution",
},
},
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_RANDOM,
},
{
.name = "percentage_random",
.lname = "Percentage Random",
.type = FIO_OPT_INT,
.off1 = td_var_offset(perc_rand[DDIR_READ]),
.off2 = td_var_offset(perc_rand[DDIR_WRITE]),
.off3 = td_var_offset(perc_rand[DDIR_TRIM]),
.maxval = 100,
.help = "Percentage of seq/random mix that should be random",
.def = "100,100,100",
.interval = 5,
.inverse = "percentage_sequential",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_RANDOM,
},
{
.name = "percentage_sequential",
.lname = "Percentage Sequential",
.type = FIO_OPT_DEPRECATED,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_RANDOM,
},
{
.name = "allrandrepeat",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(allrand_repeatable),
.help = "Use repeatable random numbers for everything",
.def = "0",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_RANDOM,
},
{
.name = "nrfiles",
.lname = "Number of files",
.alias = "nr_files",
.type = FIO_OPT_INT,
.off1 = td_var_offset(nr_files),
.help = "Split job workload between this number of files",
.def = "1",
.interval = 1,
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_INVALID,
},
{
.name = "openfiles",
.lname = "Number of open files",
.type = FIO_OPT_INT,
.off1 = td_var_offset(open_files),
.help = "Number of files to keep open at the same time",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_INVALID,
},
{
.name = "file_service_type",
.lname = "File service type",
.type = FIO_OPT_STR,
.cb = str_fst_cb,
.off1 = td_var_offset(file_service_type),
.help = "How to select which file to service next",
.def = "roundrobin",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_INVALID,
.posval = {
{ .ival = "random",
.oval = FIO_FSERVICE_RANDOM,
.help = "Choose a file at random",
},
{ .ival = "roundrobin",
.oval = FIO_FSERVICE_RR,
.help = "Round robin select files",
},
{ .ival = "sequential",
.oval = FIO_FSERVICE_SEQ,
.help = "Finish one file before moving to the next",
},
},
.parent = "nrfiles",
.hide = 1,
},
#ifdef CONFIG_POSIX_FALLOCATE
{
.name = "fallocate",
.lname = "Fallocate",
.type = FIO_OPT_STR,
.off1 = td_var_offset(fallocate_mode),
.help = "Whether pre-allocation is performed when laying out files",
.def = "posix",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_INVALID,
.posval = {
{ .ival = "none",
.oval = FIO_FALLOCATE_NONE,
.help = "Do not pre-allocate space",
},
{ .ival = "posix",
.oval = FIO_FALLOCATE_POSIX,
.help = "Use posix_fallocate()",
},
#ifdef CONFIG_LINUX_FALLOCATE
{ .ival = "keep",
.oval = FIO_FALLOCATE_KEEP_SIZE,
.help = "Use fallocate(..., FALLOC_FL_KEEP_SIZE, ...)",
},
#endif
/* Compatibility with former boolean values */
{ .ival = "0",
.oval = FIO_FALLOCATE_NONE,
.help = "Alias for 'none'",
},
{ .ival = "1",
.oval = FIO_FALLOCATE_POSIX,
.help = "Alias for 'posix'",
},
},
},
#endif /* CONFIG_POSIX_FALLOCATE */
{
.name = "fadvise_hint",
.lname = "Fadvise hint",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(fadvise_hint),
.help = "Use fadvise() to advise the kernel on IO pattern",
.def = "1",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_INVALID,
},
{
.name = "fsync",
.lname = "Fsync",
.type = FIO_OPT_INT,
.off1 = td_var_offset(fsync_blocks),
.help = "Issue fsync for writes every given number of blocks",
.def = "0",
.interval = 1,
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_INVALID,
},
{
.name = "fdatasync",
.lname = "Fdatasync",
.type = FIO_OPT_INT,
.off1 = td_var_offset(fdatasync_blocks),
.help = "Issue fdatasync for writes every given number of blocks",
.def = "0",
.interval = 1,
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_INVALID,
},
{
.name = "write_barrier",
.lname = "Write barrier",
.type = FIO_OPT_INT,
.off1 = td_var_offset(barrier_blocks),
.help = "Make every Nth write a barrier write",
.def = "0",
.interval = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_INVALID,
},
#ifdef CONFIG_SYNC_FILE_RANGE
{
.name = "sync_file_range",
.lname = "Sync file range",
.posval = {
{ .ival = "wait_before",
.oval = SYNC_FILE_RANGE_WAIT_BEFORE,
.help = "SYNC_FILE_RANGE_WAIT_BEFORE",
.orval = 1,
},
{ .ival = "write",
.oval = SYNC_FILE_RANGE_WRITE,
.help = "SYNC_FILE_RANGE_WRITE",
.orval = 1,
},
{
.ival = "wait_after",
.oval = SYNC_FILE_RANGE_WAIT_AFTER,
.help = "SYNC_FILE_RANGE_WAIT_AFTER",
.orval = 1,
},
},
.type = FIO_OPT_STR_MULTI,
.cb = str_sfr_cb,
.off1 = td_var_offset(sync_file_range),
.help = "Use sync_file_range()",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_INVALID,
},
#endif
{
.name = "direct",
.lname = "Direct I/O",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(odirect),
.help = "Use O_DIRECT IO (negates buffered)",
.def = "0",
.inverse = "buffered",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_TYPE,
},
{
.name = "atomic",
.lname = "Atomic I/O",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(oatomic),
.help = "Use Atomic IO with O_DIRECT (implies O_DIRECT)",
.def = "0",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_TYPE,
},
{
.name = "buffered",
.lname = "Buffered I/O",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(odirect),
.neg = 1,
.help = "Use buffered IO (negates direct)",
.def = "1",
.inverse = "direct",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_TYPE,
},
{
.name = "overwrite",
.lname = "Overwrite",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(overwrite),
.help = "When writing, set whether to overwrite current data",
.def = "0",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_INVALID,
},
{
.name = "loops",
.lname = "Loops",
.type = FIO_OPT_INT,
.off1 = td_var_offset(loops),
.help = "Number of times to run the job",
.def = "1",
.interval = 1,
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_RUNTIME,
},
{
.name = "numjobs",
.lname = "Number of jobs",
.type = FIO_OPT_INT,
.off1 = td_var_offset(numjobs),
.help = "Duplicate this job this many times",
.def = "1",
.interval = 1,
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_RUNTIME,
},
{
.name = "startdelay",
.lname = "Start delay",
.type = FIO_OPT_STR_VAL_TIME,
.off1 = td_var_offset(start_delay),
.off2 = td_var_offset(start_delay_high),
.help = "Only start job when this period has passed",
.def = "0",
.is_seconds = 1,
.is_time = 1,
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_RUNTIME,
},
{
.name = "runtime",
.lname = "Runtime",
.alias = "timeout",
.type = FIO_OPT_STR_VAL_TIME,
.off1 = td_var_offset(timeout),
.help = "Stop workload when this amount of time has passed",
.def = "0",
.is_seconds = 1,
.is_time = 1,
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_RUNTIME,
},
{
.name = "time_based",
.lname = "Time based",
.type = FIO_OPT_STR_SET,
.off1 = td_var_offset(time_based),
.help = "Keep running until runtime/timeout is met",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_RUNTIME,
},
{
.name = "verify_only",
.lname = "Verify only",
.type = FIO_OPT_STR_SET,
.off1 = td_var_offset(verify_only),
.help = "Verifies previously written data is still valid",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_RUNTIME,
},
{
.name = "ramp_time",
.lname = "Ramp time",
.type = FIO_OPT_STR_VAL_TIME,
.off1 = td_var_offset(ramp_time),
.help = "Ramp up time before measuring performance",
.is_seconds = 1,
.is_time = 1,
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_RUNTIME,
},
{
.name = "clocksource",
.lname = "Clock source",
.type = FIO_OPT_STR,
.cb = fio_clock_source_cb,
.off1 = td_var_offset(clocksource),
.help = "What type of timing source to use",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_CLOCK,
.posval = {
#ifdef CONFIG_GETTIMEOFDAY
{ .ival = "gettimeofday",
.oval = CS_GTOD,
.help = "Use gettimeofday(2) for timing",
},
#endif
#ifdef CONFIG_CLOCK_GETTIME
{ .ival = "clock_gettime",
.oval = CS_CGETTIME,
.help = "Use clock_gettime(2) for timing",
},
#endif
#ifdef ARCH_HAVE_CPU_CLOCK
{ .ival = "cpu",
.oval = CS_CPUCLOCK,
.help = "Use CPU private clock",
},
#endif
},
},
{
.name = "mem",
.alias = "iomem",
.lname = "I/O Memory",
.type = FIO_OPT_STR,
.cb = str_mem_cb,
.off1 = td_var_offset(mem_type),
.help = "Backing type for IO buffers",
.def = "malloc",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_INVALID,
.posval = {
{ .ival = "malloc",
.oval = MEM_MALLOC,
.help = "Use malloc(3) for IO buffers",
},
#ifndef CONFIG_NO_SHM
{ .ival = "shm",
.oval = MEM_SHM,
.help = "Use shared memory segments for IO buffers",
},
#ifdef FIO_HAVE_HUGETLB
{ .ival = "shmhuge",
.oval = MEM_SHMHUGE,
.help = "Like shm, but use huge pages",
},
#endif
#endif
{ .ival = "mmap",
.oval = MEM_MMAP,
.help = "Use mmap(2) (file or anon) for IO buffers",
},
#ifdef FIO_HAVE_HUGETLB
{ .ival = "mmaphuge",
.oval = MEM_MMAPHUGE,
.help = "Like mmap, but use huge pages",
},
#endif
},
},
{
.name = "iomem_align",
.alias = "mem_align",
.lname = "I/O memory alignment",
.type = FIO_OPT_INT,
.off1 = td_var_offset(mem_align),
.minval = 0,
.help = "IO memory buffer offset alignment",
.def = "0",
.parent = "iomem",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_INVALID,
},
{
.name = "verify",
.lname = "Verify",
.type = FIO_OPT_STR,
.off1 = td_var_offset(verify),
.help = "Verify data written",
.def = "0",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_VERIFY,
.posval = {
{ .ival = "0",
.oval = VERIFY_NONE,
.help = "Don't do IO verification",
},
{ .ival = "md5",
.oval = VERIFY_MD5,
.help = "Use md5 checksums for verification",
},
{ .ival = "crc64",
.oval = VERIFY_CRC64,
.help = "Use crc64 checksums for verification",
},
{ .ival = "crc32",
.oval = VERIFY_CRC32,
.help = "Use crc32 checksums for verification",
},
{ .ival = "crc32c-intel",
.oval = VERIFY_CRC32C,
.help = "Use crc32c checksums for verification (hw assisted, if available)",
},
{ .ival = "crc32c",
.oval = VERIFY_CRC32C,
.help = "Use crc32c checksums for verification (hw assisted, if available)",
},
{ .ival = "crc16",
.oval = VERIFY_CRC16,
.help = "Use crc16 checksums for verification",
},
{ .ival = "crc7",
.oval = VERIFY_CRC7,
.help = "Use crc7 checksums for verification",
},
{ .ival = "sha1",
.oval = VERIFY_SHA1,
.help = "Use sha1 checksums for verification",
},
{ .ival = "sha256",
.oval = VERIFY_SHA256,
.help = "Use sha256 checksums for verification",
},
{ .ival = "sha512",
.oval = VERIFY_SHA512,
.help = "Use sha512 checksums for verification",
},
{ .ival = "xxhash",
.oval = VERIFY_XXHASH,
.help = "Use xxhash checksums for verification",
},
{ .ival = "meta",
.oval = VERIFY_META,
.help = "Use io information",
},
{
.ival = "null",
.oval = VERIFY_NULL,
.help = "Pretend to verify",
},
},
},
{
.name = "do_verify",
.lname = "Perform verify step",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(do_verify),
.help = "Run verification stage after write",
.def = "1",
.parent = "verify",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_VERIFY,
},
{
.name = "verifysort",
.lname = "Verify sort",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(verifysort),
.help = "Sort written verify blocks for read back",
.def = "1",
.parent = "verify",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_VERIFY,
},
{
.name = "verifysort_nr",
.type = FIO_OPT_INT,
.off1 = td_var_offset(verifysort_nr),
.help = "Pre-load and sort verify blocks for a read workload",
.minval = 0,
.maxval = 131072,
.def = "1024",
.parent = "verify",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_VERIFY,
},
{
.name = "verify_interval",
.lname = "Verify interval",
.type = FIO_OPT_INT,
.off1 = td_var_offset(verify_interval),
.minval = 2 * sizeof(struct verify_header),
.help = "Store verify buffer header every N bytes",
.parent = "verify",
.hide = 1,
.interval = 2 * sizeof(struct verify_header),
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_VERIFY,
},
{
.name = "verify_offset",
.lname = "Verify offset",
.type = FIO_OPT_INT,
.help = "Offset verify header location by N bytes",
.off1 = td_var_offset(verify_offset),
.minval = sizeof(struct verify_header),
.parent = "verify",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_VERIFY,
},
{
.name = "verify_pattern",
.lname = "Verify pattern",
.type = FIO_OPT_STR,
.cb = str_verify_pattern_cb,
.off1 = td_var_offset(verify_pattern),
.help = "Fill pattern for IO buffers",
.parent = "verify",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_VERIFY,
},
{
.name = "verify_fatal",
.lname = "Verify fatal",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(verify_fatal),
.def = "0",
.help = "Exit on a single verify failure, don't continue",
.parent = "verify",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_VERIFY,
},
{
.name = "verify_dump",
.lname = "Verify dump",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(verify_dump),
.def = "0",
.help = "Dump contents of good and bad blocks on failure",
.parent = "verify",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_VERIFY,
},
{
.name = "verify_async",
.lname = "Verify asynchronously",
.type = FIO_OPT_INT,
.off1 = td_var_offset(verify_async),
.def = "0",
.help = "Number of async verifier threads to use",
.parent = "verify",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_VERIFY,
},
{
.name = "verify_backlog",
.lname = "Verify backlog",
.type = FIO_OPT_STR_VAL,
.off1 = td_var_offset(verify_backlog),
.help = "Verify after this number of blocks are written",
.parent = "verify",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_VERIFY,
},
{
.name = "verify_backlog_batch",
.lname = "Verify backlog batch",
.type = FIO_OPT_INT,
.off1 = td_var_offset(verify_batch),
.help = "Verify this number of IO blocks",
.parent = "verify",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_VERIFY,
},
#ifdef FIO_HAVE_CPU_AFFINITY
{
.name = "verify_async_cpus",
.lname = "Async verify CPUs",
.type = FIO_OPT_STR,
.cb = str_verify_cpus_allowed_cb,
.off1 = td_var_offset(verify_cpumask),
.help = "Set CPUs allowed for async verify threads",
.parent = "verify_async",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_VERIFY,
},
#endif
{
.name = "experimental_verify",
.off1 = td_var_offset(experimental_verify),
.type = FIO_OPT_BOOL,
.help = "Enable experimental verification",
.parent = "verify",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_VERIFY,
},
{
.name = "verify_state_load",
.lname = "Load verify state",
.off1 = td_var_offset(verify_state),
.type = FIO_OPT_BOOL,
.help = "Load verify termination state",
.parent = "verify",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_VERIFY,
},
{
.name = "verify_state_save",
.lname = "Save verify state",
.off1 = td_var_offset(verify_state_save),
.type = FIO_OPT_BOOL,
.def = "1",
.help = "Save verify state on termination",
.parent = "verify",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_VERIFY,
},
#ifdef FIO_HAVE_TRIM
{
.name = "trim_percentage",
.lname = "Trim percentage",
.type = FIO_OPT_INT,
.off1 = td_var_offset(trim_percentage),
.minval = 0,
.maxval = 100,
.help = "Number of verify blocks to discard/trim",
.parent = "verify",
.def = "0",
.interval = 1,
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_TRIM,
},
{
.name = "trim_verify_zero",
.lname = "Verify trim zero",
.type = FIO_OPT_BOOL,
.help = "Verify that trim/discarded blocks are returned as zeroes",
.off1 = td_var_offset(trim_zero),
.parent = "trim_percentage",
.hide = 1,
.def = "1",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_TRIM,
},
{
.name = "trim_backlog",
.lname = "Trim backlog",
.type = FIO_OPT_STR_VAL,
.off1 = td_var_offset(trim_backlog),
.help = "Trim after this number of blocks are written",
.parent = "trim_percentage",
.hide = 1,
.interval = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_TRIM,
},
{
.name = "trim_backlog_batch",
.lname = "Trim backlog batch",
.type = FIO_OPT_INT,
.off1 = td_var_offset(trim_batch),
.help = "Trim this number of IO blocks",
.parent = "trim_percentage",
.hide = 1,
.interval = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_TRIM,
},
#endif
{
.name = "write_iolog",
.lname = "Write I/O log",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(write_iolog_file),
.help = "Store IO pattern to file",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IOLOG,
},
{
.name = "read_iolog",
.lname = "Read I/O log",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(read_iolog_file),
.help = "Playback IO pattern from file",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IOLOG,
},
{
.name = "replay_no_stall",
.lname = "Don't stall on replay",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(no_stall),
.def = "0",
.parent = "read_iolog",
.hide = 1,
.help = "Playback IO pattern file as fast as possible without stalls",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IOLOG,
},
{
.name = "replay_redirect",
.lname = "Redirect device for replay",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(replay_redirect),
.parent = "read_iolog",
.hide = 1,
.help = "Replay all I/O onto this device, regardless of trace device",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IOLOG,
},
{
.name = "exec_prerun",
.lname = "Pre-execute runnable",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(exec_prerun),
.help = "Execute this file prior to running job",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_INVALID,
},
{
.name = "exec_postrun",
.lname = "Post-execute runnable",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(exec_postrun),
.help = "Execute this file after running job",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_INVALID,
},
#ifdef FIO_HAVE_IOSCHED_SWITCH
{
.name = "ioscheduler",
.lname = "I/O scheduler",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(ioscheduler),
.help = "Use this IO scheduler on the backing device",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_INVALID,
},
#endif
{
.name = "zonesize",
.lname = "Zone size",
.type = FIO_OPT_STR_VAL,
.off1 = td_var_offset(zone_size),
.help = "Amount of data to read per zone",
.def = "0",
.interval = 1024 * 1024,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_ZONE,
},
{
.name = "zonerange",
.lname = "Zone range",
.type = FIO_OPT_STR_VAL,
.off1 = td_var_offset(zone_range),
.help = "Give size of an IO zone",
.def = "0",
.interval = 1024 * 1024,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_ZONE,
},
{
.name = "zoneskip",
.lname = "Zone skip",
.type = FIO_OPT_STR_VAL,
.off1 = td_var_offset(zone_skip),
.help = "Space between IO zones",
.def = "0",
.interval = 1024 * 1024,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_ZONE,
},
{
.name = "lockmem",
.lname = "Lock memory",
.type = FIO_OPT_STR_VAL,
.off1 = td_var_offset(lockmem),
.help = "Lock down this amount of memory (per worker)",
.def = "0",
.interval = 1024 * 1024,
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_INVALID,
},
{
.name = "rwmixread",
.lname = "Read/write mix read",
.type = FIO_OPT_INT,
.cb = str_rwmix_read_cb,
.off1 = td_var_offset(rwmix[DDIR_READ]),
.maxval = 100,
.help = "Percentage of mixed workload that is reads",
.def = "50",
.interval = 5,
.inverse = "rwmixwrite",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_RWMIX,
},
{
.name = "rwmixwrite",
.lname = "Read/write mix write",
.type = FIO_OPT_INT,
.cb = str_rwmix_write_cb,
.off1 = td_var_offset(rwmix[DDIR_WRITE]),
.maxval = 100,
.help = "Percentage of mixed workload that is writes",
.def = "50",
.interval = 5,
.inverse = "rwmixread",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_RWMIX,
},
{
.name = "rwmixcycle",
.lname = "Read/write mix cycle",
.type = FIO_OPT_DEPRECATED,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_RWMIX,
},
{
.name = "nice",
.lname = "Nice",
.type = FIO_OPT_INT,
.off1 = td_var_offset(nice),
.help = "Set job CPU nice value",
.minval = -19,
.maxval = 20,
.def = "0",
.interval = 1,
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_CRED,
},
#ifdef FIO_HAVE_IOPRIO
{
.name = "prio",
.lname = "I/O nice priority",
.type = FIO_OPT_INT,
.off1 = td_var_offset(ioprio),
.help = "Set job IO priority value",
.minval = 0,
.maxval = 7,
.interval = 1,
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_CRED,
},
{
.name = "prioclass",
.lname = "I/O nice priority class",
.type = FIO_OPT_INT,
.off1 = td_var_offset(ioprio_class),
.help = "Set job IO priority class",
.minval = 0,
.maxval = 3,
.interval = 1,
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_CRED,
},
#endif
{
.name = "thinktime",
.lname = "Thinktime",
.type = FIO_OPT_INT,
.off1 = td_var_offset(thinktime),
.help = "Idle time between IO buffers (usec)",
.def = "0",
.is_time = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_THINKTIME,
},
{
.name = "thinktime_spin",
.lname = "Thinktime spin",
.type = FIO_OPT_INT,
.off1 = td_var_offset(thinktime_spin),
.help = "Start think time by spinning this amount (usec)",
.def = "0",
.is_time = 1,
.parent = "thinktime",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_THINKTIME,
},
{
.name = "thinktime_blocks",
.lname = "Thinktime blocks",
.type = FIO_OPT_INT,
.off1 = td_var_offset(thinktime_blocks),
.help = "IO buffer period between 'thinktime'",
.def = "1",
.parent = "thinktime",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_THINKTIME,
},
{
.name = "rate",
.lname = "I/O rate",
.type = FIO_OPT_INT,
.off1 = td_var_offset(rate[DDIR_READ]),
.off2 = td_var_offset(rate[DDIR_WRITE]),
.off3 = td_var_offset(rate[DDIR_TRIM]),
.help = "Set bandwidth rate",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_RATE,
},
{
.name = "ratemin",
.lname = "I/O min rate",
.type = FIO_OPT_INT,
.off1 = td_var_offset(ratemin[DDIR_READ]),
.off2 = td_var_offset(ratemin[DDIR_WRITE]),
.off3 = td_var_offset(ratemin[DDIR_TRIM]),
.help = "Job must meet this rate or it will be shutdown",
.parent = "rate",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_RATE,
},
{
.name = "rate_iops",
.lname = "I/O rate IOPS",
.type = FIO_OPT_INT,
.off1 = td_var_offset(rate_iops[DDIR_READ]),
.off2 = td_var_offset(rate_iops[DDIR_WRITE]),
.off3 = td_var_offset(rate_iops[DDIR_TRIM]),
.help = "Limit IO used to this number of IO operations/sec",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_RATE,
},
{
.name = "rate_iops_min",
.lname = "I/O min rate IOPS",
.type = FIO_OPT_INT,
.off1 = td_var_offset(rate_iops_min[DDIR_READ]),
.off2 = td_var_offset(rate_iops_min[DDIR_WRITE]),
.off3 = td_var_offset(rate_iops_min[DDIR_TRIM]),
.help = "Job must meet this rate or it will be shut down",
.parent = "rate_iops",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_RATE,
},
{
.name = "ratecycle",
.lname = "I/O rate cycle",
.type = FIO_OPT_INT,
.off1 = td_var_offset(ratecycle),
.help = "Window average for rate limits (msec)",
.def = "1000",
.parent = "rate",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_RATE,
},
{
.name = "max_latency",
.type = FIO_OPT_INT,
.off1 = td_var_offset(max_latency),
.help = "Maximum tolerated IO latency (usec)",
.is_time = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_LATPROF,
},
{
.name = "latency_target",
.lname = "Latency Target (usec)",
.type = FIO_OPT_STR_VAL_TIME,
.off1 = td_var_offset(latency_target),
.help = "Ramp to max queue depth supporting this latency",
.is_time = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_LATPROF,
},
{
.name = "latency_window",
.lname = "Latency Window (usec)",
.type = FIO_OPT_STR_VAL_TIME,
.off1 = td_var_offset(latency_window),
.help = "Time to sustain latency_target",
.is_time = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_LATPROF,
},
{
.name = "latency_percentile",
.lname = "Latency Percentile",
.type = FIO_OPT_FLOAT_LIST,
.off1 = td_var_offset(latency_percentile),
.help = "Percentile of IOs must be below latency_target",
.def = "100",
.maxlen = 1,
.minfp = 0.0,
.maxfp = 100.0,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_LATPROF,
},
{
.name = "invalidate",
.lname = "Cache invalidate",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(invalidate_cache),
.help = "Invalidate buffer/page cache prior to running job",
.def = "1",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_TYPE,
},
{
.name = "sync",
.lname = "Synchronous I/O",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(sync_io),
.help = "Use O_SYNC for buffered writes",
.def = "0",
.parent = "buffered",
.hide = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_TYPE,
},
{
.name = "create_serialize",
.lname = "Create serialize",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(create_serialize),
.help = "Serialize creating of job files",
.def = "1",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_INVALID,
},
{
.name = "create_fsync",
.lname = "Create fsync",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(create_fsync),
.help = "fsync file after creation",
.def = "1",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_INVALID,
},
{
.name = "create_on_open",
.lname = "Create on open",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(create_on_open),
.help = "Create files when they are opened for IO",
.def = "0",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_INVALID,
},
{
.name = "create_only",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(create_only),
.help = "Only perform file creation phase",
.category = FIO_OPT_C_FILE,
.def = "0",
},
{
.name = "pre_read",
.lname = "Pre-read files",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(pre_read),
.help = "Pre-read files before starting official testing",
.def = "0",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_INVALID,
},
#ifdef FIO_HAVE_CPU_AFFINITY
{
.name = "cpumask",
.lname = "CPU mask",
.type = FIO_OPT_INT,
.cb = str_cpumask_cb,
.off1 = td_var_offset(cpumask),
.help = "CPU affinity mask",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_CRED,
},
{
.name = "cpus_allowed",
.lname = "CPUs allowed",
.type = FIO_OPT_STR,
.cb = str_cpus_allowed_cb,
.off1 = td_var_offset(cpumask),
.help = "Set CPUs allowed",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_CRED,
},
{
.name = "cpus_allowed_policy",
.lname = "CPUs allowed distribution policy",
.type = FIO_OPT_STR,
.off1 = td_var_offset(cpus_allowed_policy),
.help = "Distribution policy for cpus_allowed",
.parent = "cpus_allowed",
.prio = 1,
.posval = {
{ .ival = "shared",
.oval = FIO_CPUS_SHARED,
.help = "Mask shared between threads",
},
{ .ival = "split",
.oval = FIO_CPUS_SPLIT,
.help = "Mask split between threads",
},
},
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_CRED,
},
#endif
#ifdef CONFIG_LIBNUMA
{
.name = "numa_cpu_nodes",
.type = FIO_OPT_STR,
.cb = str_numa_cpunodes_cb,
.off1 = td_var_offset(numa_cpunodes),
.help = "NUMA CPU nodes bind",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_INVALID,
},
{
.name = "numa_mem_policy",
.type = FIO_OPT_STR,
.cb = str_numa_mpol_cb,
.off1 = td_var_offset(numa_memnodes),
.help = "NUMA memory policy setup",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_INVALID,
},
#endif
{
.name = "end_fsync",
.lname = "End fsync",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(end_fsync),
.help = "Include fsync at the end of job",
.def = "0",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_INVALID,
},
{
.name = "fsync_on_close",
.lname = "Fsync on close",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(fsync_on_close),
.help = "fsync files on close",
.def = "0",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_INVALID,
},
{
.name = "unlink",
.lname = "Unlink file",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(unlink),
.help = "Unlink created files after job has completed",
.def = "0",
.category = FIO_OPT_C_FILE,
.group = FIO_OPT_G_INVALID,
},
{
.name = "exitall",
.lname = "Exit-all on terminate",
.type = FIO_OPT_STR_SET,
.cb = str_exitall_cb,
.help = "Terminate all jobs when one exits",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_PROCESS,
},
{
.name = "stonewall",
.lname = "Wait for previous",
.alias = "wait_for_previous",
.type = FIO_OPT_STR_SET,
.off1 = td_var_offset(stonewall),
.help = "Insert a hard barrier between this job and previous",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_PROCESS,
},
{
.name = "new_group",
.lname = "New group",
.type = FIO_OPT_STR_SET,
.off1 = td_var_offset(new_group),
.help = "Mark the start of a new group (for reporting)",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_PROCESS,
},
{
.name = "thread",
.lname = "Thread",
.type = FIO_OPT_STR_SET,
.off1 = td_var_offset(use_thread),
.help = "Use threads instead of processes",
#ifdef CONFIG_NO_SHM
.def = "1",
.no_warn_def = 1,
#endif
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_PROCESS,
},
{
.name = "write_bw_log",
.lname = "Write bandwidth log",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(bw_log_file),
.help = "Write log of bandwidth during run",
.category = FIO_OPT_C_LOG,
.group = FIO_OPT_G_INVALID,
},
{
.name = "write_lat_log",
.lname = "Write latency log",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(lat_log_file),
.help = "Write log of latency during run",
.category = FIO_OPT_C_LOG,
.group = FIO_OPT_G_INVALID,
},
{
.name = "write_iops_log",
.lname = "Write IOPS log",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(iops_log_file),
.help = "Write log of IOPS during run",
.category = FIO_OPT_C_LOG,
.group = FIO_OPT_G_INVALID,
},
{
.name = "log_avg_msec",
.lname = "Log averaging (msec)",
.type = FIO_OPT_INT,
.off1 = td_var_offset(log_avg_msec),
.help = "Average bw/iops/lat logs over this period of time",
.def = "0",
.category = FIO_OPT_C_LOG,
.group = FIO_OPT_G_INVALID,
},
{
.name = "log_offset",
.lname = "Log offset of IO",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(log_offset),
.help = "Include offset of IO for each log entry",
.def = "0",
.category = FIO_OPT_C_LOG,
.group = FIO_OPT_G_INVALID,
},
#ifdef CONFIG_ZLIB
{
.name = "log_compression",
.lname = "Log compression",
.type = FIO_OPT_INT,
.off1 = td_var_offset(log_gz),
.help = "Log in compressed chunks of this size",
.minval = 32 * 1024 * 1024ULL,
.maxval = 512 * 1024 * 1024ULL,
.category = FIO_OPT_C_LOG,
.group = FIO_OPT_G_INVALID,
},
{
.name = "log_store_compressed",
.lname = "Log store compressed",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(log_gz_store),
.help = "Store logs in a compressed format",
.category = FIO_OPT_C_LOG,
.group = FIO_OPT_G_INVALID,
},
#endif
{
.name = "bwavgtime",
.lname = "Bandwidth average time",
.type = FIO_OPT_INT,
.off1 = td_var_offset(bw_avg_time),
.help = "Time window over which to calculate bandwidth"
" (msec)",
.def = "500",
.parent = "write_bw_log",
.hide = 1,
.interval = 100,
.category = FIO_OPT_C_LOG,
.group = FIO_OPT_G_INVALID,
},
{
.name = "iopsavgtime",
.lname = "IOPS average time",
.type = FIO_OPT_INT,
.off1 = td_var_offset(iops_avg_time),
.help = "Time window over which to calculate IOPS (msec)",
.def = "500",
.parent = "write_iops_log",
.hide = 1,
.interval = 100,
.category = FIO_OPT_C_LOG,
.group = FIO_OPT_G_INVALID,
},
{
.name = "group_reporting",
.lname = "Group reporting",
.type = FIO_OPT_STR_SET,
.off1 = td_var_offset(group_reporting),
.help = "Do reporting on a per-group basis",
.category = FIO_OPT_C_STAT,
.group = FIO_OPT_G_INVALID,
},
{
.name = "zero_buffers",
.lname = "Zero I/O buffers",
.type = FIO_OPT_STR_SET,
.off1 = td_var_offset(zero_buffers),
.help = "Init IO buffers to all zeroes",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_BUF,
},
{
.name = "refill_buffers",
.lname = "Refill I/O buffers",
.type = FIO_OPT_STR_SET,
.off1 = td_var_offset(refill_buffers),
.help = "Refill IO buffers on every IO submit",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_BUF,
},
{
.name = "scramble_buffers",
.lname = "Scramble I/O buffers",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(scramble_buffers),
.help = "Slightly scramble buffers on every IO submit",
.def = "1",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_BUF,
},
{
.name = "buffer_pattern",
.lname = "Buffer pattern",
.type = FIO_OPT_STR,
.cb = str_buffer_pattern_cb,
.off1 = td_var_offset(buffer_pattern),
.help = "Fill pattern for IO buffers",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_BUF,
},
{
.name = "buffer_compress_percentage",
.lname = "Buffer compression percentage",
.type = FIO_OPT_INT,
.cb = str_buffer_compress_cb,
.off1 = td_var_offset(compress_percentage),
.maxval = 100,
.minval = 0,
.help = "How compressible the buffer is (approximately)",
.interval = 5,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_BUF,
},
{
.name = "buffer_compress_chunk",
.lname = "Buffer compression chunk size",
.type = FIO_OPT_INT,
.off1 = td_var_offset(compress_chunk),
.parent = "buffer_compress_percentage",
.hide = 1,
.help = "Size of compressible region in buffer",
.interval = 256,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_BUF,
},
{
.name = "dedupe_percentage",
.lname = "Dedupe percentage",
.type = FIO_OPT_INT,
.cb = str_dedupe_cb,
.off1 = td_var_offset(dedupe_percentage),
.maxval = 100,
.minval = 0,
.help = "Percentage of buffers that are dedupable",
.interval = 1,
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_BUF,
},
{
.name = "clat_percentiles",
.lname = "Completion latency percentiles",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(clat_percentiles),
.help = "Enable the reporting of completion latency percentiles",
.def = "1",
.category = FIO_OPT_C_STAT,
.group = FIO_OPT_G_INVALID,
},
{
.name = "percentile_list",
.lname = "Completion latency percentile list",
.type = FIO_OPT_FLOAT_LIST,
.off1 = td_var_offset(percentile_list),
.off2 = td_var_offset(percentile_precision),
.help = "Specify a custom list of percentiles to report",
.def = "1:5:10:20:30:40:50:60:70:80:90:95:99:99.5:99.9:99.95:99.99",
.maxlen = FIO_IO_U_LIST_MAX_LEN,
.minfp = 0.0,
.maxfp = 100.0,
.category = FIO_OPT_C_STAT,
.group = FIO_OPT_G_INVALID,
},
#ifdef FIO_HAVE_DISK_UTIL
{
.name = "disk_util",
.lname = "Disk utilization",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(do_disk_util),
.help = "Log disk utilization statistics",
.def = "1",
.category = FIO_OPT_C_STAT,
.group = FIO_OPT_G_INVALID,
},
#endif
{
.name = "gtod_reduce",
.lname = "Reduce gettimeofday() calls",
.type = FIO_OPT_BOOL,
.help = "Greatly reduce number of gettimeofday() calls",
.cb = str_gtod_reduce_cb,
.def = "0",
.hide_on_set = 1,
.category = FIO_OPT_C_STAT,
.group = FIO_OPT_G_INVALID,
},
{
.name = "disable_lat",
.lname = "Disable all latency stats",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(disable_lat),
.help = "Disable latency numbers",
.parent = "gtod_reduce",
.hide = 1,
.def = "0",
.category = FIO_OPT_C_STAT,
.group = FIO_OPT_G_INVALID,
},
{
.name = "disable_clat",
.lname = "Disable completion latency stats",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(disable_clat),
.help = "Disable completion latency numbers",
.parent = "gtod_reduce",
.hide = 1,
.def = "0",
.category = FIO_OPT_C_STAT,
.group = FIO_OPT_G_INVALID,
},
{
.name = "disable_slat",
.lname = "Disable submission latency stats",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(disable_slat),
.help = "Disable submission latency numbers",
.parent = "gtod_reduce",
.hide = 1,
.def = "0",
.category = FIO_OPT_C_STAT,
.group = FIO_OPT_G_INVALID,
},
{
.name = "disable_bw_measurement",
.lname = "Disable bandwidth stats",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(disable_bw),
.help = "Disable bandwidth logging",
.parent = "gtod_reduce",
.hide = 1,
.def = "0",
.category = FIO_OPT_C_STAT,
.group = FIO_OPT_G_INVALID,
},
{
.name = "gtod_cpu",
.lname = "Dedicated gettimeofday() CPU",
.type = FIO_OPT_INT,
.off1 = td_var_offset(gtod_cpu),
.help = "Set up dedicated gettimeofday() thread on this CPU",
.verify = gtod_cpu_verify,
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_CLOCK,
},
{
.name = "unified_rw_reporting",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(unified_rw_rep),
.help = "Unify reporting across data direction",
.def = "0",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_INVALID,
},
{
.name = "continue_on_error",
.lname = "Continue on error",
.type = FIO_OPT_STR,
.off1 = td_var_offset(continue_on_error),
.help = "Continue on non-fatal errors during IO",
.def = "none",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_ERR,
.posval = {
{ .ival = "none",
.oval = ERROR_TYPE_NONE,
.help = "Exit when an error is encountered",
},
{ .ival = "read",
.oval = ERROR_TYPE_READ,
.help = "Continue on read errors only",
},
{ .ival = "write",
.oval = ERROR_TYPE_WRITE,
.help = "Continue on write errors only",
},
{ .ival = "io",
.oval = ERROR_TYPE_READ | ERROR_TYPE_WRITE,
.help = "Continue on any IO errors",
},
{ .ival = "verify",
.oval = ERROR_TYPE_VERIFY,
.help = "Continue on verify errors only",
},
{ .ival = "all",
.oval = ERROR_TYPE_ANY,
.help = "Continue on all io and verify errors",
},
{ .ival = "0",
.oval = ERROR_TYPE_NONE,
.help = "Alias for 'none'",
},
{ .ival = "1",
.oval = ERROR_TYPE_ANY,
.help = "Alias for 'all'",
},
},
},
{
.name = "ignore_error",
.type = FIO_OPT_STR,
.cb = str_ignore_error_cb,
.off1 = td_var_offset(ignore_error_nr),
.help = "Set a specific list of errors to ignore",
.parent = "rw",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_ERR,
},
{
.name = "error_dump",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(error_dump),
.def = "0",
.help = "Dump info on each error",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_ERR,
},
{
.name = "profile",
.lname = "Profile",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(profile),
.help = "Select a specific builtin performance test",
.category = FIO_OPT_C_PROFILE,
.group = FIO_OPT_G_INVALID,
},
{
.name = "cgroup",
.lname = "Cgroup",
.type = FIO_OPT_STR_STORE,
.off1 = td_var_offset(cgroup),
.help = "Add job to cgroup of this name",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_CGROUP,
},
{
.name = "cgroup_nodelete",
.lname = "Cgroup no-delete",
.type = FIO_OPT_BOOL,
.off1 = td_var_offset(cgroup_nodelete),
.help = "Do not delete cgroups after job completion",
.def = "0",
.parent = "cgroup",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_CGROUP,
},
{
.name = "cgroup_weight",
.lname = "Cgroup weight",
.type = FIO_OPT_INT,
.off1 = td_var_offset(cgroup_weight),
.help = "Use given weight for cgroup",
.minval = 100,
.maxval = 1000,
.parent = "cgroup",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_CGROUP,
},
{
.name = "uid",
.lname = "User ID",
.type = FIO_OPT_INT,
.off1 = td_var_offset(uid),
.help = "Run job with this user ID",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_CRED,
},
{
.name = "gid",
.lname = "Group ID",
.type = FIO_OPT_INT,
.off1 = td_var_offset(gid),
.help = "Run job with this group ID",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_CRED,
},
{
.name = "kb_base",
.lname = "KB Base",
.type = FIO_OPT_INT,
.off1 = td_var_offset(kb_base),
.prio = 1,
.def = "1024",
.posval = {
{ .ival = "1024",
.oval = 1024,
.help = "Use 1024 as the K base",
},
{ .ival = "1000",
.oval = 1000,
.help = "Use 1000 as the K base",
},
},
.help = "How many bytes per KB for reporting (1000 or 1024)",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_INVALID,
},
{
.name = "unit_base",
.lname = "Base unit for reporting (Bits or Bytes)",
.type = FIO_OPT_INT,
.off1 = td_var_offset(unit_base),
.prio = 1,
.posval = {
{ .ival = "0",
.oval = 0,
.help = "Auto-detect",
},
{ .ival = "8",
.oval = 8,
.help = "Normal (byte based)",
},
{ .ival = "1",
.oval = 1,
.help = "Bit based",
},
},
.help = "Bit multiple of result summary data (8 for byte, 1 for bit)",
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_INVALID,
},
{
.name = "hugepage-size",
.lname = "Hugepage size",
.type = FIO_OPT_INT,
.off1 = td_var_offset(hugepage_size),
.help = "When using hugepages, specify size of each page",
.def = __fio_stringify(FIO_HUGE_PAGE),
.interval = 1024 * 1024,
.category = FIO_OPT_C_GENERAL,
.group = FIO_OPT_G_INVALID,
},
{
.name = "flow_id",
.lname = "I/O flow ID",
.type = FIO_OPT_INT,
.off1 = td_var_offset(flow_id),
.help = "The flow index ID to use",
.def = "0",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_FLOW,
},
{
.name = "flow",
.lname = "I/O flow weight",
.type = FIO_OPT_INT,
.off1 = td_var_offset(flow),
.help = "Weight for flow control of this job",
.parent = "flow_id",
.hide = 1,
.def = "0",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_FLOW,
},
{
.name = "flow_watermark",
.lname = "I/O flow watermark",
.type = FIO_OPT_INT,
.off1 = td_var_offset(flow_watermark),
.help = "High watermark for flow control. This option"
" should be set to the same value for all threads"
" with non-zero flow.",
.parent = "flow_id",
.hide = 1,
.def = "1024",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_FLOW,
},
{
.name = "flow_sleep",
.lname = "I/O flow sleep",
.type = FIO_OPT_INT,
.off1 = td_var_offset(flow_sleep),
.help = "How many microseconds to sleep after being held"
" back by the flow control mechanism",
.parent = "flow_id",
.hide = 1,
.def = "0",
.category = FIO_OPT_C_IO,
.group = FIO_OPT_G_IO_FLOW,
},
{
.name = NULL,
},
};
static void add_to_lopt(struct option *lopt, struct fio_option *o,
const char *name, int val)
{
lopt->name = (char *) name;
lopt->val = val;
if (o->type == FIO_OPT_STR_SET)
lopt->has_arg = optional_argument;
else
lopt->has_arg = required_argument;
}
static void options_to_lopts(struct fio_option *opts,
struct option *long_options,
int i, int option_type)
{
struct fio_option *o = &opts[0];
while (o->name) {
add_to_lopt(&long_options[i], o, o->name, option_type);
if (o->alias) {
i++;
add_to_lopt(&long_options[i], o, o->alias, option_type);
}
i++;
o++;
assert(i < FIO_NR_OPTIONS);
}
}
void fio_options_set_ioengine_opts(struct option *long_options,
struct thread_data *td)
{
unsigned int i;
i = 0;
while (long_options[i].name) {
if (long_options[i].val == FIO_GETOPT_IOENGINE) {
memset(&long_options[i], 0, sizeof(*long_options));
break;
}
i++;
}
/*
* Just clear out the prior ioengine options.
*/
if (!td || !td->eo)
return;
options_to_lopts(td->io_ops->options, long_options, i,
FIO_GETOPT_IOENGINE);
}
void fio_options_dup_and_init(struct option *long_options)
{
unsigned int i;
options_init(fio_options);
i = 0;
while (long_options[i].name)
i++;
options_to_lopts(fio_options, long_options, i, FIO_GETOPT_JOB);
}
struct fio_keyword {
const char *word;
const char *desc;
char *replace;
};
static struct fio_keyword fio_keywords[] = {
{
.word = "$pagesize",
.desc = "Page size in the system",
},
{
.word = "$mb_memory",
.desc = "Megabytes of memory online",
},
{
.word = "$ncpus",
.desc = "Number of CPUs online in the system",
},
{
.word = NULL,
},
};
void fio_keywords_init(void)
{
unsigned long long mb_memory;
char buf[128];
long l;
sprintf(buf, "%lu", (unsigned long) page_size);
fio_keywords[0].replace = strdup(buf);
mb_memory = os_phys_mem() / (1024 * 1024);
sprintf(buf, "%llu", mb_memory);
fio_keywords[1].replace = strdup(buf);
l = cpus_online();
sprintf(buf, "%lu", l);
fio_keywords[2].replace = strdup(buf);
}
#define BC_APP "bc"
static char *bc_calc(char *str)
{
char buf[128], *tmp;
FILE *f;
int ret;
/*
* No math, just return string
*/
if ((!strchr(str, '+') && !strchr(str, '-') && !strchr(str, '*') &&
!strchr(str, '/')) || strchr(str, '\''))
return str;
/*
* Split option from value, we only need to calculate the value
*/
tmp = strchr(str, '=');
if (!tmp)
return str;
tmp++;
/*
* Prevent buffer overflows; such a case isn't reasonable anyway
*/
if (strlen(str) >= 128 || strlen(tmp) > 100)
return str;
sprintf(buf, "which %s > /dev/null", BC_APP);
if (system(buf)) {
log_err("fio: bc is needed for performing math\n");
return NULL;
}
sprintf(buf, "echo '%s' | %s", tmp, BC_APP);
f = popen(buf, "r");
if (!f)
return NULL;
ret = fread(&buf[tmp - str], 1, 128 - (tmp - str), f);
if (ret <= 0) {
pclose(f);
return NULL;
}
pclose(f);
buf[(tmp - str) + ret - 1] = '\0';
memcpy(buf, str, tmp - str);
free(str);
return strdup(buf);
}
/*
* Return a copy of the input string with substrings of the form ${VARNAME}
* substituted with the value of the environment variable VARNAME. The
* substitution always occurs, even if VARNAME is empty or the corresponding
* environment variable undefined.
*/
static char *option_dup_subs(const char *opt)
{
char out[OPT_LEN_MAX+1];
char in[OPT_LEN_MAX+1];
char *outptr = out;
char *inptr = in;
char *ch1, *ch2, *env;
ssize_t nchr = OPT_LEN_MAX;
size_t envlen;
if (strlen(opt) + 1 > OPT_LEN_MAX) {
log_err("OPT_LEN_MAX (%d) is too small\n", OPT_LEN_MAX);
return NULL;
}
in[OPT_LEN_MAX] = '\0';
strncpy(in, opt, OPT_LEN_MAX);
while (*inptr && nchr > 0) {
if (inptr[0] == '$' && inptr[1] == '{') {
ch2 = strchr(inptr, '}');
if (ch2 && inptr+1 < ch2) {
ch1 = inptr+2;
inptr = ch2+1;
*ch2 = '\0';
env = getenv(ch1);
if (env) {
envlen = strlen(env);
if (envlen <= nchr) {
memcpy(outptr, env, envlen);
outptr += envlen;
nchr -= envlen;
}
}
continue;
}
}
*outptr++ = *inptr++;
--nchr;
}
*outptr = '\0';
return strdup(out);
}
/*
* Look for reserved variable names and replace them with real values
*/
static char *fio_keyword_replace(char *opt)
{
char *s;
int i;
int docalc = 0;
for (i = 0; fio_keywords[i].word != NULL; i++) {
struct fio_keyword *kw = &fio_keywords[i];
while ((s = strstr(opt, kw->word)) != NULL) {
char *new = malloc(strlen(opt) + 1);
char *o_org = opt;
int olen = s - opt;
int len;
/*
* Copy part of the string before the keyword and
* sprintf() the replacement after it.
*/
memcpy(new, opt, olen);
len = sprintf(new + olen, "%s", kw->replace);
/*
* If there's more in the original string, copy that
* in too
*/
opt += strlen(kw->word) + olen;
if (strlen(opt))
memcpy(new + olen + len, opt, opt - o_org - 1);
/*
* replace opt and free the old opt
*/
opt = new;
free(o_org);
docalc = 1;
}
}
/*
* Check for potential math and invoke bc, if possible
*/
if (docalc)
opt = bc_calc(opt);
return opt;
}
static char **dup_and_sub_options(char **opts, int num_opts)
{
int i;
char **opts_copy = malloc(num_opts * sizeof(*opts));
for (i = 0; i < num_opts; i++) {
opts_copy[i] = option_dup_subs(opts[i]);
if (!opts_copy[i])
continue;
opts_copy[i] = fio_keyword_replace(opts_copy[i]);
}
return opts_copy;
}
static void show_closest_option(const char *opt)
{
int best_option, best_distance;
int i, distance;
char *name;
if (!strlen(opt))
return;
name = strdup(opt);
i = 0;
while (name[i] != '\0' && name[i] != '=')
i++;
name[i] = '\0';
best_option = -1;
best_distance = INT_MAX;
i = 0;
while (fio_options[i].name) {
distance = string_distance(name, fio_options[i].name);
if (distance < best_distance) {
best_distance = distance;
best_option = i;
}
i++;
}
if (best_option != -1)
log_err("Did you mean %s?\n", fio_options[best_option].name);
free(name);
}
int fio_options_parse(struct thread_data *td, char **opts, int num_opts,
int dump_cmdline)
{
int i, ret, unknown;
char **opts_copy;
sort_options(opts, fio_options, num_opts);
opts_copy = dup_and_sub_options(opts, num_opts);
for (ret = 0, i = 0, unknown = 0; i < num_opts; i++) {
struct fio_option *o;
int newret = parse_option(opts_copy[i], opts[i], fio_options,
&o, td, dump_cmdline);
if (!newret && o)
fio_option_mark_set(&td->o, o);
if (opts_copy[i]) {
if (newret && !o) {
unknown++;
continue;
}
free(opts_copy[i]);
opts_copy[i] = NULL;
}
ret |= newret;
}
if (unknown) {
ret |= ioengine_load(td);
if (td->eo) {
sort_options(opts_copy, td->io_ops->options, num_opts);
opts = opts_copy;
}
for (i = 0; i < num_opts; i++) {
struct fio_option *o = NULL;
int newret = 1;
if (!opts_copy[i])
continue;
if (td->eo)
newret = parse_option(opts_copy[i], opts[i],
td->io_ops->options, &o,
td->eo, dump_cmdline);
ret |= newret;
if (!o) {
log_err("Bad option <%s>\n", opts[i]);
show_closest_option(opts[i]);
}
free(opts_copy[i]);
opts_copy[i] = NULL;
}
}
free(opts_copy);
return ret;
}
int fio_cmd_option_parse(struct thread_data *td, const char *opt, char *val)
{
int ret;
ret = parse_cmd_option(opt, val, fio_options, td);
if (!ret) {
struct fio_option *o;
o = find_option(fio_options, opt);
if (o)
fio_option_mark_set(&td->o, o);
}
return ret;
}
int fio_cmd_ioengine_option_parse(struct thread_data *td, const char *opt,
char *val)
{
return parse_cmd_option(opt, val, td->io_ops->options, td->eo);
}
void fio_fill_default_options(struct thread_data *td)
{
td->o.magic = OPT_MAGIC;
fill_default_options(td, fio_options);
}
int fio_show_option_help(const char *opt)
{
return show_cmd_help(fio_options, opt);
}
void options_mem_dupe(void *data, struct fio_option *options)
{
struct fio_option *o;
char **ptr;
for (o = &options[0]; o->name; o++) {
if (o->type != FIO_OPT_STR_STORE)
continue;
ptr = td_var(data, o, o->off1);
if (*ptr)
*ptr = strdup(*ptr);
}
}
/*
* dupe FIO_OPT_STR_STORE options
*/
void fio_options_mem_dupe(struct thread_data *td)
{
options_mem_dupe(&td->o, fio_options);
if (td->eo && td->io_ops) {
void *oldeo = td->eo;
td->eo = malloc(td->io_ops->option_struct_size);
memcpy(td->eo, oldeo, td->io_ops->option_struct_size);
options_mem_dupe(td->eo, td->io_ops->options);
}
}
unsigned int fio_get_kb_base(void *data)
{
struct thread_options *o = data;
unsigned int kb_base = 0;
/*
* This is a hack... For private options, *data is not holding
* a pointer to the thread_options, but to private data. This means
* we can't safely dereference it, but magic is first so mem wise
* it is valid. But this also means that if the job first sets
* kb_base and expects that to be honored by private options,
* it will be disappointed. We will return the global default
* for this.
*/
if (o && o->magic == OPT_MAGIC)
kb_base = o->kb_base;
if (!kb_base)
kb_base = 1024;
return kb_base;
}
int add_option(struct fio_option *o)
{
struct fio_option *__o;
int opt_index = 0;
__o = fio_options;
while (__o->name) {
opt_index++;
__o++;
}
if (opt_index + 1 == FIO_MAX_OPTS) {
log_err("fio: FIO_MAX_OPTS is too small\n");
return 1;
}
memcpy(&fio_options[opt_index], o, sizeof(*o));
fio_options[opt_index + 1].name = NULL;
return 0;
}
void invalidate_profile_options(const char *prof_name)
{
struct fio_option *o;
o = fio_options;
while (o->name) {
if (o->prof_name && !strcmp(o->prof_name, prof_name)) {
o->type = FIO_OPT_INVALID;
o->prof_name = NULL;
}
o++;
}
}
void add_opt_posval(const char *optname, const char *ival, const char *help)
{
struct fio_option *o;
unsigned int i;
o = find_option(fio_options, optname);
if (!o)
return;
for (i = 0; i < PARSE_MAX_VP; i++) {
if (o->posval[i].ival)
continue;
o->posval[i].ival = ival;
o->posval[i].help = help;
break;
}
}
void del_opt_posval(const char *optname, const char *ival)
{
struct fio_option *o;
unsigned int i;
o = find_option(fio_options, optname);
if (!o)
return;
for (i = 0; i < PARSE_MAX_VP; i++) {
if (!o->posval[i].ival)
continue;
if (strcmp(o->posval[i].ival, ival))
continue;
o->posval[i].ival = NULL;
o->posval[i].help = NULL;
}
}
void fio_options_free(struct thread_data *td)
{
options_free(fio_options, td);
if (td->eo && td->io_ops && td->io_ops->options) {
options_free(td->io_ops->options, td->eo);
free(td->eo);
td->eo = NULL;
}
}
struct fio_option *fio_option_find(const char *name)
{
return find_option(fio_options, name);
}
static struct fio_option *find_next_opt(struct thread_options *o,
struct fio_option *from,
unsigned int off1)
{
struct fio_option *opt;
if (!from)
from = &fio_options[0];
else
from++;
opt = NULL;
do {
if (off1 == from->off1) {
opt = from;
break;
}
from++;
} while (from->name);
return opt;
}
static int opt_is_set(struct thread_options *o, struct fio_option *opt)
{
unsigned int opt_off, index, offset;
opt_off = opt - &fio_options[0];
index = opt_off / (8 * sizeof(uint64_t));
offset = opt_off & ((8 * sizeof(uint64_t)) - 1);
return (o->set_options[index] & (1UL << offset)) != 0;
}
int __fio_option_is_set(struct thread_options *o, unsigned int off1)
{
struct fio_option *opt, *next;
next = NULL;
while ((opt = find_next_opt(o, next, off1)) != NULL) {
if (opt_is_set(o, opt))
return 1;
next = opt;
}
return 0;
}
void fio_option_mark_set(struct thread_options *o, struct fio_option *opt)
{
unsigned int opt_off, index, offset;
opt_off = opt - &fio_options[0];
index = opt_off / (8 * sizeof(uint64_t));
offset = opt_off & ((8 * sizeof(uint64_t)) - 1);
o->set_options[index] |= 1UL << offset;
}