blob: 212df60079ca350e9d96a3e41384edd03749e4f5 [file] [log] [blame]
/**
* f2fs_format.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* Dual licensed under the GPL or LGPL version 2 licenses.
*/
#define _LARGEFILE64_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/mount.h>
#include <time.h>
#include <uuid/uuid.h>
#include "f2fs_fs.h"
#include "f2fs_format_utils.h"
extern struct f2fs_configuration config;
struct f2fs_super_block sb;
struct f2fs_checkpoint *cp;
/* Return first segment number of each area */
#define prev_zone(cur) (config.cur_seg[cur] - config.segs_per_zone)
#define next_zone(cur) (config.cur_seg[cur] + config.segs_per_zone)
#define last_zone(cur) ((cur - 1) * config.segs_per_zone)
#define last_section(cur) (cur + (config.secs_per_zone - 1) * config.segs_per_sec)
#define set_sb_le64(member, val) (sb.member = cpu_to_le64(val))
#define set_sb_le32(member, val) (sb.member = cpu_to_le32(val))
#define set_sb_le16(member, val) (sb.member = cpu_to_le16(val))
#define get_sb_le64(member) le64_to_cpu(sb.member)
#define get_sb_le32(member) le32_to_cpu(sb.member)
#define get_sb_le16(member) le16_to_cpu(sb.member)
#define set_sb(member, val) \
do { \
typeof(sb.member) t; \
switch (sizeof(t)) { \
case 8: set_sb_le64(member, val); break; \
case 4: set_sb_le32(member, val); break; \
case 2: set_sb_le16(member, val); break; \
} \
} while(0)
#define get_sb(member) \
({ \
typeof(sb.member) t; \
switch (sizeof(t)) { \
case 8: t = get_sb_le64(member); break; \
case 4: t = get_sb_le32(member); break; \
case 2: t = get_sb_le16(member); break; \
} \
t; \
})
#define set_cp_le64(member, val) (cp->member = cpu_to_le64(val))
#define set_cp_le32(member, val) (cp->member = cpu_to_le32(val))
#define set_cp_le16(member, val) (cp->member = cpu_to_le16(val))
#define get_cp_le64(member) le64_to_cpu(cp->member)
#define get_cp_le32(member) le32_to_cpu(cp->member)
#define get_cp_le16(member) le16_to_cpu(cp->member)
#define set_cp(member, val) \
do { \
typeof(cp->member) t; \
switch (sizeof(t)) { \
case 8: set_cp_le64(member, val); break; \
case 4: set_cp_le32(member, val); break; \
case 2: set_cp_le16(member, val); break; \
} \
} while(0)
#define get_cp(member) \
({ \
typeof(cp->member) t; \
switch (sizeof(t)) { \
case 8: t = get_cp_le64(member); break; \
case 4: t = get_cp_le32(member); break; \
case 2: t = get_cp_le16(member); break; \
} \
t; \
})
const char *media_ext_lists[] = {
"jpg",
"gif",
"png",
"avi",
"divx",
"mp4",
"mp3",
"3gp",
"wmv",
"wma",
"mpeg",
"mkv",
"mov",
"asx",
"asf",
"wmx",
"svi",
"wvx",
"wm",
"mpg",
"mpe",
"rm",
"ogg",
"jpeg",
"video",
"apk", /* for android system */
NULL
};
static bool is_extension_exist(const char *name)
{
int i;
for (i = 0; i < F2FS_MAX_EXTENSION; i++) {
char *ext = (char *)sb.extension_list[i];
if (!strcmp(ext, name))
return 1;
}
return 0;
}
static void configure_extension_list(void)
{
const char **extlist = media_ext_lists;
char *ext_str = config.extension_list;
char *ue;
int name_len;
int i = 0;
sb.extension_count = 0;
memset(sb.extension_list, 0,
sizeof(sb.extension_list));
while (*extlist) {
name_len = strlen(*extlist);
memcpy(sb.extension_list[i++], *extlist, name_len);
extlist++;
}
set_sb(extension_count, i);
if (!ext_str)
return;
/* add user ext list */
ue = strtok(ext_str, ", ");
while (ue != NULL) {
name_len = strlen(ue);
if (name_len >= 8) {
MSG(0, "\tWarn: Extension name (%s) is too long\n", ue);
goto next;
}
if (!is_extension_exist(ue))
memcpy(sb.extension_list[i++], ue, name_len);
next:
ue = strtok(NULL, ", ");
if (i >= F2FS_MAX_EXTENSION)
break;
}
set_sb(extension_count, i);
free(config.extension_list);
}
static double get_best_overprovision(void)
{
double reserved, ovp, candidate, end, diff, space;
double max_ovp = 0, max_space = 0;
if (get_sb(segment_count_main) < 256) {
candidate = 10;
end = 95;
diff = 5;
} else {
candidate = 0.01;
end = 10;
diff = 0.01;
}
for (; candidate <= end; candidate += diff) {
reserved = (2 * (100 / candidate + 1) + 6) *
get_sb(segs_per_sec);
ovp = (get_sb(segment_count_main) - reserved) * candidate / 100;
space = get_sb(segment_count_main) - reserved - ovp;
if (max_space < space) {
max_space = space;
max_ovp = candidate;
}
}
return max_ovp;
}
static int f2fs_prepare_super_block(void)
{
u_int32_t blk_size_bytes;
u_int32_t log_sectorsize, log_sectors_per_block;
u_int32_t log_blocksize, log_blks_per_seg;
u_int32_t segment_size_bytes, zone_size_bytes;
u_int32_t sit_segments;
u_int32_t blocks_for_sit, blocks_for_nat, blocks_for_ssa;
u_int32_t total_valid_blks_available;
u_int64_t zone_align_start_offset, diff, total_meta_segments;
u_int32_t sit_bitmap_size, max_sit_bitmap_size;
u_int32_t max_nat_bitmap_size, max_nat_segments;
u_int32_t total_zones;
set_sb(magic, F2FS_SUPER_MAGIC);
set_sb(major_ver, F2FS_MAJOR_VERSION);
set_sb(minor_ver, F2FS_MINOR_VERSION);
log_sectorsize = log_base_2(config.sector_size);
log_sectors_per_block = log_base_2(config.sectors_per_blk);
log_blocksize = log_sectorsize + log_sectors_per_block;
log_blks_per_seg = log_base_2(config.blks_per_seg);
set_sb(log_sectorsize, log_sectorsize);
set_sb(log_sectors_per_block, log_sectors_per_block);
set_sb(log_blocksize, log_blocksize);
set_sb(log_blocks_per_seg, log_blks_per_seg);
set_sb(segs_per_sec, config.segs_per_sec);
set_sb(secs_per_zone, config.secs_per_zone);
blk_size_bytes = 1 << log_blocksize;
segment_size_bytes = blk_size_bytes * config.blks_per_seg;
zone_size_bytes =
blk_size_bytes * config.secs_per_zone *
config.segs_per_sec * config.blks_per_seg;
sb.checksum_offset = 0;
set_sb(block_count, config.total_sectors >> log_sectors_per_block);
zone_align_start_offset =
(config.start_sector * config.sector_size +
2 * F2FS_BLKSIZE + zone_size_bytes - 1) /
zone_size_bytes * zone_size_bytes -
config.start_sector * config.sector_size;
if (config.start_sector % config.sectors_per_blk) {
MSG(1, "\tWARN: Align start sector number to the page unit\n");
MSG(1, "\ti.e., start sector: %d, ofs:%d (sects/page: %d)\n",
config.start_sector,
config.start_sector % config.sectors_per_blk,
config.sectors_per_blk);
}
set_sb(segment_count, (config.total_sectors * config.sector_size -
zone_align_start_offset) / segment_size_bytes);
set_sb(segment0_blkaddr, zone_align_start_offset / blk_size_bytes);
sb.cp_blkaddr = sb.segment0_blkaddr;
MSG(0, "Info: zone aligned segment0 blkaddr: %u\n", get_sb(segment0_blkaddr));
set_sb(segment_count_ckpt, F2FS_NUMBER_OF_CHECKPOINT_PACK);
set_sb(sit_blkaddr, get_sb(segment0_blkaddr) + get_sb(segment_count_ckpt) *
config.blks_per_seg);
blocks_for_sit = ALIGN(get_sb(segment_count), SIT_ENTRY_PER_BLOCK);
sit_segments = SEG_ALIGN(blocks_for_sit);
set_sb(segment_count_sit, sit_segments * 2);
set_sb(nat_blkaddr, get_sb(sit_blkaddr) + get_sb(segment_count_sit) *
config.blks_per_seg);
total_valid_blks_available = (get_sb(segment_count) -
(get_sb(segment_count_ckpt) + get_sb(segment_count_sit))) *
config.blks_per_seg;
blocks_for_nat = ALIGN(total_valid_blks_available, NAT_ENTRY_PER_BLOCK);
set_sb(segment_count_nat, SEG_ALIGN(blocks_for_nat));
/*
* The number of node segments should not be exceeded a "Threshold".
* This number resizes NAT bitmap area in a CP page.
* So the threshold is determined not to overflow one CP page
*/
sit_bitmap_size = ((get_sb(segment_count_sit) / 2) <<
log_blks_per_seg) / 8;
if (sit_bitmap_size > MAX_SIT_BITMAP_SIZE)
max_sit_bitmap_size = MAX_SIT_BITMAP_SIZE;
else
max_sit_bitmap_size = sit_bitmap_size;
/*
* It should be reserved minimum 1 segment for nat.
* When sit is too large, we should expand cp area. It requires more pages for cp.
*/
if (max_sit_bitmap_size >
(CHECKSUM_OFFSET - sizeof(struct f2fs_checkpoint) + 65)) {
max_nat_bitmap_size = CHECKSUM_OFFSET - sizeof(struct f2fs_checkpoint) + 1;
set_sb(cp_payload, F2FS_BLK_ALIGN(max_sit_bitmap_size));
} else {
max_nat_bitmap_size = CHECKSUM_OFFSET - sizeof(struct f2fs_checkpoint) + 1
- max_sit_bitmap_size;
sb.cp_payload = 0;
}
max_nat_segments = (max_nat_bitmap_size * 8) >> log_blks_per_seg;
if (get_sb(segment_count_nat) > max_nat_segments)
set_sb(segment_count_nat, max_nat_segments);
set_sb(segment_count_nat, get_sb(segment_count_nat) * 2);
set_sb(ssa_blkaddr, get_sb(nat_blkaddr) + get_sb(segment_count_nat) *
config.blks_per_seg);
total_valid_blks_available = (get_sb(segment_count) -
(get_sb(segment_count_ckpt) +
get_sb(segment_count_sit) +
get_sb(segment_count_nat))) *
config.blks_per_seg;
blocks_for_ssa = total_valid_blks_available /
config.blks_per_seg + 1;
set_sb(segment_count_ssa, SEG_ALIGN(blocks_for_ssa));
total_meta_segments = get_sb(segment_count_ckpt) +
get_sb(segment_count_sit) +
get_sb(segment_count_nat) +
get_sb(segment_count_ssa);
diff = total_meta_segments % (config.segs_per_zone);
if (diff)
set_sb(segment_count_ssa, get_sb(segment_count_ssa) +
(config.segs_per_zone - diff));
set_sb(main_blkaddr, get_sb(ssa_blkaddr) + get_sb(segment_count_ssa) *
config.blks_per_seg);
set_sb(segment_count_main, get_sb(segment_count) -
(get_sb(segment_count_ckpt) +
get_sb(segment_count_sit) +
get_sb(segment_count_nat) +
get_sb(segment_count_ssa)));
set_sb(section_count, get_sb(segment_count_main) / config.segs_per_sec);
set_sb(segment_count_main, get_sb(section_count) * config.segs_per_sec);
/* Let's determine the best reserved and overprovisioned space */
if (config.overprovision == 0)
config.overprovision = get_best_overprovision();
config.reserved_segments =
(2 * (100 / config.overprovision + 1) + 6)
* config.segs_per_sec;
if ((get_sb(segment_count_main) - 2) <
config.reserved_segments) {
MSG(1, "\tError: Device size is not sufficient for F2FS volume,\
more segment needed =%u",
config.reserved_segments -
(get_sb(segment_count_main) - 2));
return -1;
}
uuid_generate(sb.uuid);
ASCIIToUNICODE(sb.volume_name, (u_int8_t *)config.vol_label);
set_sb(node_ino, 1);
set_sb(meta_ino, 2);
set_sb(root_ino, 3);
total_zones = get_sb(segment_count_main) / (config.segs_per_zone);
if (total_zones <= 6) {
MSG(1, "\tError: %d zones: Need more zones \
by shrinking zone size\n", total_zones);
return -1;
}
if (config.heap) {
config.cur_seg[CURSEG_HOT_NODE] = last_section(last_zone(total_zones));
config.cur_seg[CURSEG_WARM_NODE] = prev_zone(CURSEG_HOT_NODE);
config.cur_seg[CURSEG_COLD_NODE] = prev_zone(CURSEG_WARM_NODE);
config.cur_seg[CURSEG_HOT_DATA] = prev_zone(CURSEG_COLD_NODE);
config.cur_seg[CURSEG_COLD_DATA] = 0;
config.cur_seg[CURSEG_WARM_DATA] = next_zone(CURSEG_COLD_DATA);
} else {
config.cur_seg[CURSEG_HOT_NODE] = 0;
config.cur_seg[CURSEG_WARM_NODE] = next_zone(CURSEG_HOT_NODE);
config.cur_seg[CURSEG_COLD_NODE] = next_zone(CURSEG_WARM_NODE);
config.cur_seg[CURSEG_HOT_DATA] = next_zone(CURSEG_COLD_NODE);
config.cur_seg[CURSEG_COLD_DATA] = next_zone(CURSEG_HOT_DATA);
config.cur_seg[CURSEG_WARM_DATA] = next_zone(CURSEG_COLD_DATA);
}
configure_extension_list();
/* get kernel version */
if (config.kd >= 0) {
dev_read_version(config.version, 0, VERSION_LEN);
get_kernel_version(config.version);
MSG(0, "Info: format version with\n \"%s\"\n", config.version);
} else {
memset(config.version, 0, VERSION_LEN);
}
memcpy(sb.version, config.version, VERSION_LEN);
memcpy(sb.init_version, config.version, VERSION_LEN);
sb.feature = config.feature;
return 0;
}
static int f2fs_init_sit_area(void)
{
u_int32_t blk_size, seg_size;
u_int32_t index = 0;
u_int64_t sit_seg_addr = 0;
u_int8_t *zero_buf = NULL;
blk_size = 1 << get_sb(log_blocksize);
seg_size = (1 << get_sb(log_blocks_per_seg)) * blk_size;
zero_buf = calloc(sizeof(u_int8_t), seg_size);
if(zero_buf == NULL) {
MSG(1, "\tError: Calloc Failed for sit_zero_buf!!!\n");
return -1;
}
sit_seg_addr = get_sb(sit_blkaddr);
sit_seg_addr *= blk_size;
DBG(1, "\tFilling sit area at offset 0x%08"PRIx64"\n", sit_seg_addr);
for (index = 0; index < (get_sb(segment_count_sit) / 2); index++) {
if (dev_fill(zero_buf, sit_seg_addr, seg_size)) {
MSG(1, "\tError: While zeroing out the sit area \
on disk!!!\n");
free(zero_buf);
return -1;
}
sit_seg_addr += seg_size;
}
free(zero_buf);
return 0 ;
}
static int f2fs_init_nat_area(void)
{
u_int32_t blk_size, seg_size;
u_int32_t index = 0;
u_int64_t nat_seg_addr = 0;
u_int8_t *nat_buf = NULL;
blk_size = 1 << get_sb(log_blocksize);
seg_size = (1 << get_sb(log_blocks_per_seg)) * blk_size;
nat_buf = calloc(sizeof(u_int8_t), seg_size);
if (nat_buf == NULL) {
MSG(1, "\tError: Calloc Failed for nat_zero_blk!!!\n");
return -1;
}
nat_seg_addr = get_sb(nat_blkaddr);
nat_seg_addr *= blk_size;
DBG(1, "\tFilling nat area at offset 0x%08"PRIx64"\n", nat_seg_addr);
for (index = 0; index < get_sb(segment_count_nat) / 2; index++) {
if (dev_fill(nat_buf, nat_seg_addr, seg_size)) {
MSG(1, "\tError: While zeroing out the nat area \
on disk!!!\n");
free(nat_buf);
return -1;
}
nat_seg_addr = nat_seg_addr + (2 * seg_size);
}
free(nat_buf);
return 0 ;
}
static int f2fs_write_check_point_pack(void)
{
struct f2fs_summary_block *sum = NULL;
u_int32_t blk_size_bytes;
u_int64_t cp_seg_blk_offset = 0;
u_int32_t crc = 0;
unsigned int i;
char *cp_payload = NULL;
char *sum_compact, *sum_compact_p;
struct f2fs_summary *sum_entry;
int ret = -1;
cp = calloc(F2FS_BLKSIZE, 1);
if (cp == NULL) {
MSG(1, "\tError: Calloc Failed for f2fs_checkpoint!!!\n");
return ret;
}
sum = calloc(F2FS_BLKSIZE, 1);
if (sum == NULL) {
MSG(1, "\tError: Calloc Failed for summay_node!!!\n");
goto free_cp;
}
sum_compact = calloc(F2FS_BLKSIZE, 1);
if (sum == NULL) {
MSG(1, "\tError: Calloc Failed for summay buffer!!!\n");
goto free_sum;
}
sum_compact_p = sum_compact;
cp_payload = calloc(F2FS_BLKSIZE, 1);
if (cp_payload == NULL) {
MSG(1, "\tError: Calloc Failed for cp_payload!!!\n");
goto free_sum_compact;
}
/* 1. cp page 1 of checkpoint pack 1 */
set_cp(checkpoint_ver, 1);
set_cp(cur_node_segno[0], config.cur_seg[CURSEG_HOT_NODE]);
set_cp(cur_node_segno[1], config.cur_seg[CURSEG_WARM_NODE]);
set_cp(cur_node_segno[2], config.cur_seg[CURSEG_COLD_NODE]);
set_cp(cur_data_segno[0], config.cur_seg[CURSEG_HOT_DATA]);
set_cp(cur_data_segno[1], config.cur_seg[CURSEG_WARM_DATA]);
set_cp(cur_data_segno[2], config.cur_seg[CURSEG_COLD_DATA]);
for (i = 3; i < MAX_ACTIVE_NODE_LOGS; i++) {
set_cp(cur_node_segno[i], 0xffffffff);
set_cp(cur_data_segno[i], 0xffffffff);
}
set_cp(cur_node_blkoff[0], 1);
set_cp(cur_data_blkoff[0], 1);
set_cp(valid_block_count, 2);
set_cp(rsvd_segment_count, config.reserved_segments);
set_cp(overprov_segment_count, (get_sb(segment_count_main) -
get_cp(rsvd_segment_count)) *
config.overprovision / 100);
set_cp(overprov_segment_count, get_cp(overprov_segment_count) +
get_cp(rsvd_segment_count));
MSG(0, "Info: Overprovision ratio = %.3lf%%\n", config.overprovision);
MSG(0, "Info: Overprovision segments = %u (GC reserved = %u)\n",
get_cp(overprov_segment_count),
config.reserved_segments);
/* main segments - reserved segments - (node + data segments) */
set_cp(free_segment_count, get_sb(segment_count_main) - 6);
set_cp(user_block_count, ((get_cp(free_segment_count) + 6 -
get_cp(overprov_segment_count)) * config.blks_per_seg));
/* cp page (2), data summaries (1), node summaries (3) */
set_cp(cp_pack_total_block_count, 6 + get_sb(cp_payload));
set_cp(ckpt_flags, CP_UMOUNT_FLAG | CP_COMPACT_SUM_FLAG);
set_cp(cp_pack_start_sum, 1 + get_sb(cp_payload));
set_cp(valid_node_count, 1);
set_cp(valid_inode_count, 1);
set_cp(next_free_nid, get_sb(root_ino) + 1);
set_cp(sit_ver_bitmap_bytesize, ((get_sb(segment_count_sit) / 2) <<
get_sb(log_blocks_per_seg)) / 8);
set_cp(nat_ver_bitmap_bytesize, ((get_sb(segment_count_nat) / 2) <<
get_sb(log_blocks_per_seg)) / 8);
set_cp(checksum_offset, CHECKSUM_OFFSET);
crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, cp, CHECKSUM_OFFSET);
*((__le32 *)((unsigned char *)cp + CHECKSUM_OFFSET)) =
cpu_to_le32(crc);
blk_size_bytes = 1 << get_sb(log_blocksize);
cp_seg_blk_offset = get_sb(segment0_blkaddr);
cp_seg_blk_offset *= blk_size_bytes;
DBG(1, "\tWriting main segments, cp at offset 0x%08"PRIx64"\n", cp_seg_blk_offset);
if (dev_write(cp, cp_seg_blk_offset, blk_size_bytes)) {
MSG(1, "\tError: While writing the cp to disk!!!\n");
goto free_cp_payload;
}
for (i = 0; i < get_sb(cp_payload); i++) {
cp_seg_blk_offset += blk_size_bytes;
if (dev_fill(cp_payload, cp_seg_blk_offset, blk_size_bytes)) {
MSG(1, "\tError: While zeroing out the sit bitmap area \
on disk!!!\n");
goto free_cp_payload;
}
}
/* Prepare and write Segment summary for HOT/WARM/COLD DATA
*
* The structure of compact summary
* +-------------------+
* | nat_journal |
* +-------------------+
* | sit_journal |
* +-------------------+
* | hot data summary |
* +-------------------+
* | warm data summary |
* +-------------------+
* | cold data summary |
* +-------------------+
*/
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_DATA);
sum->n_nats = cpu_to_le16(1);
sum->nat_j.entries[0].nid = sb.root_ino;
sum->nat_j.entries[0].ne.version = 0;
sum->nat_j.entries[0].ne.ino = sb.root_ino;
sum->nat_j.entries[0].ne.block_addr = cpu_to_le32(
get_sb(main_blkaddr) +
get_cp(cur_node_segno[0]) * config.blks_per_seg);
memcpy(sum_compact_p, &sum->n_nats, SUM_JOURNAL_SIZE);
sum_compact_p += SUM_JOURNAL_SIZE;
memset(sum, 0, sizeof(struct f2fs_summary_block));
/* inode sit for root */
sum->n_sits = cpu_to_le16(6);
sum->sit_j.entries[0].segno = cp->cur_node_segno[0];
sum->sit_j.entries[0].se.vblocks = cpu_to_le16((CURSEG_HOT_NODE << 10) | 1);
f2fs_set_bit(0, (char *)sum->sit_j.entries[0].se.valid_map);
sum->sit_j.entries[1].segno = cp->cur_node_segno[1];
sum->sit_j.entries[1].se.vblocks = cpu_to_le16((CURSEG_WARM_NODE << 10));
sum->sit_j.entries[2].segno = cp->cur_node_segno[2];
sum->sit_j.entries[2].se.vblocks = cpu_to_le16((CURSEG_COLD_NODE << 10));
/* data sit for root */
sum->sit_j.entries[3].segno = cp->cur_data_segno[0];
sum->sit_j.entries[3].se.vblocks = cpu_to_le16((CURSEG_HOT_DATA << 10) | 1);
f2fs_set_bit(0, (char *)sum->sit_j.entries[3].se.valid_map);
sum->sit_j.entries[4].segno = cp->cur_data_segno[1];
sum->sit_j.entries[4].se.vblocks = cpu_to_le16((CURSEG_WARM_DATA << 10));
sum->sit_j.entries[5].segno = cp->cur_data_segno[2];
sum->sit_j.entries[5].se.vblocks = cpu_to_le16((CURSEG_COLD_DATA << 10));
memcpy(sum_compact_p, &sum->n_sits, SUM_JOURNAL_SIZE);
sum_compact_p += SUM_JOURNAL_SIZE;
/* hot data summary */
sum_entry = (struct f2fs_summary *)sum_compact_p;
sum_entry->nid = sb.root_ino;
sum_entry->ofs_in_node = 0;
/* warm data summary, nothing to do */
/* cold data summary, nothing to do */
cp_seg_blk_offset += blk_size_bytes;
DBG(1, "\tWriting Segment summary for HOT/WARM/COLD_DATA, at offset 0x%08"PRIx64"\n",
cp_seg_blk_offset);
if (dev_write(sum_compact, cp_seg_blk_offset, blk_size_bytes)) {
MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
goto free_cp_payload;
}
/* Prepare and write Segment summary for HOT_NODE */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
sum->entries[0].nid = sb.root_ino;
sum->entries[0].ofs_in_node = 0;
cp_seg_blk_offset += blk_size_bytes;
DBG(1, "\tWriting Segment summary for HOT_NODE, at offset 0x%08"PRIx64"\n",
cp_seg_blk_offset);
if (dev_write(sum, cp_seg_blk_offset, blk_size_bytes)) {
MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
goto free_cp_payload;
}
/* Fill segment summary for WARM_NODE to zero. */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
cp_seg_blk_offset += blk_size_bytes;
DBG(1, "\tWriting Segment summary for WARM_NODE, at offset 0x%08"PRIx64"\n",
cp_seg_blk_offset);
if (dev_write(sum, cp_seg_blk_offset, blk_size_bytes)) {
MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
goto free_cp_payload;
}
/* Fill segment summary for COLD_NODE to zero. */
memset(sum, 0, sizeof(struct f2fs_summary_block));
SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
cp_seg_blk_offset += blk_size_bytes;
DBG(1, "\tWriting Segment summary for COLD_NODE, at offset 0x%08"PRIx64"\n",
cp_seg_blk_offset);
if (dev_write(sum, cp_seg_blk_offset, blk_size_bytes)) {
MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
goto free_cp_payload;
}
/* cp page2 */
cp_seg_blk_offset += blk_size_bytes;
DBG(1, "\tWriting cp page2, at offset 0x%08"PRIx64"\n", cp_seg_blk_offset);
if (dev_write(cp, cp_seg_blk_offset, blk_size_bytes)) {
MSG(1, "\tError: While writing the cp to disk!!!\n");
goto free_cp_payload;
}
/* cp page 1 of check point pack 2
* Initiatialize other checkpoint pack with version zero
*/
cp->checkpoint_ver = 0;
crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, cp, CHECKSUM_OFFSET);
*((__le32 *)((unsigned char *)cp + CHECKSUM_OFFSET)) =
cpu_to_le32(crc);
cp_seg_blk_offset = (get_sb(segment0_blkaddr) +
config.blks_per_seg) *
blk_size_bytes;
DBG(1, "\tWriting cp page 1 of checkpoint pack 2, at offset 0x%08"PRIx64"\n", cp_seg_blk_offset);
if (dev_write(cp, cp_seg_blk_offset, blk_size_bytes)) {
MSG(1, "\tError: While writing the cp to disk!!!\n");
goto free_cp_payload;
}
for (i = 0; i < get_sb(cp_payload); i++) {
cp_seg_blk_offset += blk_size_bytes;
if (dev_fill(cp_payload, cp_seg_blk_offset, blk_size_bytes)) {
MSG(1, "\tError: While zeroing out the sit bitmap area \
on disk!!!\n");
goto free_cp_payload;
}
}
/* cp page 2 of check point pack 2 */
cp_seg_blk_offset += blk_size_bytes * (le32_to_cpu(cp->cp_pack_total_block_count)
- get_sb(cp_payload) - 1);
DBG(1, "\tWriting cp page 2 of checkpoint pack 2, at offset 0x%08"PRIx64"\n", cp_seg_blk_offset);
if (dev_write(cp, cp_seg_blk_offset, blk_size_bytes)) {
MSG(1, "\tError: While writing the cp to disk!!!\n");
goto free_cp_payload;
}
ret = 0;
free_cp_payload:
free(cp_payload);
free_sum_compact:
free(sum_compact);
free_sum:
free(sum);
free_cp:
free(cp);
return ret;
}
static int f2fs_write_super_block(void)
{
int index;
u_int8_t *zero_buff;
zero_buff = calloc(F2FS_BLKSIZE, 1);
memcpy(zero_buff + F2FS_SUPER_OFFSET, &sb,
sizeof(sb));
DBG(1, "\tWriting super block, at offset 0x%08x\n", 0);
for (index = 0; index < 2; index++) {
if (dev_write(zero_buff, index * F2FS_BLKSIZE, F2FS_BLKSIZE)) {
MSG(1, "\tError: While while writing supe_blk \
on disk!!! index : %d\n", index);
free(zero_buff);
return -1;
}
}
free(zero_buff);
return 0;
}
static int f2fs_write_root_inode(void)
{
struct f2fs_node *raw_node = NULL;
u_int64_t blk_size_bytes, data_blk_nor;
u_int64_t main_area_node_seg_blk_offset = 0;
raw_node = calloc(F2FS_BLKSIZE, 1);
if (raw_node == NULL) {
MSG(1, "\tError: Calloc Failed for raw_node!!!\n");
return -1;
}
raw_node->footer.nid = sb.root_ino;
raw_node->footer.ino = sb.root_ino;
raw_node->footer.cp_ver = cpu_to_le64(1);
raw_node->footer.next_blkaddr = cpu_to_le32(
get_sb(main_blkaddr) +
config.cur_seg[CURSEG_HOT_NODE] *
config.blks_per_seg + 1);
raw_node->i.i_mode = cpu_to_le16(0x41ed);
raw_node->i.i_links = cpu_to_le32(2);
raw_node->i.i_uid = cpu_to_le32(getuid());
raw_node->i.i_gid = cpu_to_le32(getgid());
blk_size_bytes = 1 << get_sb(log_blocksize);
raw_node->i.i_size = cpu_to_le64(1 * blk_size_bytes); /* dentry */
raw_node->i.i_blocks = cpu_to_le64(2);
raw_node->i.i_atime = cpu_to_le32(time(NULL));
raw_node->i.i_atime_nsec = 0;
raw_node->i.i_ctime = cpu_to_le32(time(NULL));
raw_node->i.i_ctime_nsec = 0;
raw_node->i.i_mtime = cpu_to_le32(time(NULL));
raw_node->i.i_mtime_nsec = 0;
raw_node->i.i_generation = 0;
raw_node->i.i_xattr_nid = 0;
raw_node->i.i_flags = 0;
raw_node->i.i_current_depth = cpu_to_le32(1);
raw_node->i.i_dir_level = DEF_DIR_LEVEL;
data_blk_nor = get_sb(main_blkaddr) +
config.cur_seg[CURSEG_HOT_DATA] * config.blks_per_seg;
raw_node->i.i_addr[0] = cpu_to_le32(data_blk_nor);
raw_node->i.i_ext.fofs = 0;
raw_node->i.i_ext.blk_addr = cpu_to_le32(data_blk_nor);
raw_node->i.i_ext.len = cpu_to_le32(1);
main_area_node_seg_blk_offset = get_sb(main_blkaddr);
main_area_node_seg_blk_offset += config.cur_seg[CURSEG_HOT_NODE] *
config.blks_per_seg;
main_area_node_seg_blk_offset *= blk_size_bytes;
DBG(1, "\tWriting root inode (hot node), at offset 0x%08"PRIx64"\n", main_area_node_seg_blk_offset);
if (dev_write(raw_node, main_area_node_seg_blk_offset, F2FS_BLKSIZE)) {
MSG(1, "\tError: While writing the raw_node to disk!!!\n");
free(raw_node);
return -1;
}
memset(raw_node, 0xff, sizeof(struct f2fs_node));
/* avoid power-off-recovery based on roll-forward policy */
main_area_node_seg_blk_offset = get_sb(main_blkaddr);
main_area_node_seg_blk_offset += config.cur_seg[CURSEG_WARM_NODE] *
config.blks_per_seg;
main_area_node_seg_blk_offset *= blk_size_bytes;
DBG(1, "\tWriting root inode (warm node), at offset 0x%08"PRIx64"\n", main_area_node_seg_blk_offset);
if (dev_write(raw_node, main_area_node_seg_blk_offset, F2FS_BLKSIZE)) {
MSG(1, "\tError: While writing the raw_node to disk!!!\n");
free(raw_node);
return -1;
}
free(raw_node);
return 0;
}
static int f2fs_update_nat_root(void)
{
struct f2fs_nat_block *nat_blk = NULL;
u_int64_t blk_size_bytes, nat_seg_blk_offset = 0;
nat_blk = calloc(F2FS_BLKSIZE, 1);
if(nat_blk == NULL) {
MSG(1, "\tError: Calloc Failed for nat_blk!!!\n");
return -1;
}
/* update root */
nat_blk->entries[get_sb(root_ino)].block_addr = cpu_to_le32(
get_sb(main_blkaddr) +
config.cur_seg[CURSEG_HOT_NODE] * config.blks_per_seg);
nat_blk->entries[get_sb(root_ino)].ino = sb.root_ino;
/* update node nat */
nat_blk->entries[get_sb(node_ino)].block_addr = cpu_to_le32(1);
nat_blk->entries[get_sb(node_ino)].ino = sb.node_ino;
/* update meta nat */
nat_blk->entries[get_sb(meta_ino)].block_addr = cpu_to_le32(1);
nat_blk->entries[get_sb(meta_ino)].ino = sb.meta_ino;
blk_size_bytes = 1 << get_sb(log_blocksize);
nat_seg_blk_offset = get_sb(nat_blkaddr);
nat_seg_blk_offset *= blk_size_bytes;
DBG(1, "\tWriting nat root, at offset 0x%08"PRIx64"\n", nat_seg_blk_offset);
if (dev_write(nat_blk, nat_seg_blk_offset, F2FS_BLKSIZE)) {
MSG(1, "\tError: While writing the nat_blk set0 to disk!\n");
free(nat_blk);
return -1;
}
free(nat_blk);
return 0;
}
static int f2fs_add_default_dentry_root(void)
{
struct f2fs_dentry_block *dent_blk = NULL;
u_int64_t blk_size_bytes, data_blk_offset = 0;
dent_blk = calloc(F2FS_BLKSIZE, 1);
if(dent_blk == NULL) {
MSG(1, "\tError: Calloc Failed for dent_blk!!!\n");
return -1;
}
dent_blk->dentry[0].hash_code = 0;
dent_blk->dentry[0].ino = sb.root_ino;
dent_blk->dentry[0].name_len = cpu_to_le16(1);
dent_blk->dentry[0].file_type = F2FS_FT_DIR;
memcpy(dent_blk->filename[0], ".", 1);
dent_blk->dentry[1].hash_code = 0;
dent_blk->dentry[1].ino = sb.root_ino;
dent_blk->dentry[1].name_len = cpu_to_le16(2);
dent_blk->dentry[1].file_type = F2FS_FT_DIR;
memcpy(dent_blk->filename[1], "..", 2);
/* bitmap for . and .. */
dent_blk->dentry_bitmap[0] = (1 << 1) | (1 << 0);
blk_size_bytes = 1 << get_sb(log_blocksize);
data_blk_offset = get_sb(main_blkaddr);
data_blk_offset += config.cur_seg[CURSEG_HOT_DATA] *
config.blks_per_seg;
data_blk_offset *= blk_size_bytes;
DBG(1, "\tWriting default dentry root, at offset 0x%08"PRIx64"\n", data_blk_offset);
if (dev_write(dent_blk, data_blk_offset, F2FS_BLKSIZE)) {
MSG(1, "\tError: While writing the dentry_blk to disk!!!\n");
free(dent_blk);
return -1;
}
free(dent_blk);
return 0;
}
static int f2fs_create_root_dir(void)
{
int err = 0;
err = f2fs_write_root_inode();
if (err < 0) {
MSG(1, "\tError: Failed to write root inode!!!\n");
goto exit;
}
err = f2fs_update_nat_root();
if (err < 0) {
MSG(1, "\tError: Failed to update NAT for root!!!\n");
goto exit;
}
err = f2fs_add_default_dentry_root();
if (err < 0) {
MSG(1, "\tError: Failed to add default dentries for root!!!\n");
goto exit;
}
exit:
if (err)
MSG(1, "\tError: Could not create the root directory!!!\n");
return err;
}
int f2fs_format_device(void)
{
int err = 0;
err= f2fs_prepare_super_block();
if (err < 0) {
MSG(0, "\tError: Failed to prepare a super block!!!\n");
goto exit;
}
err = f2fs_trim_device();
if (err < 0) {
MSG(0, "\tError: Failed to trim whole device!!!\n");
goto exit;
}
err = f2fs_init_sit_area();
if (err < 0) {
MSG(0, "\tError: Failed to Initialise the SIT AREA!!!\n");
goto exit;
}
err = f2fs_init_nat_area();
if (err < 0) {
MSG(0, "\tError: Failed to Initialise the NAT AREA!!!\n");
goto exit;
}
err = f2fs_create_root_dir();
if (err < 0) {
MSG(0, "\tError: Failed to create the root directory!!!\n");
goto exit;
}
err = f2fs_write_check_point_pack();
if (err < 0) {
MSG(0, "\tError: Failed to write the check point pack!!!\n");
goto exit;
}
err = f2fs_write_super_block();
if (err < 0) {
MSG(0, "\tError: Failed to write the Super Block!!!\n");
goto exit;
}
exit:
if (err)
MSG(0, "\tError: Could not format the device!!!\n");
return err;
}