blob: a51a35998ffb005dc79a54e707af5785b4be948c [file] [log] [blame]
/**
* f2fs_fs.h
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
* Copyright (c) 2019 Google Inc.
* http://www.google.com/
* Copyright (c) 2020 Google Inc.
* Robin Hsu <robinhsu@google.com>
* : add sload compression support
*
* Dual licensed under the GPL or LGPL version 2 licenses.
*
* The byteswap codes are copied from:
* samba_3_master/lib/ccan/endian/endian.h under LGPL 2.1
*/
#ifndef __F2FS_FS_H__
#define __F2FS_FS_H__
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifdef __ANDROID__
#define WITH_ANDROID
#endif
#ifdef WITH_ANDROID
#include <android_config.h>
#else
#define WITH_DUMP
#define WITH_DEFRAG
#define WITH_RESIZE
#define WITH_SLOAD
#endif
#include <inttypes.h>
#ifdef HAVE_LINUX_TYPES_H
#include <linux/types.h>
#endif
#include <sys/types.h>
#ifdef HAVE_LINUX_BLKZONED_H
#include <linux/blkzoned.h>
#endif
#ifdef HAVE_LIBSELINUX
#include <selinux/selinux.h>
#include <selinux/label.h>
#endif
#ifdef UNUSED
#elif defined(__GNUC__)
# define UNUSED(x) UNUSED_ ## x __attribute__((unused))
#elif defined(__LCLINT__)
# define UNUSED(x) x
#elif defined(__cplusplus)
# define UNUSED(x)
#else
# define UNUSED(x) x
#endif
#ifdef ANDROID_WINDOWS_HOST
#undef HAVE_LINUX_TYPES_H
typedef uint64_t u_int64_t;
typedef uint32_t u_int32_t;
typedef uint16_t u_int16_t;
typedef uint8_t u_int8_t;
#endif
/* codes from kernel's f2fs.h, GPL-v2.0 */
#define MIN_COMPRESS_LOG_SIZE 2
#define MAX_COMPRESS_LOG_SIZE 8
typedef u_int64_t u64;
typedef u_int32_t u32;
typedef u_int16_t u16;
typedef u_int8_t u8;
typedef u32 block_t;
typedef u32 nid_t;
#ifndef bool
typedef u8 bool;
#endif
typedef unsigned long pgoff_t;
typedef unsigned short umode_t;
#ifndef HAVE_LINUX_TYPES_H
typedef u8 __u8;
typedef u16 __u16;
typedef u32 __u32;
typedef u64 __u64;
typedef u16 __le16;
typedef u32 __le32;
typedef u64 __le64;
typedef u16 __be16;
typedef u32 __be32;
typedef u64 __be64;
#endif
/*
* code borrowed from kernel f2fs dirver: f2fs.h, GPL-2.0
* : definitions of COMPRESS_DATA_RESERVED_SIZE,
* struct compress_data, COMPRESS_HEADER_SIZE,
* and struct compress_ctx
*/
#define COMPRESS_DATA_RESERVED_SIZE 4
struct compress_data {
__le32 clen; /* compressed data size */
__le32 chksum; /* checksum of compressed data */
__le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
u8 cdata[]; /* compressed data */
};
#define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
/* compress context */
struct compress_ctx {
unsigned int cluster_size; /* page count in cluster */
unsigned int log_cluster_size; /* log of cluster size */
void *rbuf; /* compression input buffer */
struct compress_data *cbuf; /* comprsssion output header + data */
size_t rlen; /* valid data length in rbuf */
size_t clen; /* valid data length in cbuf */
void *private; /* work buf for compress algorithm */
};
#if HAVE_BYTESWAP_H
#include <byteswap.h>
#else
/**
* bswap_16 - reverse bytes in a uint16_t value.
* @val: value whose bytes to swap.
*
* Example:
* // Output contains "1024 is 4 as two bytes reversed"
* printf("1024 is %u as two bytes reversed\n", bswap_16(1024));
*/
static inline uint16_t bswap_16(uint16_t val)
{
return ((val & (uint16_t)0x00ffU) << 8)
| ((val & (uint16_t)0xff00U) >> 8);
}
/**
* bswap_32 - reverse bytes in a uint32_t value.
* @val: value whose bytes to swap.
*
* Example:
* // Output contains "1024 is 262144 as four bytes reversed"
* printf("1024 is %u as four bytes reversed\n", bswap_32(1024));
*/
static inline uint32_t bswap_32(uint32_t val)
{
return ((val & (uint32_t)0x000000ffUL) << 24)
| ((val & (uint32_t)0x0000ff00UL) << 8)
| ((val & (uint32_t)0x00ff0000UL) >> 8)
| ((val & (uint32_t)0xff000000UL) >> 24);
}
#endif /* !HAVE_BYTESWAP_H */
#if defined HAVE_DECL_BSWAP_64 && !HAVE_DECL_BSWAP_64
/**
* bswap_64 - reverse bytes in a uint64_t value.
* @val: value whose bytes to swap.
*
* Example:
* // Output contains "1024 is 1125899906842624 as eight bytes reversed"
* printf("1024 is %llu as eight bytes reversed\n",
* (unsigned long long)bswap_64(1024));
*/
static inline uint64_t bswap_64(uint64_t val)
{
return ((val & (uint64_t)0x00000000000000ffULL) << 56)
| ((val & (uint64_t)0x000000000000ff00ULL) << 40)
| ((val & (uint64_t)0x0000000000ff0000ULL) << 24)
| ((val & (uint64_t)0x00000000ff000000ULL) << 8)
| ((val & (uint64_t)0x000000ff00000000ULL) >> 8)
| ((val & (uint64_t)0x0000ff0000000000ULL) >> 24)
| ((val & (uint64_t)0x00ff000000000000ULL) >> 40)
| ((val & (uint64_t)0xff00000000000000ULL) >> 56);
}
#endif
#if __BYTE_ORDER == __LITTLE_ENDIAN
#define le16_to_cpu(x) ((__u16)(x))
#define le32_to_cpu(x) ((__u32)(x))
#define le64_to_cpu(x) ((__u64)(x))
#define cpu_to_le16(x) ((__u16)(x))
#define cpu_to_le32(x) ((__u32)(x))
#define cpu_to_le64(x) ((__u64)(x))
#elif __BYTE_ORDER == __BIG_ENDIAN
#define le16_to_cpu(x) bswap_16(x)
#define le32_to_cpu(x) bswap_32(x)
#define le64_to_cpu(x) bswap_64(x)
#define cpu_to_le16(x) bswap_16(x)
#define cpu_to_le32(x) bswap_32(x)
#define cpu_to_le64(x) bswap_64(x)
#endif
#define typecheck(type,x) \
({ type __dummy; \
typeof(x) __dummy2; \
(void)(&__dummy == &__dummy2); \
1; \
})
#define NULL_SEGNO ((unsigned int)~0)
/*
* Debugging interfaces
*/
#define FIX_MSG(fmt, ...) \
do { \
printf("[FIX] (%s:%4d) ", __func__, __LINE__); \
printf(" --> "fmt"\n", ##__VA_ARGS__); \
} while (0)
#define ASSERT_MSG(fmt, ...) \
do { \
printf("[ASSERT] (%s:%4d) ", __func__, __LINE__); \
printf(" --> "fmt"\n", ##__VA_ARGS__); \
c.bug_on = 1; \
} while (0)
#define ASSERT(exp) \
do { \
if (!(exp)) { \
printf("[ASSERT] (%s:%4d) %s\n", \
__func__, __LINE__, #exp); \
exit(-1); \
} \
} while (0)
#define ERR_MSG(fmt, ...) \
do { \
printf("[%s:%d] " fmt, __func__, __LINE__, ##__VA_ARGS__); \
} while (0)
#define MSG(n, fmt, ...) \
do { \
if (c.dbg_lv >= n) { \
printf(fmt, ##__VA_ARGS__); \
} \
} while (0)
#define DBG(n, fmt, ...) \
do { \
if (c.dbg_lv >= n) { \
printf("[%s:%4d] " fmt, \
__func__, __LINE__, ##__VA_ARGS__); \
} \
} while (0)
/* Display on console */
#define DISP(fmt, ptr, member) \
do { \
printf("%-30s" fmt, #member, ((ptr)->member)); \
} while (0)
#define DISP_u16(ptr, member) \
do { \
assert(sizeof((ptr)->member) == 2); \
printf("%-30s" "\t\t[0x%8x : %u]\n", \
#member, le16_to_cpu(((ptr)->member)), \
le16_to_cpu(((ptr)->member))); \
} while (0)
#define DISP_u32(ptr, member) \
do { \
assert(sizeof((ptr)->member) <= 4); \
printf("%-30s" "\t\t[0x%8x : %u]\n", \
#member, le32_to_cpu(((ptr)->member)), \
le32_to_cpu(((ptr)->member))); \
} while (0)
#define DISP_u64(ptr, member) \
do { \
assert(sizeof((ptr)->member) == 8); \
printf("%-30s" "\t\t[0x%8llx : %llu]\n", \
#member, le64_to_cpu(((ptr)->member)), \
le64_to_cpu(((ptr)->member))); \
} while (0)
#define DISP_utf(ptr, member) \
do { \
printf("%-30s" "\t\t[%s]\n", #member, ((ptr)->member)); \
} while (0)
/* Display to buffer */
#define BUF_DISP_u32(buf, data, len, ptr, member) \
do { \
assert(sizeof((ptr)->member) <= 4); \
snprintf(buf, len, #member); \
snprintf(data, len, "0x%x : %u", ((ptr)->member), \
((ptr)->member)); \
} while (0)
#define BUF_DISP_u64(buf, data, len, ptr, member) \
do { \
assert(sizeof((ptr)->member) == 8); \
snprintf(buf, len, #member); \
snprintf(data, len, "0x%llx : %llu", ((ptr)->member), \
((ptr)->member)); \
} while (0)
#define BUF_DISP_utf(buf, data, len, ptr, member) \
snprintf(buf, len, #member)
/* these are defined in kernel */
#ifndef PAGE_SIZE
#define PAGE_SIZE 4096
#endif
#define PAGE_CACHE_SIZE 4096
#define BITS_PER_BYTE 8
#ifndef SECTOR_SHIFT
#define SECTOR_SHIFT 9
#endif
#define F2FS_SUPER_MAGIC 0xF2F52010 /* F2FS Magic Number */
#define CP_CHKSUM_OFFSET 4092
#define SB_CHKSUM_OFFSET 3068
#define MAX_PATH_LEN 64
#define MAX_DEVICES 8
#define F2FS_BYTES_TO_BLK(bytes) ((bytes) >> F2FS_BLKSIZE_BITS)
#define F2FS_BLKSIZE_BITS 12
/* for mkfs */
#define F2FS_NUMBER_OF_CHECKPOINT_PACK 2
#define DEFAULT_SECTOR_SIZE 512
#define DEFAULT_SECTORS_PER_BLOCK 8
#define DEFAULT_BLOCKS_PER_SEGMENT 512
#define DEFAULT_SEGMENTS_PER_SECTION 1
#define VERSION_LEN 256
#define LPF "lost+found"
enum f2fs_config_func {
MKFS,
FSCK,
DUMP,
DEFRAG,
RESIZE,
SLOAD,
};
enum default_set {
CONF_NONE = 0,
CONF_ANDROID,
};
struct device_info {
char *path;
int32_t fd;
u_int32_t sector_size;
u_int64_t total_sectors; /* got by get_device_info */
u_int64_t start_blkaddr;
u_int64_t end_blkaddr;
u_int32_t total_segments;
/* to handle zone block devices */
int zoned_model;
u_int32_t nr_zones;
u_int32_t nr_rnd_zones;
size_t zone_blocks;
size_t *zone_cap_blocks;
};
typedef struct {
/* Value 0 means no cache, minimum 1024 */
long num_cache_entry;
/* Value 0 means always overwrite (no collision allowed). maximum 16 */
unsigned max_hash_collision;
bool dbg_en;
} dev_cache_config_t;
/* f2fs_configration for compression used for sload.f2fs */
typedef struct {
void (*init)(struct compress_ctx *cc);
int (*compress)(struct compress_ctx *cc);
void (*reset)(struct compress_ctx *cc);
} compress_ops;
/* Should be aligned to supported_comp_names and support_comp_ops */
enum compress_algorithms {
COMPR_LZO,
COMPR_LZ4,
MAX_COMPRESS_ALGS,
};
enum filter_policy {
COMPR_FILTER_UNASSIGNED = 0,
COMPR_FILTER_ALLOW,
COMPR_FILTER_DENY,
};
typedef struct {
void (*add)(const char *);
void (*destroy)(void);
bool (*filter)(const char *);
} filter_ops;
typedef struct {
bool enabled; /* disabled by default */
bool required; /* require to enable */
bool readonly; /* readonly to release blocks */
struct compress_ctx cc; /* work context */
enum compress_algorithms alg; /* algorithm to compress */
compress_ops *ops; /* ops per algorithm */
unsigned int min_blocks; /* save more blocks than this */
enum filter_policy filter; /* filter to try compression */
filter_ops *filter_ops; /* filter ops */
} compress_config_t;
#define ALIGN_UP(value, size) ((value) + ((value) % (size) > 0 ? \
(size) - (value) % (size) : 0))
struct f2fs_configuration {
u_int32_t reserved_segments;
u_int32_t new_reserved_segments;
int sparse_mode;
int zoned_mode;
int zoned_model;
size_t zone_blocks;
double overprovision;
double new_overprovision;
u_int32_t cur_seg[6];
u_int32_t segs_per_sec;
u_int32_t secs_per_zone;
u_int32_t segs_per_zone;
u_int32_t start_sector;
u_int32_t total_segments;
u_int32_t sector_size;
u_int64_t device_size;
u_int64_t total_sectors;
u_int64_t wanted_total_sectors;
u_int64_t wanted_sector_size;
u_int64_t target_sectors;
u_int32_t sectors_per_blk;
u_int32_t blks_per_seg;
__u8 init_version[VERSION_LEN + 1];
__u8 sb_version[VERSION_LEN + 1];
__u8 version[VERSION_LEN + 1];
char *vol_label;
char *vol_uuid;
u_int16_t s_encoding;
u_int16_t s_encoding_flags;
int heap;
int32_t kd;
int32_t dump_fd;
struct device_info devices[MAX_DEVICES];
int ndevs;
char *extension_list[2];
const char *rootdev_name;
int dbg_lv;
int show_dentry;
int trim;
int trimmed;
int func;
void *private;
int dry_run;
int no_kernel_check;
int fix_on;
int force;
int defset;
int bug_on;
int bug_nat_bits;
int alloc_failed;
int auto_fix;
int quota_fix;
int preen_mode;
int ro;
int preserve_limits; /* preserve quota limits */
int large_nat_bitmap;
int fix_chksum; /* fix old cp.chksum position */
__le32 feature; /* defined features */
time_t fixed_time;
/* mkfs parameters */
int fake_seed;
u_int32_t next_free_nid;
u_int32_t quota_inum;
u_int32_t quota_dnum;
u_int32_t lpf_inum;
u_int32_t lpf_dnum;
u_int32_t lpf_ino;
u_int32_t root_uid;
u_int32_t root_gid;
/* defragmentation parameters */
int defrag_shrink;
u_int64_t defrag_start;
u_int64_t defrag_len;
u_int64_t defrag_target;
/* sload parameters */
char *from_dir;
char *mount_point;
char *target_out_dir;
char *fs_config_file;
#ifdef HAVE_LIBSELINUX
struct selinux_opt seopt_file[8];
int nr_opt;
#endif
/* resize parameters */
int safe_resize;
/* precomputed fs UUID checksum for seeding other checksums */
u_int32_t chksum_seed;
/* cache parameters */
dev_cache_config_t cache_config;
/* compression support for sload.f2fs */
compress_config_t compress;
};
#ifdef CONFIG_64BIT
#define BITS_PER_LONG 64
#else
#define BITS_PER_LONG 32
#endif
#define BIT_MASK(nr) (1 << (nr % BITS_PER_LONG))
#define BIT_WORD(nr) (nr / BITS_PER_LONG)
#define set_sb_le64(member, val) (sb->member = cpu_to_le64(val))
#define set_sb_le32(member, val) (sb->member = cpu_to_le32(val))
#define set_sb_le16(member, val) (sb->member = cpu_to_le16(val))
#define get_sb_le64(member) le64_to_cpu(sb->member)
#define get_sb_le32(member) le32_to_cpu(sb->member)
#define get_sb_le16(member) le16_to_cpu(sb->member)
#define get_newsb_le64(member) le64_to_cpu(new_sb->member)
#define get_newsb_le32(member) le32_to_cpu(new_sb->member)
#define get_newsb_le16(member) le16_to_cpu(new_sb->member)
#define set_sb(member, val) \
do { \
typeof(sb->member) t; \
switch (sizeof(t)) { \
case 8: set_sb_le64(member, val); break; \
case 4: set_sb_le32(member, val); break; \
case 2: set_sb_le16(member, val); break; \
} \
} while(0)
#define get_sb(member) \
({ \
typeof(sb->member) t; \
switch (sizeof(t)) { \
case 8: t = get_sb_le64(member); break; \
case 4: t = get_sb_le32(member); break; \
case 2: t = get_sb_le16(member); break; \
} \
t; \
})
#define get_newsb(member) \
({ \
typeof(new_sb->member) t; \
switch (sizeof(t)) { \
case 8: t = get_newsb_le64(member); break; \
case 4: t = get_newsb_le32(member); break; \
case 2: t = get_newsb_le16(member); break; \
} \
t; \
})
#define set_cp_le64(member, val) (cp->member = cpu_to_le64(val))
#define set_cp_le32(member, val) (cp->member = cpu_to_le32(val))
#define set_cp_le16(member, val) (cp->member = cpu_to_le16(val))
#define get_cp_le64(member) le64_to_cpu(cp->member)
#define get_cp_le32(member) le32_to_cpu(cp->member)
#define get_cp_le16(member) le16_to_cpu(cp->member)
#define set_cp(member, val) \
do { \
typeof(cp->member) t; \
switch (sizeof(t)) { \
case 8: set_cp_le64(member, val); break; \
case 4: set_cp_le32(member, val); break; \
case 2: set_cp_le16(member, val); break; \
} \
} while(0)
#define get_cp(member) \
({ \
typeof(cp->member) t; \
switch (sizeof(t)) { \
case 8: t = get_cp_le64(member); break; \
case 4: t = get_cp_le32(member); break; \
case 2: t = get_cp_le16(member); break; \
} \
t; \
})
/*
* Copied from include/linux/kernel.h
*/
#define __round_mask(x, y) ((__typeof__(x))((y)-1))
#define round_down(x, y) ((x) & ~__round_mask(x, y))
#define min(x, y) ({ \
typeof(x) _min1 = (x); \
typeof(y) _min2 = (y); \
(void) (&_min1 == &_min2); \
_min1 < _min2 ? _min1 : _min2; })
#define max(x, y) ({ \
typeof(x) _max1 = (x); \
typeof(y) _max2 = (y); \
(void) (&_max1 == &_max2); \
_max1 > _max2 ? _max1 : _max2; })
#define round_up(x, y) (((x) + (y) - 1) / (y))
/*
* Copied from fs/f2fs/f2fs.h
*/
#define NR_CURSEG_DATA_TYPE (3)
#define NR_CURSEG_NODE_TYPE (3)
#define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
enum {
CURSEG_HOT_DATA = 0, /* directory entry blocks */
CURSEG_WARM_DATA, /* data blocks */
CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
CURSEG_HOT_NODE, /* direct node blocks of directory files */
CURSEG_WARM_NODE, /* direct node blocks of normal files */
CURSEG_COLD_NODE, /* indirect node blocks */
NO_CHECK_TYPE
};
#define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
/*
* Copied from fs/f2fs/segment.h
*/
#define GET_SUM_TYPE(footer) ((footer)->entry_type)
#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
/*
* Copied from include/linux/f2fs_sb.h
*/
#define F2FS_SUPER_OFFSET 1024 /* byte-size offset */
#define F2FS_MIN_LOG_SECTOR_SIZE 9 /* 9 bits for 512 bytes */
#define F2FS_MAX_LOG_SECTOR_SIZE 12 /* 12 bits for 4096 bytes */
#define F2FS_BLKSIZE 4096 /* support only 4KB block */
#define F2FS_MAX_EXTENSION 64 /* # of extension entries */
#define F2FS_EXTENSION_LEN 8 /* max size of extension */
#define F2FS_BLK_ALIGN(x) (((x) + F2FS_BLKSIZE - 1) / F2FS_BLKSIZE)
#define NULL_ADDR 0x0U
#define NEW_ADDR -1U
#define COMPRESS_ADDR -2U
#define F2FS_ROOT_INO(sbi) (sbi->root_ino_num)
#define F2FS_NODE_INO(sbi) (sbi->node_ino_num)
#define F2FS_META_INO(sbi) (sbi->meta_ino_num)
#define F2FS_MAX_QUOTAS 3
#define QUOTA_DATA(i) (2)
#define QUOTA_INO(sb,t) (le32_to_cpu((sb)->qf_ino[t]))
#define FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
#define F2FS_ENC_UTF8_12_1 1
#define F2FS_ENC_STRICT_MODE_FL (1 << 0)
/* This flag is used by node and meta inodes, and by recovery */
#define GFP_F2FS_ZERO (GFP_NOFS | __GFP_ZERO)
/*
* For further optimization on multi-head logs, on-disk layout supports maximum
* 16 logs by default. The number, 16, is expected to cover all the cases
* enoughly. The implementaion currently uses no more than 6 logs.
* Half the logs are used for nodes, and the other half are used for data.
*/
#define MAX_ACTIVE_LOGS 16
#define MAX_ACTIVE_NODE_LOGS 8
#define MAX_ACTIVE_DATA_LOGS 8
#define F2FS_FEATURE_ENCRYPT 0x0001
#define F2FS_FEATURE_BLKZONED 0x0002
#define F2FS_FEATURE_ATOMIC_WRITE 0x0004
#define F2FS_FEATURE_EXTRA_ATTR 0x0008
#define F2FS_FEATURE_PRJQUOTA 0x0010
#define F2FS_FEATURE_INODE_CHKSUM 0x0020
#define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
#define F2FS_FEATURE_QUOTA_INO 0x0080
#define F2FS_FEATURE_INODE_CRTIME 0x0100
#define F2FS_FEATURE_LOST_FOUND 0x0200
#define F2FS_FEATURE_VERITY 0x0400 /* reserved */
#define F2FS_FEATURE_SB_CHKSUM 0x0800
#define F2FS_FEATURE_CASEFOLD 0x1000
#define F2FS_FEATURE_COMPRESSION 0x2000
#define MAX_VOLUME_NAME 512
/*
* For superblock
*/
#pragma pack(push, 1)
struct f2fs_device {
__u8 path[MAX_PATH_LEN];
__le32 total_segments;
} __attribute__((packed));
struct f2fs_super_block {
__le32 magic; /* Magic Number */
__le16 major_ver; /* Major Version */
__le16 minor_ver; /* Minor Version */
__le32 log_sectorsize; /* log2 sector size in bytes */
__le32 log_sectors_per_block; /* log2 # of sectors per block */
__le32 log_blocksize; /* log2 block size in bytes */
__le32 log_blocks_per_seg; /* log2 # of blocks per segment */
__le32 segs_per_sec; /* # of segments per section */
__le32 secs_per_zone; /* # of sections per zone */
__le32 checksum_offset; /* checksum offset inside super block */
__le64 block_count; /* total # of user blocks */
__le32 section_count; /* total # of sections */
__le32 segment_count; /* total # of segments */
__le32 segment_count_ckpt; /* # of segments for checkpoint */
__le32 segment_count_sit; /* # of segments for SIT */
__le32 segment_count_nat; /* # of segments for NAT */
__le32 segment_count_ssa; /* # of segments for SSA */
__le32 segment_count_main; /* # of segments for main area */
__le32 segment0_blkaddr; /* start block address of segment 0 */
__le32 cp_blkaddr; /* start block address of checkpoint */
__le32 sit_blkaddr; /* start block address of SIT */
__le32 nat_blkaddr; /* start block address of NAT */
__le32 ssa_blkaddr; /* start block address of SSA */
__le32 main_blkaddr; /* start block address of main area */
__le32 root_ino; /* root inode number */
__le32 node_ino; /* node inode number */
__le32 meta_ino; /* meta inode number */
__u8 uuid[16]; /* 128-bit uuid for volume */
__le16 volume_name[MAX_VOLUME_NAME]; /* volume name */
__le32 extension_count; /* # of extensions below */
__u8 extension_list[F2FS_MAX_EXTENSION][8]; /* extension array */
__le32 cp_payload;
__u8 version[VERSION_LEN]; /* the kernel version */
__u8 init_version[VERSION_LEN]; /* the initial kernel version */
__le32 feature; /* defined features */
__u8 encryption_level; /* versioning level for encryption */
__u8 encrypt_pw_salt[16]; /* Salt used for string2key algorithm */
struct f2fs_device devs[MAX_DEVICES]; /* device list */
__le32 qf_ino[F2FS_MAX_QUOTAS]; /* quota inode numbers */
__u8 hot_ext_count; /* # of hot file extension */
__le16 s_encoding; /* Filename charset encoding */
__le16 s_encoding_flags; /* Filename charset encoding flags */
__u8 reserved[306]; /* valid reserved region */
__le32 crc; /* checksum of superblock */
} __attribute__((packed));
/*
* For checkpoint
*/
#define CP_RESIZEFS_FLAG 0x00004000
#define CP_DISABLED_FLAG 0x00001000
#define CP_QUOTA_NEED_FSCK_FLAG 0x00000800
#define CP_LARGE_NAT_BITMAP_FLAG 0x00000400
#define CP_NOCRC_RECOVERY_FLAG 0x00000200
#define CP_TRIMMED_FLAG 0x00000100
#define CP_NAT_BITS_FLAG 0x00000080
#define CP_CRC_RECOVERY_FLAG 0x00000040
#define CP_FASTBOOT_FLAG 0x00000020
#define CP_FSCK_FLAG 0x00000010
#define CP_ERROR_FLAG 0x00000008
#define CP_COMPACT_SUM_FLAG 0x00000004
#define CP_ORPHAN_PRESENT_FLAG 0x00000002
#define CP_UMOUNT_FLAG 0x00000001
#define F2FS_CP_PACKS 2 /* # of checkpoint packs */
struct f2fs_checkpoint {
__le64 checkpoint_ver; /* checkpoint block version number */
__le64 user_block_count; /* # of user blocks */
__le64 valid_block_count; /* # of valid blocks in main area */
__le32 rsvd_segment_count; /* # of reserved segments for gc */
__le32 overprov_segment_count; /* # of overprovision segments */
__le32 free_segment_count; /* # of free segments in main area */
/* information of current node segments */
__le32 cur_node_segno[MAX_ACTIVE_NODE_LOGS];
__le16 cur_node_blkoff[MAX_ACTIVE_NODE_LOGS];
/* information of current data segments */
__le32 cur_data_segno[MAX_ACTIVE_DATA_LOGS];
__le16 cur_data_blkoff[MAX_ACTIVE_DATA_LOGS];
__le32 ckpt_flags; /* Flags : umount and journal_present */
__le32 cp_pack_total_block_count; /* total # of one cp pack */
__le32 cp_pack_start_sum; /* start block number of data summary */
__le32 valid_node_count; /* Total number of valid nodes */
__le32 valid_inode_count; /* Total number of valid inodes */
__le32 next_free_nid; /* Next free node number */
__le32 sit_ver_bitmap_bytesize; /* Default value 64 */
__le32 nat_ver_bitmap_bytesize; /* Default value 256 */
__le32 checksum_offset; /* checksum offset inside cp block */
__le64 elapsed_time; /* mounted time */
/* allocation type of current segment */
unsigned char alloc_type[MAX_ACTIVE_LOGS];
/* SIT and NAT version bitmap */
unsigned char sit_nat_version_bitmap[1];
} __attribute__((packed));
#define CP_BITMAP_OFFSET \
(offsetof(struct f2fs_checkpoint, sit_nat_version_bitmap))
#define CP_MIN_CHKSUM_OFFSET CP_BITMAP_OFFSET
#define MIN_NAT_BITMAP_SIZE 64
#define MAX_SIT_BITMAP_SIZE_IN_CKPT \
(CP_CHKSUM_OFFSET - CP_BITMAP_OFFSET - MIN_NAT_BITMAP_SIZE)
#define MAX_BITMAP_SIZE_IN_CKPT \
(CP_CHKSUM_OFFSET - CP_BITMAP_OFFSET)
/*
* For orphan inode management
*/
#define F2FS_ORPHANS_PER_BLOCK 1020
struct f2fs_orphan_block {
__le32 ino[F2FS_ORPHANS_PER_BLOCK]; /* inode numbers */
__le32 reserved; /* reserved */
__le16 blk_addr; /* block index in current CP */
__le16 blk_count; /* Number of orphan inode blocks in CP */
__le32 entry_count; /* Total number of orphan nodes in current CP */
__le32 check_sum; /* CRC32 for orphan inode block */
} __attribute__((packed));
/*
* For NODE structure
*/
struct f2fs_extent {
__le32 fofs; /* start file offset of the extent */
__le32 blk_addr; /* start block address of the extent */
__le32 len; /* lengh of the extent */
} __attribute__((packed));
#define F2FS_NAME_LEN 255
/* max output length of pretty_print_filename() including null terminator */
#define F2FS_PRINT_NAMELEN (4 * ((F2FS_NAME_LEN + 2) / 3) + 1)
/* 200 bytes for inline xattrs by default */
#define DEFAULT_INLINE_XATTR_ADDRS 50
#define DEF_ADDRS_PER_INODE 923 /* Address Pointers in an Inode */
#define CUR_ADDRS_PER_INODE(inode) (DEF_ADDRS_PER_INODE - \
__get_extra_isize(inode))
#define ADDRS_PER_INODE(i) addrs_per_inode(i)
#define DEF_ADDRS_PER_BLOCK 1018 /* Address Pointers in a Direct Block */
#define ADDRS_PER_BLOCK(i) addrs_per_block(i)
#define NIDS_PER_BLOCK 1018 /* Node IDs in an Indirect Block */
#define NODE_DIR1_BLOCK (DEF_ADDRS_PER_INODE + 1)
#define NODE_DIR2_BLOCK (DEF_ADDRS_PER_INODE + 2)
#define NODE_IND1_BLOCK (DEF_ADDRS_PER_INODE + 3)
#define NODE_IND2_BLOCK (DEF_ADDRS_PER_INODE + 4)
#define NODE_DIND_BLOCK (DEF_ADDRS_PER_INODE + 5)
#define F2FS_INLINE_XATTR 0x01 /* file inline xattr flag */
#define F2FS_INLINE_DATA 0x02 /* file inline data flag */
#define F2FS_INLINE_DENTRY 0x04 /* file inline dentry flag */
#define F2FS_DATA_EXIST 0x08 /* file inline data exist flag */
#define F2FS_INLINE_DOTS 0x10 /* file having implicit dot dentries */
#define F2FS_EXTRA_ATTR 0x20 /* file having extra attribute */
#if !defined(offsetof)
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
#endif
#define F2FS_EXTRA_ISIZE_OFFSET \
offsetof(struct f2fs_inode, i_extra_isize)
#define F2FS_TOTAL_EXTRA_ATTR_SIZE \
(offsetof(struct f2fs_inode, i_extra_end) - F2FS_EXTRA_ISIZE_OFFSET)
#define F2FS_DEF_PROJID 0 /* default project ID */
#define MAX_INLINE_DATA(node) (sizeof(__le32) * \
(DEF_ADDRS_PER_INODE - \
get_inline_xattr_addrs(&node->i) - \
get_extra_isize(node) - \
DEF_INLINE_RESERVED_SIZE))
#define DEF_MAX_INLINE_DATA (sizeof(__le32) * \
(DEF_ADDRS_PER_INODE - \
DEFAULT_INLINE_XATTR_ADDRS - \
F2FS_TOTAL_EXTRA_ATTR_SIZE - \
DEF_INLINE_RESERVED_SIZE))
#define INLINE_DATA_OFFSET (PAGE_CACHE_SIZE - sizeof(struct node_footer) \
- sizeof(__le32)*(DEF_ADDRS_PER_INODE + 5 - \
DEF_INLINE_RESERVED_SIZE))
#define DEF_DIR_LEVEL 0
/*
* i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
*/
#define FADVISE_COLD_BIT 0x01
#define FADVISE_LOST_PINO_BIT 0x02
#define FADVISE_ENCRYPT_BIT 0x04
#define FADVISE_ENC_NAME_BIT 0x08
#define FADVISE_KEEP_SIZE_BIT 0x10
#define FADVISE_HOT_BIT 0x20
#define FADVISE_VERITY_BIT 0x40 /* reserved */
#define file_is_encrypt(fi) ((fi)->i_advise & FADVISE_ENCRYPT_BIT)
#define file_enc_name(fi) ((fi)->i_advise & FADVISE_ENC_NAME_BIT)
#define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
#define IS_CASEFOLDED(dir) ((dir)->i_flags & F2FS_CASEFOLD_FL)
/*
* inode flags
*/
#define F2FS_COMPR_FL 0x00000004 /* Compress file */
struct f2fs_inode {
__le16 i_mode; /* file mode */
__u8 i_advise; /* file hints */
__u8 i_inline; /* file inline flags */
__le32 i_uid; /* user ID */
__le32 i_gid; /* group ID */
__le32 i_links; /* links count */
__le64 i_size; /* file size in bytes */
__le64 i_blocks; /* file size in blocks */
__le64 i_atime; /* access time */
__le64 i_ctime; /* change time */
__le64 i_mtime; /* modification time */
__le32 i_atime_nsec; /* access time in nano scale */
__le32 i_ctime_nsec; /* change time in nano scale */
__le32 i_mtime_nsec; /* modification time in nano scale */
__le32 i_generation; /* file version (for NFS) */
union {
__le32 i_current_depth; /* only for directory depth */
__le16 i_gc_failures; /*
* # of gc failures on pinned file.
* only for regular files.
*/
};
__le32 i_xattr_nid; /* nid to save xattr */
__le32 i_flags; /* file attributes */
__le32 i_pino; /* parent inode number */
__le32 i_namelen; /* file name length */
__u8 i_name[F2FS_NAME_LEN]; /* file name for SPOR */
__u8 i_dir_level; /* dentry_level for large dir */
struct f2fs_extent i_ext; /* caching a largest extent */
union {
struct {
__le16 i_extra_isize; /* extra inode attribute size */
__le16 i_inline_xattr_size; /* inline xattr size, unit: 4 bytes */
__le32 i_projid; /* project id */
__le32 i_inode_checksum;/* inode meta checksum */
__le64 i_crtime; /* creation time */
__le32 i_crtime_nsec; /* creation time in nano scale */
__le64 i_compr_blocks; /* # of compressed blocks */
__u8 i_compress_algrithm; /* compress algrithm */
__u8 i_log_cluster_size; /* log of cluster size */
__le16 i_padding; /* padding */
__le32 i_extra_end[0]; /* for attribute size calculation */
} __attribute__((packed));
__le32 i_addr[DEF_ADDRS_PER_INODE]; /* Pointers to data blocks */
};
__le32 i_nid[5]; /* direct(2), indirect(2),
double_indirect(1) node id */
} __attribute__((packed));
struct direct_node {
__le32 addr[DEF_ADDRS_PER_BLOCK]; /* array of data block address */
} __attribute__((packed));
struct indirect_node {
__le32 nid[NIDS_PER_BLOCK]; /* array of data block address */
} __attribute__((packed));
enum {
COLD_BIT_SHIFT = 0,
FSYNC_BIT_SHIFT,
DENT_BIT_SHIFT,
OFFSET_BIT_SHIFT
};
#define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
>> OFFSET_BIT_SHIFT)
struct node_footer {
__le32 nid; /* node id */
__le32 ino; /* inode nunmber */
__le32 flag; /* include cold/fsync/dentry marks and offset */
__le64 cp_ver; /* checkpoint version */
__le32 next_blkaddr; /* next node page block address */
} __attribute__((packed));
struct f2fs_node {
/* can be one of three types: inode, direct, and indirect types */
union {
struct f2fs_inode i;
struct direct_node dn;
struct indirect_node in;
};
struct node_footer footer;
} __attribute__((packed));
/*
* For NAT entries
*/
#define NAT_ENTRY_PER_BLOCK (PAGE_CACHE_SIZE / sizeof(struct f2fs_nat_entry))
#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
#define DEFAULT_NAT_ENTRY_RATIO 20
struct f2fs_nat_entry {
__u8 version; /* latest version of cached nat entry */
__le32 ino; /* inode number */
__le32 block_addr; /* block address */
} __attribute__((packed));
struct f2fs_nat_block {
struct f2fs_nat_entry entries[NAT_ENTRY_PER_BLOCK];
} __attribute__((packed));
/*
* For SIT entries
*
* Each segment is 2MB in size by default so that a bitmap for validity of
* there-in blocks should occupy 64 bytes, 512 bits.
* Not allow to change this.
*/
#define SIT_VBLOCK_MAP_SIZE 64
#define SIT_ENTRY_PER_BLOCK (PAGE_CACHE_SIZE / sizeof(struct f2fs_sit_entry))
/*
* F2FS uses 4 bytes to represent block address. As a result, supported size of
* disk is 16 TB and it equals to 16 * 1024 * 1024 / 2 segments.
*/
#define F2FS_MIN_SEGMENT 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
#define F2FS_MAX_SEGMENT ((16 * 1024 * 1024) / 2)
#define MAX_SIT_BITMAP_SIZE (SEG_ALIGN(SIZE_ALIGN(F2FS_MAX_SEGMENT, \
SIT_ENTRY_PER_BLOCK)) * \
c.blks_per_seg / 8)
/*
* Note that f2fs_sit_entry->vblocks has the following bit-field information.
* [15:10] : allocation type such as CURSEG_XXXX_TYPE
* [9:0] : valid block count
*/
#define SIT_VBLOCKS_SHIFT 10
#define SIT_VBLOCKS_MASK ((1 << SIT_VBLOCKS_SHIFT) - 1)
#define GET_SIT_VBLOCKS(raw_sit) \
(le16_to_cpu((raw_sit)->vblocks) & SIT_VBLOCKS_MASK)
#define GET_SIT_TYPE(raw_sit) \
((le16_to_cpu((raw_sit)->vblocks) & ~SIT_VBLOCKS_MASK) \
>> SIT_VBLOCKS_SHIFT)
struct f2fs_sit_entry {
__le16 vblocks; /* reference above */
__u8 valid_map[SIT_VBLOCK_MAP_SIZE]; /* bitmap for valid blocks */
__le64 mtime; /* segment age for cleaning */
} __attribute__((packed));
struct f2fs_sit_block {
struct f2fs_sit_entry entries[SIT_ENTRY_PER_BLOCK];
} __attribute__((packed));
/*
* For segment summary
*
* One summary block contains exactly 512 summary entries, which represents
* exactly 2MB segment by default. Not allow to change the basic units.
*
* NOTE: For initializing fields, you must use set_summary
*
* - If data page, nid represents dnode's nid
* - If node page, nid represents the node page's nid.
*
* The ofs_in_node is used by only data page. It represents offset
* from node's page's beginning to get a data block address.
* ex) data_blkaddr = (block_t)(nodepage_start_address + ofs_in_node)
*/
#define ENTRIES_IN_SUM 512
#define SUMMARY_SIZE (7) /* sizeof(struct summary) */
#define SUM_FOOTER_SIZE (5) /* sizeof(struct summary_footer) */
#define SUM_ENTRIES_SIZE (SUMMARY_SIZE * ENTRIES_IN_SUM)
/* a summary entry for a 4KB-sized block in a segment */
struct f2fs_summary {
__le32 nid; /* parent node id */
union {
__u8 reserved[3];
struct {
__u8 version; /* node version number */
__le16 ofs_in_node; /* block index in parent node */
} __attribute__((packed));
};
} __attribute__((packed));
/* summary block type, node or data, is stored to the summary_footer */
#define SUM_TYPE_NODE (1)
#define SUM_TYPE_DATA (0)
struct summary_footer {
unsigned char entry_type; /* SUM_TYPE_XXX */
__le32 check_sum; /* summary checksum */
} __attribute__((packed));
#define SUM_JOURNAL_SIZE (F2FS_BLKSIZE - SUM_FOOTER_SIZE -\
SUM_ENTRIES_SIZE)
#define NAT_JOURNAL_ENTRIES ((SUM_JOURNAL_SIZE - 2) /\
sizeof(struct nat_journal_entry))
#define NAT_JOURNAL_RESERVED ((SUM_JOURNAL_SIZE - 2) %\
sizeof(struct nat_journal_entry))
#define SIT_JOURNAL_ENTRIES ((SUM_JOURNAL_SIZE - 2) /\
sizeof(struct sit_journal_entry))
#define SIT_JOURNAL_RESERVED ((SUM_JOURNAL_SIZE - 2) %\
sizeof(struct sit_journal_entry))
/*
* Reserved area should make size of f2fs_extra_info equals to
* that of nat_journal and sit_journal.
*/
#define EXTRA_INFO_RESERVED (SUM_JOURNAL_SIZE - 2 - 8)
/*
* frequently updated NAT/SIT entries can be stored in the spare area in
* summary blocks
*/
enum {
NAT_JOURNAL = 0,
SIT_JOURNAL
};
struct nat_journal_entry {
__le32 nid;
struct f2fs_nat_entry ne;
} __attribute__((packed));
struct nat_journal {
struct nat_journal_entry entries[NAT_JOURNAL_ENTRIES];
__u8 reserved[NAT_JOURNAL_RESERVED];
} __attribute__((packed));
struct sit_journal_entry {
__le32 segno;
struct f2fs_sit_entry se;
} __attribute__((packed));
struct sit_journal {
struct sit_journal_entry entries[SIT_JOURNAL_ENTRIES];
__u8 reserved[SIT_JOURNAL_RESERVED];
} __attribute__((packed));
struct f2fs_extra_info {
__le64 kbytes_written;
__u8 reserved[EXTRA_INFO_RESERVED];
} __attribute__((packed));
struct f2fs_journal {
union {
__le16 n_nats;
__le16 n_sits;
};
/* spare area is used by NAT or SIT journals or extra info */
union {
struct nat_journal nat_j;
struct sit_journal sit_j;
struct f2fs_extra_info info;
};
} __attribute__((packed));
/* 4KB-sized summary block structure */
struct f2fs_summary_block {
struct f2fs_summary entries[ENTRIES_IN_SUM];
struct f2fs_journal journal;
struct summary_footer footer;
} __attribute__((packed));
/*
* For directory operations
*/
#define F2FS_DOT_HASH 0
#define F2FS_DDOT_HASH F2FS_DOT_HASH
#define F2FS_MAX_HASH (~((0x3ULL) << 62))
#define F2FS_HASH_COL_BIT ((0x1ULL) << 63)
typedef __le32 f2fs_hash_t;
/* One directory entry slot covers 8bytes-long file name */
#define F2FS_SLOT_LEN 8
#define F2FS_SLOT_LEN_BITS 3
#define GET_DENTRY_SLOTS(x) ((x + F2FS_SLOT_LEN - 1) >> F2FS_SLOT_LEN_BITS)
/* the number of dentry in a block */
#define NR_DENTRY_IN_BLOCK 214
/* MAX level for dir lookup */
#define MAX_DIR_HASH_DEPTH 63
/* MAX buckets in one level of dir */
#define MAX_DIR_BUCKETS (1 << ((MAX_DIR_HASH_DEPTH / 2) - 1))
#define SIZE_OF_DIR_ENTRY 11 /* by byte */
#define SIZE_OF_DENTRY_BITMAP ((NR_DENTRY_IN_BLOCK + BITS_PER_BYTE - 1) / \
BITS_PER_BYTE)
#define SIZE_OF_RESERVED (PAGE_SIZE - ((SIZE_OF_DIR_ENTRY + \
F2FS_SLOT_LEN) * \
NR_DENTRY_IN_BLOCK + SIZE_OF_DENTRY_BITMAP))
#define MIN_INLINE_DENTRY_SIZE 40 /* just include '.' and '..' entries */
/* One directory entry slot representing F2FS_SLOT_LEN-sized file name */
struct f2fs_dir_entry {
__le32 hash_code; /* hash code of file name */
__le32 ino; /* inode number */
__le16 name_len; /* lengh of file name */
__u8 file_type; /* file type */
} __attribute__((packed));
/* 4KB-sized directory entry block */
struct f2fs_dentry_block {
/* validity bitmap for directory entries in each block */
__u8 dentry_bitmap[SIZE_OF_DENTRY_BITMAP];
__u8 reserved[SIZE_OF_RESERVED];
struct f2fs_dir_entry dentry[NR_DENTRY_IN_BLOCK];
__u8 filename[NR_DENTRY_IN_BLOCK][F2FS_SLOT_LEN];
} __attribute__((packed));
#pragma pack(pop)
/* for inline stuff */
#define DEF_INLINE_RESERVED_SIZE 1
/* for inline dir */
#define NR_INLINE_DENTRY(node) (MAX_INLINE_DATA(node) * BITS_PER_BYTE / \
((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
BITS_PER_BYTE + 1))
#define INLINE_DENTRY_BITMAP_SIZE(node) ((NR_INLINE_DENTRY(node) + \
BITS_PER_BYTE - 1) / BITS_PER_BYTE)
#define INLINE_RESERVED_SIZE(node) (MAX_INLINE_DATA(node) - \
((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
NR_INLINE_DENTRY(node) + \
INLINE_DENTRY_BITMAP_SIZE(node)))
/* file types used in inode_info->flags */
enum FILE_TYPE {
F2FS_FT_UNKNOWN,
F2FS_FT_REG_FILE,
F2FS_FT_DIR,
F2FS_FT_CHRDEV,
F2FS_FT_BLKDEV,
F2FS_FT_FIFO,
F2FS_FT_SOCK,
F2FS_FT_SYMLINK,
F2FS_FT_MAX,
/* added for fsck */
F2FS_FT_ORPHAN,
F2FS_FT_XATTR,
F2FS_FT_LAST_FILE_TYPE = F2FS_FT_XATTR,
};
#define LINUX_S_IFMT 00170000
#define LINUX_S_IFREG 0100000
#define LINUX_S_ISREG(m) (((m) & LINUX_S_IFMT) == LINUX_S_IFREG)
/* from f2fs/segment.h */
enum {
LFS = 0,
SSR
};
extern int utf8_to_utf16(u_int16_t *, const char *, size_t, size_t);
extern int utf16_to_utf8(char *, const u_int16_t *, size_t, size_t);
extern int log_base_2(u_int32_t);
extern unsigned int addrs_per_inode(struct f2fs_inode *);
extern unsigned int addrs_per_block(struct f2fs_inode *);
extern __u32 f2fs_inode_chksum(struct f2fs_node *);
extern __u32 f2fs_checkpoint_chksum(struct f2fs_checkpoint *);
extern int write_inode(struct f2fs_node *, u64);
extern int get_bits_in_byte(unsigned char n);
extern int test_and_set_bit_le(u32, u8 *);
extern int test_and_clear_bit_le(u32, u8 *);
extern int test_bit_le(u32, const u8 *);
extern int f2fs_test_bit(unsigned int, const char *);
extern int f2fs_set_bit(unsigned int, char *);
extern int f2fs_clear_bit(unsigned int, char *);
extern u64 find_next_bit_le(const u8 *, u64, u64);
extern u64 find_next_zero_bit_le(const u8 *, u64, u64);
extern u_int32_t f2fs_cal_crc32(u_int32_t, void *, int);
extern int f2fs_crc_valid(u_int32_t blk_crc, void *buf, int len);
extern void f2fs_init_configuration(void);
extern int f2fs_devs_are_umounted(void);
extern int f2fs_dev_is_writable(void);
extern int f2fs_dev_is_umounted(char *);
extern int f2fs_get_device_info(void);
extern unsigned int calc_extra_isize(void);
extern int get_device_info(int);
extern int f2fs_init_sparse_file(void);
extern void f2fs_release_sparse_resource(void);
extern int f2fs_finalize_device(void);
extern int f2fs_fsync_device(void);
extern void dcache_init(void);
extern void dcache_release(void);
extern int dev_read(void *, __u64, size_t);
#ifdef POSIX_FADV_WILLNEED
extern int dev_readahead(__u64, size_t);
#else
extern int dev_readahead(__u64, size_t UNUSED(len));
#endif
extern int dev_write(void *, __u64, size_t);
extern int dev_write_block(void *, __u64);
extern int dev_write_dump(void *, __u64, size_t);
/* All bytes in the buffer must be 0 use dev_fill(). */
extern int dev_fill(void *, __u64, size_t);
extern int dev_fill_block(void *, __u64);
extern int dev_read_block(void *, __u64);
extern int dev_reada_block(__u64);
extern int dev_read_version(void *, __u64, size_t);
extern void get_kernel_version(__u8 *);
extern void get_kernel_uname_version(__u8 *);
f2fs_hash_t f2fs_dentry_hash(int, int, const unsigned char *, int);
static inline bool f2fs_has_extra_isize(struct f2fs_inode *inode)
{
return (inode->i_inline & F2FS_EXTRA_ATTR);
}
static inline int __get_extra_isize(struct f2fs_inode *inode)
{
if (f2fs_has_extra_isize(inode))
return le16_to_cpu(inode->i_extra_isize) / sizeof(__le32);
return 0;
}
extern struct f2fs_configuration c;
static inline int get_inline_xattr_addrs(struct f2fs_inode *inode)
{
if (c.feature & cpu_to_le32(F2FS_FEATURE_FLEXIBLE_INLINE_XATTR))
return le16_to_cpu(inode->i_inline_xattr_size);
else if (inode->i_inline & F2FS_INLINE_XATTR ||
inode->i_inline & F2FS_INLINE_DENTRY)
return DEFAULT_INLINE_XATTR_ADDRS;
else
return 0;
}
#define get_extra_isize(node) __get_extra_isize(&node->i)
#define F2FS_ZONED_NONE 0
#define F2FS_ZONED_HA 1
#define F2FS_ZONED_HM 2
#ifdef HAVE_LINUX_BLKZONED_H
/* Let's just use v2, since v1 should be compatible with v2 */
#define BLK_ZONE_REP_CAPACITY (1 << 0)
struct blk_zone_v2 {
__u64 start; /* Zone start sector */
__u64 len; /* Zone length in number of sectors */
__u64 wp; /* Zone write pointer position */
__u8 type; /* Zone type */
__u8 cond; /* Zone condition */
__u8 non_seq; /* Non-sequential write resources active */
__u8 reset; /* Reset write pointer recommended */
__u8 resv[4];
__u64 capacity; /* Zone capacity in number of sectors */
__u8 reserved[24];
};
#define blk_zone blk_zone_v2
struct blk_zone_report_v2 {
__u64 sector;
__u32 nr_zones;
__u32 flags;
struct blk_zone zones[0];
};
#define blk_zone_report blk_zone_report_v2
#define blk_zone_type(z) (z)->type
#define blk_zone_conv(z) ((z)->type == BLK_ZONE_TYPE_CONVENTIONAL)
#define blk_zone_seq_req(z) ((z)->type == BLK_ZONE_TYPE_SEQWRITE_REQ)
#define blk_zone_seq_pref(z) ((z)->type == BLK_ZONE_TYPE_SEQWRITE_PREF)
#define blk_zone_seq(z) (blk_zone_seq_req(z) || blk_zone_seq_pref(z))
static inline const char *
blk_zone_type_str(struct blk_zone *blkz)
{
switch (blk_zone_type(blkz)) {
case BLK_ZONE_TYPE_CONVENTIONAL:
return( "Conventional" );
case BLK_ZONE_TYPE_SEQWRITE_REQ:
return( "Sequential-write-required" );
case BLK_ZONE_TYPE_SEQWRITE_PREF:
return( "Sequential-write-preferred" );
}
return( "Unknown-type" );
}
#define blk_zone_cond(z) (z)->cond
static inline const char *
blk_zone_cond_str(struct blk_zone *blkz)
{
switch (blk_zone_cond(blkz)) {
case BLK_ZONE_COND_NOT_WP:
return "Not-write-pointer";
case BLK_ZONE_COND_EMPTY:
return "Empty";
case BLK_ZONE_COND_IMP_OPEN:
return "Implicit-open";
case BLK_ZONE_COND_EXP_OPEN:
return "Explicit-open";
case BLK_ZONE_COND_CLOSED:
return "Closed";
case BLK_ZONE_COND_READONLY:
return "Read-only";
case BLK_ZONE_COND_FULL:
return "Full";
case BLK_ZONE_COND_OFFLINE:
return "Offline";
}
return "Unknown-cond";
}
/*
* Handle kernel zone capacity support
*/
#define blk_zone_empty(z) (blk_zone_cond(z) == BLK_ZONE_COND_EMPTY)
#define blk_zone_sector(z) (z)->start
#define blk_zone_length(z) (z)->len
#define blk_zone_wp_sector(z) (z)->wp
#define blk_zone_need_reset(z) (int)(z)->reset
#define blk_zone_non_seq(z) (int)(z)->non_seq
#define blk_zone_capacity(z, f) ((f & BLK_ZONE_REP_CAPACITY) ? \
(z)->capacity : (z)->len)
#endif
extern int f2fs_get_zoned_model(int);
extern int f2fs_get_zone_blocks(int);
extern int f2fs_report_zone(int, u_int64_t, void *);
typedef int (report_zones_cb_t)(int i, void *, void *);
extern int f2fs_report_zones(int, report_zones_cb_t *, void *);
extern int f2fs_check_zones(int);
int f2fs_reset_zone(int, void *);
extern int f2fs_reset_zones(int);
extern uint32_t f2fs_get_usable_segments(struct f2fs_super_block *sb);
#define SIZE_ALIGN(val, size) (((val) + (size) - 1) / (size))
#define SEG_ALIGN(blks) SIZE_ALIGN(blks, c.blks_per_seg)
#define ZONE_ALIGN(blks) SIZE_ALIGN(blks, c.blks_per_seg * \
c.segs_per_zone)
static inline double get_best_overprovision(struct f2fs_super_block *sb)
{
double reserved, ovp, candidate, end, diff, space;
double max_ovp = 0, max_space = 0;
u_int32_t usable_main_segs = f2fs_get_usable_segments(sb);
if (get_sb(segment_count_main) < 256) {
candidate = 10;
end = 95;
diff = 5;
} else {
candidate = 0.01;
end = 10;
diff = 0.01;
}
for (; candidate <= end; candidate += diff) {
reserved = (2 * (100 / candidate + 1) + 6) *
round_up(usable_main_segs, get_sb(section_count));
ovp = (usable_main_segs - reserved) * candidate / 100;
space = usable_main_segs - reserved - ovp;
if (max_space < space) {
max_space = space;
max_ovp = candidate;
}
}
return max_ovp;
}
static inline __le64 get_cp_crc(struct f2fs_checkpoint *cp)
{
u_int64_t cp_ver = get_cp(checkpoint_ver);
size_t crc_offset = get_cp(checksum_offset);
u_int32_t crc = le32_to_cpu(*(__le32 *)((unsigned char *)cp +
crc_offset));
cp_ver |= ((u_int64_t)crc << 32);
return cpu_to_le64(cp_ver);
}
static inline int exist_qf_ino(struct f2fs_super_block *sb)
{
int i;
for (i = 0; i < F2FS_MAX_QUOTAS; i++)
if (sb->qf_ino[i])
return 1;
return 0;
}
static inline int is_qf_ino(struct f2fs_super_block *sb, nid_t ino)
{
int i;
for (i = 0; i < F2FS_MAX_QUOTAS; i++)
if (sb->qf_ino[i] == ino)
return 1;
return 0;
}
static inline void show_version(const char *prog)
{
#if defined(F2FS_TOOLS_VERSION) && defined(F2FS_TOOLS_DATE)
MSG(0, "%s %s (%s)\n", prog, F2FS_TOOLS_VERSION, F2FS_TOOLS_DATE);
#else
MSG(0, "%s -- version not supported\n", prog);
#endif
}
struct feature {
char *name;
u32 mask;
};
#define INIT_FEATURE_TABLE \
struct feature feature_table[] = { \
{ "encrypt", F2FS_FEATURE_ENCRYPT }, \
{ "extra_attr", F2FS_FEATURE_EXTRA_ATTR }, \
{ "project_quota", F2FS_FEATURE_PRJQUOTA }, \
{ "inode_checksum", F2FS_FEATURE_INODE_CHKSUM }, \
{ "flexible_inline_xattr", F2FS_FEATURE_FLEXIBLE_INLINE_XATTR },\
{ "quota", F2FS_FEATURE_QUOTA_INO }, \
{ "inode_crtime", F2FS_FEATURE_INODE_CRTIME }, \
{ "lost_found", F2FS_FEATURE_LOST_FOUND }, \
{ "verity", F2FS_FEATURE_VERITY }, /* reserved */ \
{ "sb_checksum", F2FS_FEATURE_SB_CHKSUM }, \
{ "casefold", F2FS_FEATURE_CASEFOLD }, \
{ "compression", F2FS_FEATURE_COMPRESSION }, \
{ NULL, 0x0}, \
};
static inline u32 feature_map(struct feature *table, char *feature)
{
struct feature *p;
for (p = table; p->name && strcmp(p->name, feature); p++)
;
return p->mask;
}
static inline int set_feature_bits(struct feature *table, char *features)
{
u32 mask = feature_map(table, features);
if (mask) {
c.feature |= cpu_to_le32(mask);
} else {
MSG(0, "Error: Wrong features %s\n", features);
return -1;
}
return 0;
}
static inline int parse_feature(struct feature *table, const char *features)
{
char *buf, *sub, *next;
buf = strdup(features);
if (!buf)
return -1;
for (sub = buf; sub && *sub; sub = next ? next + 1 : NULL) {
/* Skip the beginning blanks */
while (*sub && *sub == ' ')
sub++;
next = sub;
/* Skip a feature word */
while (*next && *next != ' ' && *next != ',')
next++;
if (*next == 0)
next = NULL;
else
*next = 0;
if (set_feature_bits(table, sub)) {
free(buf);
return -1;
}
}
free(buf);
return 0;
}
static inline int parse_root_owner(char *ids,
u_int32_t *root_uid, u_int32_t *root_gid)
{
char *uid = ids;
char *gid = NULL;
int i;
/* uid:gid */
for (i = 0; i < strlen(ids) - 1; i++)
if (*(ids + i) == ':')
gid = ids + i + 1;
if (!gid)
return -1;
*root_uid = atoi(uid);
*root_gid = atoi(gid);
return 0;
}
/*
* NLS definitions
*/
struct f2fs_nls_table {
int version;
const struct f2fs_nls_ops *ops;
};
struct f2fs_nls_ops {
int (*casefold)(const struct f2fs_nls_table *charset,
const unsigned char *str, size_t len,
unsigned char *dest, size_t dlen);
};
extern const struct f2fs_nls_table *f2fs_load_nls_table(int encoding);
#define F2FS_ENC_UTF8_12_0 1
extern int f2fs_str2encoding(const char *string);
extern char *f2fs_encoding2str(const int encoding);
extern int f2fs_get_encoding_flags(int encoding);
extern int f2fs_str2encoding_flags(char **param, __u16 *flags);
#endif /*__F2FS_FS_H */