blob: 256fb581577cf4a7df5dd944b20b4c66128315e5 [file] [log] [blame] [view]
# Developer Tools Examples
This directory contains examples of BundledProgram and ETDump generation.
## Directory structure
```bash
examples/devtools
├── scripts # Python scripts to illustrate export workflow of bundled program.
├── executor_runner # Contains an example for both BundledProgram to verify ExecuTorch model, and generate ETDump for runtime results.
└── README.md # Current file
```
## BundledProgram
We will use an example model (in `torch.nn.Module`) and its representative inputs, both from [`models/`](../models) directory, to generate a [BundledProgram(`.bpte`)](../../docs/source/sdk-bundled-io.md) file using the [script](scripts/export_bundled_program.py). Then we will use [devtools/example_runner](example_runner/example_runner.cpp) to execute the `.bpte` model on the ExecuTorch runtime and verify the model on BundledProgram API.
1. Sets up the basic development environment for ExecuTorch by [Setting up ExecuTorch from GitHub](https://pytorch.org/executorch/stable/getting-started-setup).
2. Using the [script](scripts/export_bundled_program.py) to generate a BundledProgram binary file by retreiving a `torch.nn.Module` model and its representative inputs from the list of available models in the [`models/`](../models) dir.
```bash
cd executorch # To the top level dir
# To get a list of example models
python3 -m examples.devtools.scripts.export_bundled_program -h
# To generate a specific `.bpte` model
python3 -m examples.devtools.scripts.export_bundled_program -m mv2 # for MobileNetv2
# This should generate ./mv2_bundled.bpte file, if successful.
```
3. Once we have the BundledProgram binary (`.bpte`) file, then let's run and verify it with ExecuTorch runtime and BundledProgram APIs using the [devtools/example_runner](example_runner/example_runner.cpp).
```bash
cd executorch
./examples/devtools/build_example_runner.sh
./cmake-out/examples/devtools/example_runner --bundled_program_path mv2_bundled.bpte --output_verification
```
## ETDump
### Getting Started
After exporting a `BundledProgram`, runtime profiling and debug data can be collected in an ``ETDump``. An ``ETDump`` is a buffer containing data generated by hooks within the ExecuTorch runtime.
We offer an example runner that accepts a `BundledProgram` (`.bpte`) and runs a single iteration over the first method defined.
Running the program will generate an `ETDump` file (`.etdp`) at the location specified by `--etdump_path`. Make sure to build the program as specified below to enable the event tracer.
```bash
./cmake-out/examples/devtools/example_runner --bundled_program_path mv2_bundled.bpte --etdump_path mv2_etdump.etdp
```
### Parsing ETDump
Once an `ETDump` has been generated, it can be viewed using the CLI inspector. This will print a tabular view of the data recorded in the ETDump.
```bash
python3 -m devtools.inspector.inspector_cli --etdump_path mv2_etdump.etdp
```
### ETDump C++ API
ETDump profiling can also be used in a custom C++ program. `ETDumpGen` is an implementation of the abstract `EventTracer` class. Include the header file located at `devtools/etdump/etdump_flatcc.h`. To initialize the ETDump generator, construct it before loading the method from the program.
```cpp
torch::executor::ETDumpGen etdump_gen = torch::executor::ETDumpGen();
Result<Method> method =
program->load_method(method_name, &memory_manager, &etdump_gen);
```
Since the `EventTracer` hooks are embedded within the runtime, profiling and debug data will be automatically recorded.
Once execution has completed, finalize the ETDump buffer. This returns an `etdump_result`, a struct with the finalized buffer and its size.
```cpp
etdump_result result = etdump_gen.get_etdump_data();
if (result.buf != nullptr && result.size > 0) {
FILE* f = fopen(FLAGS_etdump_path.c_str(), "w+");
fwrite((uint8_t*)result.buf, 1, result.size, f);
fclose(f);
free(result.buf);
}
```