blob: d03d77715edcd63d5204df3da3e220589d1eabbe [file] [log] [blame]
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator
#include <executorch/kernels/test/TestUtil.h>
#include <executorch/kernels/test/supported_features.h>
#include <executorch/runtime/core/exec_aten/exec_aten.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h>
#include <gtest/gtest.h>
#include <cmath>
using namespace ::testing;
using exec_aten::Scalar;
using exec_aten::ScalarType;
using exec_aten::Tensor;
using torch::executor::testing::TensorFactory;
class OpScatterAddOutTest : public OperatorTest {
protected:
Tensor& op_scatter_add_out(
const Tensor& self,
int64_t dim,
const Tensor& index,
const Tensor& src,
Tensor& out) {
return torch::executor::aten::scatter_add_outf(
context_, self, dim, index, src, out);
}
// Common testing for the operator
template <ScalarType DATA_DTYPE>
void test_scatter_add_out() {
TensorFactory<ScalarType::Long> tf_index;
TensorFactory<DATA_DTYPE> tf_data;
const std::vector<int32_t> sizes = {3, 5};
// clang-format off
Tensor src = tf_data.make(
/*sizes=*/{2, 5},
{
1, 2, 3, 4, 5,
6, 7, 8, 9, 10
});
// clang-format on
Tensor self = tf_data.zeros(sizes);
Tensor out = tf_data.zeros(sizes);
// clang-format off
Tensor index = tf_index.make(
/*sizes=*/{2, 3},
{
0, 1, 2,
0, 1, 2
});
// clang-format on
// Valid input should give the expected output
op_scatter_add_out(self, 0, index, src, out);
// clang-format off
EXPECT_TENSOR_EQ(
out, tf_data.make(
sizes,
{
7, 0, 0, 0, 0,
0, 9, 0, 0, 0,
0, 0, 11, 0, 0
}));
// clang-format on
// Valid input should give the expected output
op_scatter_add_out(self, 1, index, src, out);
// clang-format off
EXPECT_TENSOR_EQ(
out, tf_data.make(sizes,
{
1, 2, 3, 0, 0,
6, 7, 8, 0, 0,
0, 0, 0, 0, 0
}));
src = tf_data.make(
/*sizes=*/{2, 3, 3},
{
// [0, :, :]
1, 2, 3,
4, 5, 6,
7, 8, 9,
// [1, :, :]
10, 11, 12,
13, 14, 15,
16, 17, 18
});
// clang-format on
self = tf_data.ones(/*sizes=*/{2, 3, 3});
out = tf_data.zeros(/*sizes=*/{2, 3, 3});
// clang-format off
index = tf_index.make(
/*sizes=*/{1, 3, 2},
{
0, 1,
1, 2,
0, 2
});
// clang-format on
op_scatter_add_out(self, 1, index, src, out);
// clang-format off
EXPECT_TENSOR_EQ(
out,
tf_data.make(
/*sizes=*/{2, 3, 3},
{
// [0, :, :]
9, 1, 1,
5, 3, 1,
1, 14, 1,
// [1, :, :]
1, 1, 1,
1, 1, 1,
1, 1, 1
}));
// clang-format on
out = tf_data.zeros(/*sizes=*/{2, 3, 3});
op_scatter_add_out(self, 2, index, src, out);
// clang-format off
EXPECT_TENSOR_EQ(
out,
tf_data.make(
/*sizes=*/{2, 3, 3},
{
// [0, :, :]
2, 3, 1,
1, 5, 6,
8, 1, 9,
// [1, :, :]
1, 1, 1,
1, 1, 1,
1, 1, 1
}));
// clang-format on
}
// Invalid dimensions
template <ScalarType DATA_DTYPE>
void test_scatter_add_out_invalid_dim() {
TensorFactory<ScalarType::Long> tf_index;
TensorFactory<DATA_DTYPE> tf_data;
const std::vector<int32_t> sizes = {3, 5};
// clang-format off
Tensor src = tf_data.make(/*sizes=*/{2, 5},
{
1, 2, 3, 4, 5,
6, 7, 8, 9, 10
});
Tensor index = tf_index.make(/*sizes=*/{2, 3},
{
0, 1, 2,
0, 1, 2
});
// clang-format on
Tensor self = tf_data.zeros(sizes);
Tensor out = tf_data.zeros(sizes);
// Invalid dim should die
ET_EXPECT_KERNEL_FAILURE(
context_, op_scatter_add_out(self, -3, index, src, out));
ET_EXPECT_KERNEL_FAILURE(
context_, op_scatter_add_out(self, 2, index, src, out));
// Self, index and src hsould have same number of dimensions
src = tf_data.zeros(/*sizes=*/{2, 2, 2});
ET_EXPECT_KERNEL_FAILURE(
context_, op_scatter_add_out(self, 0, index, src, out));
src = tf_data.zeros(/*sizes=*/{5, 5});
index = tf_index.zeros(/*sizes=*/{2, 2, 2});
ET_EXPECT_KERNEL_FAILURE(
context_, op_scatter_add_out(self, 0, index, src, out));
// Size of dimension of index should be smaller than the size of that
// dimension of src
index = tf_index.zeros(/*sizes=*/{4, 6});
ET_EXPECT_KERNEL_FAILURE(
context_, op_scatter_add_out(self, 0, index, src, out));
// Size of dimension of index should be smaller than the size of that
// dimension of self if dimension != dim
index = tf_index.zeros(/*sizes=*/{4, 5});
ET_EXPECT_KERNEL_FAILURE(
context_, op_scatter_add_out(self, 1, index, src, out));
// Index out of bound for self in dim
index = tf_index.make(/*sizes=*/{2, 3}, {0, 1, 3, 0, 1, 3});
ET_EXPECT_KERNEL_FAILURE(
context_, op_scatter_add_out(self, 0, index, src, out));
}
// Mismatched shape
template <ScalarType DATA_DTYPE>
void test_scatter_add_out_mismatched_shape() {
TensorFactory<ScalarType::Long> tf_index;
TensorFactory<DATA_DTYPE> tf_data;
// clang-format off
Tensor src = tf_data.make(/*sizes=*/{2, 5},
{
1, 2, 3, 4, 5,
6, 7, 8, 9, 10
});
Tensor index = tf_index.make(/*sizes=*/{2, 3},
{
0, 1, 2,
0, 1, 2
});
// clang-format on
Tensor self = tf_data.zeros(/*sizes=*/{3, 5});
Tensor out = tf_data.zeros(/*sizes=*/{2, 5});
// self and out should be of the same shape
ET_EXPECT_KERNEL_FAILURE(
context_, op_scatter_add_out(self, 0, index, src, out));
}
/* %python
import torch
torch.manual_seed(0)
input_shape = (2, 3, 4)
input = torch.randint(10, input_shape)
dim = 2
index = torch.randint(input.size(dim), input_shape)
src = torch.randint(10, input_shape)
expected = torch.scatter_add(input, dim, index, src)
scatter_add_template = f"""
{declare_tensor_factory("ScalarType::Int", "tf")}
{declare_tensor_factory("ScalarType::Long", "tf_index")}
{declare_tensor_make_t("input", "tf")}
{declare_tensor_make_t("index", "tf_index")}
{declare_tensor_make_t("src", "tf")}
{declare_tensor_make_t("expected", "tf")}
{declare_tensor_zeros("out_shape, dynamism", "tf", "out")}
op_scatter_add_out(input, $dim$, index, src, out);
EXPECT_TENSOR_EQ(out, expected);""" */
void test_dynamic_shape(
const std::vector<int32_t>& out_shape,
enum torch::executor::TensorShapeDynamism dynamism) {
/* %python
%rewrite(scatter_add_template) */
TensorFactory<ScalarType::Int> tf;
TensorFactory<ScalarType::Long> tf_index;
Tensor input = tf.make({2, 3, 4}, {4, 9, 3, 0, 3, 9, 7, 3, 7, 3, 1, 6,
6, 9, 8, 6, 6, 8, 4, 3, 6, 9, 1, 4});
Tensor index =
tf_index.make({2, 3, 4}, {0, 1, 1, 1, 1, 0, 1, 0, 3, 0, 3, 1,
2, 3, 3, 0, 2, 3, 0, 1, 3, 1, 3, 3});
Tensor src = tf.make({2, 3, 4}, {2, 1, 0, 9, 3, 1, 1, 0, 3, 6, 6, 7,
9, 6, 3, 4, 5, 0, 8, 2, 8, 2, 7, 5});
Tensor expected =
tf.make({2, 3, 4}, {6, 19, 3, 0, 4, 13, 7, 3, 13, 10, 1, 15,
10, 9, 17, 15, 14, 10, 9, 3, 6, 11, 1, 24});
Tensor out = tf.zeros(out_shape, dynamism);
op_scatter_add_out(input, 2, index, src, out);
EXPECT_TENSOR_EQ(out, expected);
}
};
TEST_F(OpScatterAddOutTest, AllValidInputOutputSupport) {
#define TEST_ENTRY(CTYPE, DTYPE) test_scatter_add_out<ScalarType::DTYPE>();
ET_FORALL_REAL_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
}
TEST_F(OpScatterAddOutTest, InfinityAndNANTest) {
TensorFactory<ScalarType::Long> tf_index;
TensorFactory<ScalarType::Float> tf_data;
const std::vector<int32_t> sizes = {3, 5};
// clang-format off
Tensor src = tf_data.make(
/*sizes=*/{2, 5},
{
INFINITY, -INFINITY, NAN, 2.33, 3.14,
NAN, INFINITY, -INFINITY, 3.14, 2.33
});
// clang-format on
Tensor self = tf_data.ones(sizes);
Tensor out = tf_data.zeros(sizes);
Tensor index = tf_index.make(/*sizes=*/{2, 3}, {0, 1, 2, 0, 1, 2});
// Valid input should give the expected output
op_scatter_add_out(self, 0, index, src, out);
// clang-format off
EXPECT_TENSOR_CLOSE(
out,
tf_data.make(sizes,
{
NAN, 1, 1, 1, 1,
1, NAN, 1, 1, 1,
1, 1, NAN, 1, 1
}));
// clang-format on
}
TEST_F(OpScatterAddOutTest, InvalidDimensionsDies) {
#define TEST_ENTRY(CTYPE, DTYPE) \
test_scatter_add_out_invalid_dim<ScalarType::DTYPE>();
ET_FORALL_REAL_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
}
TEST_F(OpScatterAddOutTest, MismatchedShapeDies) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel can handle mismatched shape";
}
#define TEST_ENTRY(CTYPE, DTYPE) \
test_scatter_add_out_mismatched_shape<ScalarType::DTYPE>();
ET_FORALL_REAL_TYPES(TEST_ENTRY);
#undef TEST_ENTRY
}
TEST_F(OpScatterAddOutTest, MismatchedInputDtypesDies) {
TensorFactory<ScalarType::Byte> tf_byte;
TensorFactory<ScalarType::Char> tf_char;
TensorFactory<ScalarType::Long> tf_long;
const std::vector<int32_t> sizes = {3, 5};
// clang-format off
Tensor src = tf_char.make(/*sizes=*/{2, 5},
{
1, 2, 3, 4, 5,
6, 7, 8, 9, 10
});
Tensor index = tf_byte.make(/*sizes=*/{2, 3},
{
0, 1, 2,
0, 1, 2
});
// clang-format on
Tensor self = tf_char.zeros(sizes);
Tensor out = tf_char.zeros(sizes);
// Types other than long for index should die
ET_EXPECT_KERNEL_FAILURE(
context_, op_scatter_add_out(self, 0, index, src, out));
// Mismatched dtype of src and self should die
// clang-format off
src = tf_char.make(/*sizes=*/{2, 5},
{
1, 2, 3, 4, 5,
6, 7, 8, 9, 10
});
// clang-format on
ET_EXPECT_KERNEL_FAILURE(
context_, op_scatter_add_out(self, 0, index, src, out));
// clang-format off
src = tf_byte.make(/*sizes=*/{2, 5},
{
1, 2, 3, 4, 5,
6, 7, 8, 9, 10
});
// clang-format on
self = tf_byte.zeros(sizes);
out = tf_char.zeros(sizes);
// Mismatched dtype of self and out should die
ET_EXPECT_KERNEL_FAILURE(
context_, op_scatter_add_out(self, 0, index, src, out));
}
TEST_F(OpScatterAddOutTest, DynamicShapeUpperBoundSameAsExpected) {
test_dynamic_shape(
{2, 3, 4}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
}
TEST_F(OpScatterAddOutTest, DynamicShapeUpperBoundLargerThanExpected) {
if (!torch::executor::testing::SupportedFeatures::get()->output_resize) {
GTEST_SKIP() << "Dynamic shape not supported";
}
test_dynamic_shape(
{10, 10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
}
TEST_F(OpScatterAddOutTest, DynamicShapeUnbound) {
if (!torch::executor::testing::SupportedFeatures::get()->output_resize) {
GTEST_SKIP() << "Dynamic shape not supported";
}
test_dynamic_shape(
{1, 1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND);
}