blob: d0774b0445c8d805e9c3ac4d36093cfc7160e972 [file] [log] [blame]
/*
* qsfp.c: Implements SFF-8636 based QSFP+/QSFP28 Diagnostics Memory map.
*
* Copyright 2010 Solarflare Communications Inc.
* Aurelien Guillaume <aurelien@iwi.me> (C) 2012
* Copyright (C) 2014 Cumulus networks Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Freeoftware Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Vidya Ravipati <vidya@cumulusnetworks.com>
* This implementation is loosely based on current SFP parser
* and SFF-8636 spec Rev 2.7 (ftp://ftp.seagate.com/pub/sff/SFF-8636.PDF)
* by SFF Committee.
*/
/*
* Description:
* a) The register/memory layout is up to 5 128 byte pages defined by
* a "pages valid" register and switched via a "page select"
* register. Memory of 256 bytes can be memory mapped at a time
* according to SFF 8636.
* b) SFF 8636 based 640 bytes memory layout is presented for parser
*
* SFF 8636 based QSFP Memory Map
*
* 2-Wire Serial Address: 1010000x
*
* Lower Page 00h (128 bytes)
* ======================
* | |
* |Page Select Byte(127)|
* ======================
* |
* V
* ----------------------------------------
* | | | |
* V V V V
* ---------- ---------- --------- ------------
* | Upper | | Upper | | Upper | | Upper |
* | Page 00h | | Page 01h | | Page 02h | | Page 03h |
* | | |(Optional)| |(Optional)| | (Optional) |
* | | | | | | | |
* | | | | | | | |
* | ID | | AST | | User | | For |
* | Fields | | Table | | EEPROM | | Cable |
* | | | | | Data | | Assemblies |
* | | | | | | | |
* | | | | | | | |
* ----------- ----------- ---------- --------------
*
*
**/
#include <stdio.h>
#include <math.h>
#include "internal.h"
#include "sff-common.h"
#include "qsfp.h"
#define MAX_DESC_SIZE 42
static struct sff8636_aw_flags {
const char *str; /* Human-readable string, null at the end */
int offset; /* A2-relative address offset */
__u8 value; /* Alarm is on if (offset & value) != 0. */
} sff8636_aw_flags[] = {
{ "Laser bias current high alarm (Chan 1)",
SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_1_HALARM) },
{ "Laser bias current low alarm (Chan 1)",
SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_1_LALARM) },
{ "Laser bias current high warning (Chan 1)",
SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_1_HWARN) },
{ "Laser bias current low warning (Chan 1)",
SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_1_LWARN) },
{ "Laser bias current high alarm (Chan 2)",
SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_2_HALARM) },
{ "Laser bias current low alarm (Chan 2)",
SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_2_LALARM) },
{ "Laser bias current high warning (Chan 2)",
SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_2_HWARN) },
{ "Laser bias current low warning (Chan 2)",
SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_2_LWARN) },
{ "Laser bias current high alarm (Chan 3)",
SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_3_HALARM) },
{ "Laser bias current low alarm (Chan 3)",
SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_3_LALARM) },
{ "Laser bias current high warning (Chan 3)",
SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_3_HWARN) },
{ "Laser bias current low warning (Chan 3)",
SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_3_LWARN) },
{ "Laser bias current high alarm (Chan 4)",
SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_4_HALARM) },
{ "Laser bias current low alarm (Chan 4)",
SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_4_LALARM) },
{ "Laser bias current high warning (Chan 4)",
SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_4_HWARN) },
{ "Laser bias current low warning (Chan 4)",
SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_4_LWARN) },
{ "Module temperature high alarm",
SFF8636_TEMP_AW_OFFSET, (SFF8636_TEMP_HALARM_STATUS) },
{ "Module temperature low alarm",
SFF8636_TEMP_AW_OFFSET, (SFF8636_TEMP_LALARM_STATUS) },
{ "Module temperature high warning",
SFF8636_TEMP_AW_OFFSET, (SFF8636_TEMP_HWARN_STATUS) },
{ "Module temperature low warning",
SFF8636_TEMP_AW_OFFSET, (SFF8636_TEMP_LWARN_STATUS) },
{ "Module voltage high alarm",
SFF8636_VCC_AW_OFFSET, (SFF8636_VCC_HALARM_STATUS) },
{ "Module voltage low alarm",
SFF8636_VCC_AW_OFFSET, (SFF8636_VCC_LALARM_STATUS) },
{ "Module voltage high warning",
SFF8636_VCC_AW_OFFSET, (SFF8636_VCC_HWARN_STATUS) },
{ "Module voltage low warning",
SFF8636_VCC_AW_OFFSET, (SFF8636_VCC_LWARN_STATUS) },
{ "Laser tx power high alarm (Channel 1)",
SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_1_HALARM) },
{ "Laser tx power low alarm (Channel 1)",
SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_1_LALARM) },
{ "Laser tx power high warning (Channel 1)",
SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_1_HWARN) },
{ "Laser tx power low warning (Channel 1)",
SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_1_LWARN) },
{ "Laser tx power high alarm (Channel 2)",
SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_2_HALARM) },
{ "Laser tx power low alarm (Channel 2)",
SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_2_LALARM) },
{ "Laser tx power high warning (Channel 2)",
SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_2_HWARN) },
{ "Laser tx power low warning (Channel 2)",
SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_2_LWARN) },
{ "Laser tx power high alarm (Channel 3)",
SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_3_HALARM) },
{ "Laser tx power low alarm (Channel 3)",
SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_3_LALARM) },
{ "Laser tx power high warning (Channel 3)",
SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_3_HWARN) },
{ "Laser tx power low warning (Channel 3)",
SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_3_LWARN) },
{ "Laser tx power high alarm (Channel 4)",
SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_4_HALARM) },
{ "Laser tx power low alarm (Channel 4)",
SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_4_LALARM) },
{ "Laser tx power high warning (Channel 4)",
SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_4_HWARN) },
{ "Laser tx power low warning (Channel 4)",
SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_4_LWARN) },
{ "Laser rx power high alarm (Channel 1)",
SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_1_HALARM) },
{ "Laser rx power low alarm (Channel 1)",
SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_1_LALARM) },
{ "Laser rx power high warning (Channel 1)",
SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_1_HWARN) },
{ "Laser rx power low warning (Channel 1)",
SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_1_LWARN) },
{ "Laser rx power high alarm (Channel 2)",
SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_2_HALARM) },
{ "Laser rx power low alarm (Channel 2)",
SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_2_LALARM) },
{ "Laser rx power high warning (Channel 2)",
SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_2_HWARN) },
{ "Laser rx power low warning (Channel 2)",
SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_2_LWARN) },
{ "Laser rx power high alarm (Channel 3)",
SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_3_HALARM) },
{ "Laser rx power low alarm (Channel 3)",
SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_3_LALARM) },
{ "Laser rx power high warning (Channel 3)",
SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_3_HWARN) },
{ "Laser rx power low warning (Channel 3)",
SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_3_LWARN) },
{ "Laser rx power high alarm (Channel 4)",
SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_4_HALARM) },
{ "Laser rx power low alarm (Channel 4)",
SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_4_LALARM) },
{ "Laser rx power high warning (Channel 4)",
SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_4_HWARN) },
{ "Laser rx power low warning (Channel 4)",
SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_4_LWARN) },
{ NULL, 0, 0 },
};
static void sff8636_show_identifier(const __u8 *id)
{
sff8024_show_identifier(id, SFF8636_ID_OFFSET);
}
static void sff8636_show_ext_identifier(const __u8 *id)
{
printf("\t%-41s : 0x%02x\n", "Extended identifier",
id[SFF8636_EXT_ID_OFFSET]);
static const char *pfx =
"\tExtended identifier description :";
switch (id[SFF8636_EXT_ID_OFFSET] & SFF8636_EXT_ID_PWR_CLASS_MASK) {
case SFF8636_EXT_ID_PWR_CLASS_1:
printf("%s 1.5W max. Power consumption\n", pfx);
break;
case SFF8636_EXT_ID_PWR_CLASS_2:
printf("%s 2.0W max. Power consumption\n", pfx);
break;
case SFF8636_EXT_ID_PWR_CLASS_3:
printf("%s 2.5W max. Power consumption\n", pfx);
break;
case SFF8636_EXT_ID_PWR_CLASS_4:
printf("%s 3.5W max. Power consumption\n", pfx);
break;
}
if (id[SFF8636_EXT_ID_OFFSET] & SFF8636_EXT_ID_CDR_TX_MASK)
printf("%s CDR present in TX,", pfx);
else
printf("%s No CDR in TX,", pfx);
if (id[SFF8636_EXT_ID_OFFSET] & SFF8636_EXT_ID_CDR_RX_MASK)
printf(" CDR present in RX\n");
else
printf(" No CDR in RX\n");
switch (id[SFF8636_EXT_ID_OFFSET] & SFF8636_EXT_ID_EPWR_CLASS_MASK) {
case SFF8636_EXT_ID_PWR_CLASS_LEGACY:
printf("%s", pfx);
break;
case SFF8636_EXT_ID_PWR_CLASS_5:
printf("%s 4.0W max. Power consumption,", pfx);
break;
case SFF8636_EXT_ID_PWR_CLASS_6:
printf("%s 4.5W max. Power consumption, ", pfx);
break;
case SFF8636_EXT_ID_PWR_CLASS_7:
printf("%s 5.0W max. Power consumption, ", pfx);
break;
}
if (id[SFF8636_PWR_MODE_OFFSET] & SFF8636_HIGH_PWR_ENABLE)
printf(" High Power Class (> 3.5 W) enabled\n");
else
printf(" High Power Class (> 3.5 W) not enabled\n");
}
static void sff8636_show_connector(const __u8 *id)
{
sff8024_show_connector(id, SFF8636_CTOR_OFFSET);
}
static void sff8636_show_transceiver(const __u8 *id)
{
static const char *pfx =
"\tTransceiver type :";
printf("\t%-41s : 0x%02x 0x%02x 0x%02x " \
"0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n",
"Transceiver codes",
id[SFF8636_ETHERNET_COMP_OFFSET],
id[SFF8636_SONET_COMP_OFFSET],
id[SFF8636_SAS_COMP_OFFSET],
id[SFF8636_GIGE_COMP_OFFSET],
id[SFF8636_FC_LEN_OFFSET],
id[SFF8636_FC_TECH_OFFSET],
id[SFF8636_FC_TRANS_MEDIA_OFFSET],
id[SFF8636_FC_SPEED_OFFSET]);
/* 10G/40G Ethernet Compliance Codes */
if (id[SFF8636_ETHERNET_COMP_OFFSET] & SFF8636_ETHERNET_10G_LRM)
printf("%s 10G Ethernet: 10G Base-LRM\n", pfx);
if (id[SFF8636_ETHERNET_COMP_OFFSET] & SFF8636_ETHERNET_10G_LR)
printf("%s 10G Ethernet: 10G Base-LR\n", pfx);
if (id[SFF8636_ETHERNET_COMP_OFFSET] & SFF8636_ETHERNET_10G_SR)
printf("%s 10G Ethernet: 10G Base-SR\n", pfx);
if (id[SFF8636_ETHERNET_COMP_OFFSET] & SFF8636_ETHERNET_40G_CR4)
printf("%s 40G Ethernet: 40G Base-CR4\n", pfx);
if (id[SFF8636_ETHERNET_COMP_OFFSET] & SFF8636_ETHERNET_40G_SR4)
printf("%s 40G Ethernet: 40G Base-SR4\n", pfx);
if (id[SFF8636_ETHERNET_COMP_OFFSET] & SFF8636_ETHERNET_40G_LR4)
printf("%s 40G Ethernet: 40G Base-LR4\n", pfx);
if (id[SFF8636_ETHERNET_COMP_OFFSET] & SFF8636_ETHERNET_40G_ACTIVE)
printf("%s 40G Ethernet: 40G Active Cable (XLPPI)\n", pfx);
/* Extended Specification Compliance Codes from SFF-8024 */
if (id[SFF8636_ETHERNET_COMP_OFFSET] & SFF8636_ETHERNET_RSRVD) {
switch (id[SFF8636_OPTION_1_OFFSET]) {
case SFF8636_ETHERNET_UNSPECIFIED:
printf("%s (reserved or unknown)\n", pfx);
break;
case SFF8636_ETHERNET_100G_AOC:
printf("%s 100G Ethernet: 100G AOC or 25GAUI C2M AOC with worst BER of 5x10^(-5)\n",
pfx);
break;
case SFF8636_ETHERNET_100G_SR4:
printf("%s 100G Ethernet: 100G Base-SR4 or 25GBase-SR\n",
pfx);
break;
case SFF8636_ETHERNET_100G_LR4:
printf("%s 100G Ethernet: 100G Base-LR4\n", pfx);
break;
case SFF8636_ETHERNET_100G_ER4:
printf("%s 100G Ethernet: 100G Base-ER4\n", pfx);
break;
case SFF8636_ETHERNET_100G_SR10:
printf("%s 100G Ethernet: 100G Base-SR10\n", pfx);
break;
case SFF8636_ETHERNET_100G_CWDM4_FEC:
printf("%s 100G Ethernet: 100G CWDM4 MSA with FEC\n", pfx);
break;
case SFF8636_ETHERNET_100G_PSM4:
printf("%s 100G Ethernet: 100G PSM4 Parallel SMF\n", pfx);
break;
case SFF8636_ETHERNET_100G_ACC:
printf("%s 100G Ethernet: 100G ACC or 25GAUI C2M ACC with worst BER of 5x10^(-5)\n",
pfx);
break;
case SFF8636_ETHERNET_100G_CWDM4_NO_FEC:
printf("%s 100G Ethernet: 100G CWDM4 MSA without FEC\n", pfx);
break;
case SFF8636_ETHERNET_100G_RSVD1:
printf("%s (reserved or unknown)\n", pfx);
break;
case SFF8636_ETHERNET_100G_CR4:
printf("%s 100G Ethernet: 100G Base-CR4 or 25G Base-CR CA-L\n",
pfx);
break;
case SFF8636_ETHERNET_25G_CR_CA_S:
printf("%s 25G Ethernet: 25G Base-CR CA-S\n", pfx);
break;
case SFF8636_ETHERNET_25G_CR_CA_N:
printf("%s 25G Ethernet: 25G Base-CR CA-N\n", pfx);
break;
case SFF8636_ETHERNET_40G_ER4:
printf("%s 40G Ethernet: 40G Base-ER4\n", pfx);
break;
case SFF8636_ETHERNET_4X10_SR:
printf("%s 4x10G Ethernet: 10G Base-SR\n", pfx);
break;
case SFF8636_ETHERNET_40G_PSM4:
printf("%s 40G Ethernet: 40G PSM4 Parallel SMF\n", pfx);
break;
case SFF8636_ETHERNET_G959_P1I1_2D1:
printf("%s Ethernet: G959.1 profile P1I1-2D1 (10709 MBd, 2km, 1310nm SM)\n",
pfx);
break;
case SFF8636_ETHERNET_G959_P1S1_2D2:
printf("%s Ethernet: G959.1 profile P1S1-2D2 (10709 MBd, 40km, 1550nm SM)\n",
pfx);
break;
case SFF8636_ETHERNET_G959_P1L1_2D2:
printf("%s Ethernet: G959.1 profile P1L1-2D2 (10709 MBd, 80km, 1550nm SM)\n",
pfx);
break;
case SFF8636_ETHERNET_10GT_SFI:
printf("%s 10G Ethernet: 10G Base-T with SFI electrical interface\n",
pfx);
break;
case SFF8636_ETHERNET_100G_CLR4:
printf("%s 100G Ethernet: 100G CLR4\n", pfx);
break;
case SFF8636_ETHERNET_100G_AOC2:
printf("%s 100G Ethernet: 100G AOC or 25GAUI C2M AOC with worst BER of 10^(-12)\n",
pfx);
break;
case SFF8636_ETHERNET_100G_ACC2:
printf("%s 100G Ethernet: 100G ACC or 25GAUI C2M ACC with worst BER of 10^(-12)\n",
pfx);
break;
default:
printf("%s (reserved or unknown)\n", pfx);
break;
}
}
/* SONET Compliance Codes */
if (id[SFF8636_SONET_COMP_OFFSET] & (SFF8636_SONET_40G_OTN))
printf("%s 40G OTN (OTU3B/OTU3C)\n", pfx);
if (id[SFF8636_SONET_COMP_OFFSET] & (SFF8636_SONET_OC48_LR))
printf("%s SONET: OC-48, long reach\n", pfx);
if (id[SFF8636_SONET_COMP_OFFSET] & (SFF8636_SONET_OC48_IR))
printf("%s SONET: OC-48, intermediate reach\n", pfx);
if (id[SFF8636_SONET_COMP_OFFSET] & (SFF8636_SONET_OC48_SR))
printf("%s SONET: OC-48, short reach\n", pfx);
/* SAS/SATA Compliance Codes */
if (id[SFF8636_SAS_COMP_OFFSET] & (SFF8636_SAS_6G))
printf("%s SAS 6.0G\n", pfx);
if (id[SFF8636_SAS_COMP_OFFSET] & (SFF8636_SAS_3G))
printf("%s SAS 3.0G\n", pfx);
/* Ethernet Compliance Codes */
if (id[SFF8636_GIGE_COMP_OFFSET] & SFF8636_GIGE_1000_BASE_T)
printf("%s Ethernet: 1000BASE-T\n", pfx);
if (id[SFF8636_GIGE_COMP_OFFSET] & SFF8636_GIGE_1000_BASE_CX)
printf("%s Ethernet: 1000BASE-CX\n", pfx);
if (id[SFF8636_GIGE_COMP_OFFSET] & SFF8636_GIGE_1000_BASE_LX)
printf("%s Ethernet: 1000BASE-LX\n", pfx);
if (id[SFF8636_GIGE_COMP_OFFSET] & SFF8636_GIGE_1000_BASE_SX)
printf("%s Ethernet: 1000BASE-SX\n", pfx);
/* Fibre Channel link length */
if (id[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_VERY_LONG)
printf("%s FC: very long distance (V)\n", pfx);
if (id[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_SHORT)
printf("%s FC: short distance (S)\n", pfx);
if (id[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_INT)
printf("%s FC: intermediate distance (I)\n", pfx);
if (id[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_LONG)
printf("%s FC: long distance (L)\n", pfx);
if (id[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_MED)
printf("%s FC: medium distance (M)\n", pfx);
/* Fibre Channel transmitter technology */
if (id[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_TECH_LONG_LC)
printf("%s FC: Longwave laser (LC)\n", pfx);
if (id[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_TECH_ELEC_INTER)
printf("%s FC: Electrical inter-enclosure (EL)\n", pfx);
if (id[SFF8636_FC_TECH_OFFSET] & SFF8636_FC_TECH_ELEC_INTRA)
printf("%s FC: Electrical intra-enclosure (EL)\n", pfx);
if (id[SFF8636_FC_TECH_OFFSET] & SFF8636_FC_TECH_SHORT_WO_OFC)
printf("%s FC: Shortwave laser w/o OFC (SN)\n", pfx);
if (id[SFF8636_FC_TECH_OFFSET] & SFF8636_FC_TECH_SHORT_W_OFC)
printf("%s FC: Shortwave laser with OFC (SL)\n", pfx);
if (id[SFF8636_FC_TECH_OFFSET] & SFF8636_FC_TECH_LONG_LL)
printf("%s FC: Longwave laser (LL)\n", pfx);
/* Fibre Channel transmission media */
if (id[SFF8636_FC_TRANS_MEDIA_OFFSET] & SFF8636_FC_TRANS_MEDIA_TW)
printf("%s FC: Twin Axial Pair (TW)\n", pfx);
if (id[SFF8636_FC_TRANS_MEDIA_OFFSET] & SFF8636_FC_TRANS_MEDIA_TP)
printf("%s FC: Twisted Pair (TP)\n", pfx);
if (id[SFF8636_FC_TRANS_MEDIA_OFFSET] & SFF8636_FC_TRANS_MEDIA_MI)
printf("%s FC: Miniature Coax (MI)\n", pfx);
if (id[SFF8636_FC_TRANS_MEDIA_OFFSET] & SFF8636_FC_TRANS_MEDIA_TV)
printf("%s FC: Video Coax (TV)\n", pfx);
if (id[SFF8636_FC_TRANS_MEDIA_OFFSET] & SFF8636_FC_TRANS_MEDIA_M6)
printf("%s FC: Multimode, 62.5m (M6)\n", pfx);
if (id[SFF8636_FC_TRANS_MEDIA_OFFSET] & SFF8636_FC_TRANS_MEDIA_M5)
printf("%s FC: Multimode, 50m (M5)\n", pfx);
if (id[SFF8636_FC_TRANS_MEDIA_OFFSET] & SFF8636_FC_TRANS_MEDIA_OM3)
printf("%s FC: Multimode, 50um (OM3)\n", pfx);
if (id[SFF8636_FC_TRANS_MEDIA_OFFSET] & SFF8636_FC_TRANS_MEDIA_SM)
printf("%s FC: Single Mode (SM)\n", pfx);
/* Fibre Channel speed */
if (id[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_1200_MBPS)
printf("%s FC: 1200 MBytes/sec\n", pfx);
if (id[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_800_MBPS)
printf("%s FC: 800 MBytes/sec\n", pfx);
if (id[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_1600_MBPS)
printf("%s FC: 1600 MBytes/sec\n", pfx);
if (id[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_400_MBPS)
printf("%s FC: 400 MBytes/sec\n", pfx);
if (id[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_200_MBPS)
printf("%s FC: 200 MBytes/sec\n", pfx);
if (id[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_100_MBPS)
printf("%s FC: 100 MBytes/sec\n", pfx);
}
static void sff8636_show_encoding(const __u8 *id)
{
sff8024_show_encoding(id, SFF8636_ENCODING_OFFSET, ETH_MODULE_SFF_8636);
}
static void sff8636_show_rate_identifier(const __u8 *id)
{
/* TODO: Need to fix rate select logic */
printf("\t%-41s : 0x%02x\n", "Rate identifier",
id[SFF8636_EXT_RS_OFFSET]);
}
static void sff8636_show_oui(const __u8 *id)
{
sff8024_show_oui(id, SFF8636_VENDOR_OUI_OFFSET);
}
static void sff8636_show_wavelength_or_copper_compliance(const __u8 *id)
{
printf("\t%-41s : 0x%02x", "Transmitter technology",
(id[SFF8636_DEVICE_TECH_OFFSET] & SFF8636_TRANS_TECH_MASK));
switch (id[SFF8636_DEVICE_TECH_OFFSET] & SFF8636_TRANS_TECH_MASK) {
case SFF8636_TRANS_850_VCSEL:
printf(" (850 nm VCSEL)\n");
break;
case SFF8636_TRANS_1310_VCSEL:
printf(" (1310 nm VCSEL)\n");
break;
case SFF8636_TRANS_1550_VCSEL:
printf(" (1550 nm VCSEL)\n");
break;
case SFF8636_TRANS_1310_FP:
printf(" (1310 nm FP)\n");
break;
case SFF8636_TRANS_1310_DFB:
printf(" (1310 nm DFB)\n");
break;
case SFF8636_TRANS_1550_DFB:
printf(" (1550 nm DFB)\n");
break;
case SFF8636_TRANS_1310_EML:
printf(" (1310 nm EML)\n");
break;
case SFF8636_TRANS_1550_EML:
printf(" (1550 nm EML)\n");
break;
case SFF8636_TRANS_OTHERS:
printf(" (Others/Undefined)\n");
break;
case SFF8636_TRANS_1490_DFB:
printf(" (1490 nm DFB)\n");
break;
case SFF8636_TRANS_COPPER_PAS_UNEQUAL:
printf(" (Copper cable unequalized)\n");
break;
case SFF8636_TRANS_COPPER_PAS_EQUAL:
printf(" (Copper cable passive equalized)\n");
break;
case SFF8636_TRANS_COPPER_LNR_FAR_EQUAL:
printf(" (Copper cable, near and far end limiting active equalizers)\n");
break;
case SFF8636_TRANS_COPPER_FAR_EQUAL:
printf(" (Copper cable, far end limiting active equalizers)\n");
break;
case SFF8636_TRANS_COPPER_NEAR_EQUAL:
printf(" (Copper cable, near end limiting active equalizers)\n");
break;
case SFF8636_TRANS_COPPER_LNR_EQUAL:
printf(" (Copper cable, linear active equalizers)\n");
break;
}
if ((id[SFF8636_DEVICE_TECH_OFFSET] & SFF8636_TRANS_TECH_MASK)
>= SFF8636_TRANS_COPPER_PAS_UNEQUAL) {
printf("\t%-41s : %udb\n", "Attenuation at 2.5GHz",
id[SFF8636_WAVELEN_HIGH_BYTE_OFFSET]);
printf("\t%-41s : %udb\n", "Attenuation at 5.0GHz",
id[SFF8636_WAVELEN_LOW_BYTE_OFFSET]);
printf("\t%-41s : %udb\n", "Attenuation at 7.0GHz",
id[SFF8636_WAVE_TOL_HIGH_BYTE_OFFSET]);
printf("\t%-41s : %udb\n", "Attenuation at 12.9GHz",
id[SFF8636_WAVE_TOL_LOW_BYTE_OFFSET]);
} else {
printf("\t%-41s : %.3lfnm\n", "Laser wavelength",
(((id[SFF8636_WAVELEN_HIGH_BYTE_OFFSET] << 8) |
id[SFF8636_WAVELEN_LOW_BYTE_OFFSET])*0.05));
printf("\t%-41s : %.3lfnm\n", "Laser wavelength tolerance",
(((id[SFF8636_WAVE_TOL_HIGH_BYTE_OFFSET] << 8) |
id[SFF8636_WAVE_TOL_LOW_BYTE_OFFSET])*0.005));
}
}
static void sff8636_show_revision_compliance(const __u8 *id)
{
static const char *pfx =
"\tRevision Compliance :";
switch (id[SFF8636_REV_COMPLIANCE_OFFSET]) {
case SFF8636_REV_UNSPECIFIED:
printf("%s Revision not specified\n", pfx);
break;
case SFF8636_REV_8436_48:
printf("%s SFF-8436 Rev 4.8 or earlier\n", pfx);
break;
case SFF8636_REV_8436_8636:
printf("%s SFF-8436 Rev 4.8 or earlier\n", pfx);
break;
case SFF8636_REV_8636_13:
printf("%s SFF-8636 Rev 1.3 or earlier\n", pfx);
break;
case SFF8636_REV_8636_14:
printf("%s SFF-8636 Rev 1.4\n", pfx);
break;
case SFF8636_REV_8636_15:
printf("%s SFF-8636 Rev 1.5\n", pfx);
break;
case SFF8636_REV_8636_20:
printf("%s SFF-8636 Rev 2.0\n", pfx);
break;
case SFF8636_REV_8636_27:
printf("%s SFF-8636 Rev 2.5/2.6/2.7\n", pfx);
break;
default:
printf("%s Unallocated\n", pfx);
break;
}
}
/*
* 2-byte internal temperature conversions:
* First byte is a signed 8-bit integer, which is the temp decimal part
* Second byte are 1/256th of degree, which are added to the dec part.
*/
#define SFF8636_OFFSET_TO_TEMP(offset) ((__s16)OFFSET_TO_U16(offset))
static void sff8636_dom_parse(const __u8 *id, struct sff_diags *sd)
{
int i = 0;
/* Monitoring Thresholds for Alarms and Warnings */
sd->sfp_voltage[MCURR] = OFFSET_TO_U16(SFF8636_VCC_CURR);
sd->sfp_voltage[HALRM] = OFFSET_TO_U16(SFF8636_VCC_HALRM);
sd->sfp_voltage[LALRM] = OFFSET_TO_U16(SFF8636_VCC_LALRM);
sd->sfp_voltage[HWARN] = OFFSET_TO_U16(SFF8636_VCC_HWARN);
sd->sfp_voltage[LWARN] = OFFSET_TO_U16(SFF8636_VCC_LWARN);
sd->sfp_temp[MCURR] = SFF8636_OFFSET_TO_TEMP(SFF8636_TEMP_CURR);
sd->sfp_temp[HALRM] = SFF8636_OFFSET_TO_TEMP(SFF8636_TEMP_HALRM);
sd->sfp_temp[LALRM] = SFF8636_OFFSET_TO_TEMP(SFF8636_TEMP_LALRM);
sd->sfp_temp[HWARN] = SFF8636_OFFSET_TO_TEMP(SFF8636_TEMP_HWARN);
sd->sfp_temp[LWARN] = SFF8636_OFFSET_TO_TEMP(SFF8636_TEMP_LWARN);
sd->bias_cur[HALRM] = OFFSET_TO_U16(SFF8636_TX_BIAS_HALRM);
sd->bias_cur[LALRM] = OFFSET_TO_U16(SFF8636_TX_BIAS_LALRM);
sd->bias_cur[HWARN] = OFFSET_TO_U16(SFF8636_TX_BIAS_HWARN);
sd->bias_cur[LWARN] = OFFSET_TO_U16(SFF8636_TX_BIAS_LWARN);
sd->tx_power[HALRM] = OFFSET_TO_U16(SFF8636_TX_PWR_HALRM);
sd->tx_power[LALRM] = OFFSET_TO_U16(SFF8636_TX_PWR_LALRM);
sd->tx_power[HWARN] = OFFSET_TO_U16(SFF8636_TX_PWR_HWARN);
sd->tx_power[LWARN] = OFFSET_TO_U16(SFF8636_TX_PWR_LWARN);
sd->rx_power[HALRM] = OFFSET_TO_U16(SFF8636_RX_PWR_HALRM);
sd->rx_power[LALRM] = OFFSET_TO_U16(SFF8636_RX_PWR_LALRM);
sd->rx_power[HWARN] = OFFSET_TO_U16(SFF8636_RX_PWR_HWARN);
sd->rx_power[LWARN] = OFFSET_TO_U16(SFF8636_RX_PWR_LWARN);
/* Channel Specific Data */
for (i = 0; i < MAX_CHANNEL_NUM; i++) {
u8 rx_power_offset, tx_bias_offset;
u8 tx_power_offset;
switch (i) {
case 0:
rx_power_offset = SFF8636_RX_PWR_1_OFFSET;
tx_power_offset = SFF8636_TX_PWR_1_OFFSET;
tx_bias_offset = SFF8636_TX_BIAS_1_OFFSET;
break;
case 1:
rx_power_offset = SFF8636_RX_PWR_2_OFFSET;
tx_power_offset = SFF8636_TX_PWR_2_OFFSET;
tx_bias_offset = SFF8636_TX_BIAS_2_OFFSET;
break;
case 2:
rx_power_offset = SFF8636_RX_PWR_3_OFFSET;
tx_power_offset = SFF8636_TX_PWR_3_OFFSET;
tx_bias_offset = SFF8636_TX_BIAS_3_OFFSET;
break;
case 3:
rx_power_offset = SFF8636_RX_PWR_4_OFFSET;
tx_power_offset = SFF8636_TX_PWR_4_OFFSET;
tx_bias_offset = SFF8636_TX_BIAS_4_OFFSET;
break;
}
sd->scd[i].bias_cur = OFFSET_TO_U16(tx_bias_offset);
sd->scd[i].rx_power = OFFSET_TO_U16(rx_power_offset);
sd->scd[i].tx_power = OFFSET_TO_U16(tx_power_offset);
}
}
static void sff8636_show_dom(const __u8 *id, __u32 eeprom_len)
{
struct sff_diags sd = {0};
char *rx_power_string = NULL;
char power_string[MAX_DESC_SIZE];
int i;
/*
* There is no clear identifier to signify the existence of
* optical diagnostics similar to SFF-8472. So checking existence
* of page 3, will provide the gurantee for existence of alarms
* and thresholds
* If pagging support exists, then supports_alarms is marked as 1
*/
if (eeprom_len == ETH_MODULE_SFF_8636_MAX_LEN) {
if (!(id[SFF8636_STATUS_2_OFFSET] &
SFF8636_STATUS_PAGE_3_PRESENT)) {
sd.supports_alarms = 1;
}
}
sd.rx_power_type = id[SFF8636_DIAG_TYPE_OFFSET] &
SFF8636_RX_PWR_TYPE_MASK;
sd.tx_power_type = id[SFF8636_DIAG_TYPE_OFFSET] &
SFF8636_RX_PWR_TYPE_MASK;
sff8636_dom_parse(id, &sd);
PRINT_TEMP("Module temperature", sd.sfp_temp[MCURR]);
PRINT_VCC("Module voltage", sd.sfp_voltage[MCURR]);
/*
* SFF-8636/8436 spec is not clear whether RX power/ TX bias
* current fields are supported or not. A valid temperature
* reading is used as existence for TX/RX power.
*/
if ((sd.sfp_temp[MCURR] == 0x0) ||
(sd.sfp_temp[MCURR] == (__s16)0xFFFF))
return;
printf("\t%-41s : %s\n", "Alarm/warning flags implemented",
(sd.supports_alarms ? "Yes" : "No"));
for (i = 0; i < MAX_CHANNEL_NUM; i++) {
snprintf(power_string, MAX_DESC_SIZE, "%s (Channel %d)",
"Laser tx bias current", i+1);
PRINT_BIAS(power_string, sd.scd[i].bias_cur);
}
for (i = 0; i < MAX_CHANNEL_NUM; i++) {
snprintf(power_string, MAX_DESC_SIZE, "%s (Channel %d)",
"Transmit avg optical power", i+1);
PRINT_xX_PWR(power_string, sd.scd[i].tx_power);
}
if (!sd.rx_power_type)
rx_power_string = "Receiver signal OMA";
else
rx_power_string = "Rcvr signal avg optical power";
for (i = 0; i < MAX_CHANNEL_NUM; i++) {
snprintf(power_string, MAX_DESC_SIZE, "%s(Channel %d)",
rx_power_string, i+1);
PRINT_xX_PWR(power_string, sd.scd[i].rx_power);
}
if (sd.supports_alarms) {
for (i = 0; sff8636_aw_flags[i].str; ++i) {
printf("\t%-41s : %s\n", sff8636_aw_flags[i].str,
id[sff8636_aw_flags[i].offset]
& sff8636_aw_flags[i].value ? "On" : "Off");
}
sff_show_thresholds(sd);
}
}
void sff8636_show_all(const __u8 *id, __u32 eeprom_len)
{
sff8636_show_identifier(id);
if ((id[SFF8636_ID_OFFSET] == SFF8024_ID_QSFP) ||
(id[SFF8636_ID_OFFSET] == SFF8024_ID_QSFP_PLUS) ||
(id[SFF8636_ID_OFFSET] == SFF8024_ID_QSFP28)) {
sff8636_show_ext_identifier(id);
sff8636_show_connector(id);
sff8636_show_transceiver(id);
sff8636_show_encoding(id);
sff_show_value_with_unit(id, SFF8636_BR_NOMINAL_OFFSET,
"BR, Nominal", 100, "Mbps");
sff8636_show_rate_identifier(id);
sff_show_value_with_unit(id, SFF8636_SM_LEN_OFFSET,
"Length (SMF,km)", 1, "km");
sff_show_value_with_unit(id, SFF8636_OM3_LEN_OFFSET,
"Length (OM3 50um)", 2, "m");
sff_show_value_with_unit(id, SFF8636_OM2_LEN_OFFSET,
"Length (OM2 50um)", 1, "m");
sff_show_value_with_unit(id, SFF8636_OM1_LEN_OFFSET,
"Length (OM1 62.5um)", 1, "m");
sff_show_value_with_unit(id, SFF8636_CBL_LEN_OFFSET,
"Length (Copper or Active cable)", 1, "m");
sff8636_show_wavelength_or_copper_compliance(id);
sff_show_ascii(id, SFF8636_VENDOR_NAME_START_OFFSET,
SFF8636_VENDOR_NAME_END_OFFSET, "Vendor name");
sff8636_show_oui(id);
sff_show_ascii(id, SFF8636_VENDOR_PN_START_OFFSET,
SFF8636_VENDOR_PN_END_OFFSET, "Vendor PN");
sff_show_ascii(id, SFF8636_VENDOR_REV_START_OFFSET,
SFF8636_VENDOR_REV_END_OFFSET, "Vendor rev");
sff_show_ascii(id, SFF8636_VENDOR_SN_START_OFFSET,
SFF8636_VENDOR_SN_END_OFFSET, "Vendor SN");
sff_show_ascii(id, SFF8636_DATE_YEAR_OFFSET,
SFF8636_DATE_VENDOR_LOT_OFFSET + 1, "Date code");
sff8636_show_revision_compliance(id);
sff8636_show_dom(id, eeprom_len);
}
}