| /* |
| * sha256.c --- The sha256 algorithm |
| * |
| * Copyright (C) 2004 Sam Hocevar <sam@hocevar.net> |
| * (copied from libtomcrypt and then relicensed under GPLv2) |
| * |
| * %Begin-Header% |
| * This file may be redistributed under the terms of the GNU Library |
| * General Public License, version 2. |
| * %End-Header% |
| */ |
| #include "erofs/defs.h" |
| #include <string.h> |
| |
| static const __u32 K[64] = { |
| 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, |
| 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, |
| 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, |
| 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, |
| 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, |
| 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, |
| 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, |
| 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, |
| 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, |
| 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, |
| 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, |
| 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, |
| 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL |
| }; |
| |
| /* Various logical functions */ |
| #define Ch(x,y,z) (z ^ (x & (y ^ z))) |
| #define Maj(x,y,z) (((x | y) & z) | (x & y)) |
| #define S(x, n) RORc((x),(n)) |
| #define R(x, n) (((x)&0xFFFFFFFFUL)>>(n)) |
| #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22)) |
| #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25)) |
| #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3)) |
| #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10)) |
| #define RORc(x, y) ( ((((__u32)(x)&0xFFFFFFFFUL)>>(__u32)((y)&31)) | ((__u32)(x)<<(__u32)(32-((y)&31)))) & 0xFFFFFFFFUL) |
| |
| #define RND(a,b,c,d,e,f,g,h,i) \ |
| t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \ |
| t1 = Sigma0(a) + Maj(a, b, c); \ |
| d += t0; \ |
| h = t0 + t1; |
| |
| #define STORE64H(x, y) \ |
| do { \ |
| (y)[0] = (unsigned char)(((x)>>56)&255);\ |
| (y)[1] = (unsigned char)(((x)>>48)&255);\ |
| (y)[2] = (unsigned char)(((x)>>40)&255);\ |
| (y)[3] = (unsigned char)(((x)>>32)&255);\ |
| (y)[4] = (unsigned char)(((x)>>24)&255);\ |
| (y)[5] = (unsigned char)(((x)>>16)&255);\ |
| (y)[6] = (unsigned char)(((x)>>8)&255);\ |
| (y)[7] = (unsigned char)((x)&255); } while(0) |
| |
| #define STORE32H(x, y) \ |
| do { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \ |
| (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); } while(0) |
| |
| #define LOAD32H(x, y) \ |
| do { x = ((__u32)((y)[0] & 255)<<24) | \ |
| ((__u32)((y)[1] & 255)<<16) | \ |
| ((__u32)((y)[2] & 255)<<8) | \ |
| ((__u32)((y)[3] & 255)); } while(0) |
| |
| struct sha256_state { |
| __u64 length; |
| __u32 state[8], curlen; |
| unsigned char buf[64]; |
| }; |
| |
| /* This is a highly simplified version from libtomcrypt */ |
| struct hash_state { |
| struct sha256_state sha256; |
| }; |
| |
| static void sha256_compress(struct hash_state * md, const unsigned char *buf) |
| { |
| __u32 S[8], W[64], t0, t1; |
| __u32 t; |
| int i; |
| |
| /* copy state into S */ |
| for (i = 0; i < 8; i++) { |
| S[i] = md->sha256.state[i]; |
| } |
| |
| /* copy the state into 512-bits into W[0..15] */ |
| for (i = 0; i < 16; i++) { |
| LOAD32H(W[i], buf + (4*i)); |
| } |
| |
| /* fill W[16..63] */ |
| for (i = 16; i < 64; i++) { |
| W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16]; |
| } |
| |
| /* Compress */ |
| for (i = 0; i < 64; ++i) { |
| RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i); |
| t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4]; |
| S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t; |
| } |
| |
| /* feedback */ |
| for (i = 0; i < 8; i++) { |
| md->sha256.state[i] = md->sha256.state[i] + S[i]; |
| } |
| } |
| |
| static void sha256_init(struct hash_state * md) |
| { |
| md->sha256.curlen = 0; |
| md->sha256.length = 0; |
| md->sha256.state[0] = 0x6A09E667UL; |
| md->sha256.state[1] = 0xBB67AE85UL; |
| md->sha256.state[2] = 0x3C6EF372UL; |
| md->sha256.state[3] = 0xA54FF53AUL; |
| md->sha256.state[4] = 0x510E527FUL; |
| md->sha256.state[5] = 0x9B05688CUL; |
| md->sha256.state[6] = 0x1F83D9ABUL; |
| md->sha256.state[7] = 0x5BE0CD19UL; |
| } |
| |
| #define MIN(x, y) ( ((x)<(y))?(x):(y) ) |
| #define SHA256_BLOCKSIZE 64 |
| static void sha256_process(struct hash_state * md, const unsigned char *in, unsigned long inlen) |
| { |
| unsigned long n; |
| |
| while (inlen > 0) { |
| if (md->sha256.curlen == 0 && inlen >= SHA256_BLOCKSIZE) { |
| sha256_compress(md, in); |
| md->sha256.length += SHA256_BLOCKSIZE * 8; |
| in += SHA256_BLOCKSIZE; |
| inlen -= SHA256_BLOCKSIZE; |
| } else { |
| n = MIN(inlen, (SHA256_BLOCKSIZE - md->sha256.curlen)); |
| memcpy(md->sha256.buf + md->sha256.curlen, in, (size_t)n); |
| md->sha256.curlen += n; |
| in += n; |
| inlen -= n; |
| if (md->sha256.curlen == SHA256_BLOCKSIZE) { |
| sha256_compress(md, md->sha256.buf); |
| md->sha256.length += 8*SHA256_BLOCKSIZE; |
| md->sha256.curlen = 0; |
| } |
| } |
| } |
| } |
| |
| static void sha256_done(struct hash_state * md, unsigned char *out) |
| { |
| int i; |
| |
| /* increase the length of the message */ |
| md->sha256.length += md->sha256.curlen * 8; |
| |
| /* append the '1' bit */ |
| md->sha256.buf[md->sha256.curlen++] = (unsigned char)0x80; |
| |
| /* if the length is currently above 56 bytes we append zeros |
| * then compress. Then we can fall back to padding zeros and length |
| * encoding like normal. |
| */ |
| if (md->sha256.curlen > 56) { |
| while (md->sha256.curlen < 64) { |
| md->sha256.buf[md->sha256.curlen++] = (unsigned char)0; |
| } |
| sha256_compress(md, md->sha256.buf); |
| md->sha256.curlen = 0; |
| } |
| |
| /* pad upto 56 bytes of zeroes */ |
| while (md->sha256.curlen < 56) { |
| md->sha256.buf[md->sha256.curlen++] = (unsigned char)0; |
| } |
| |
| /* store length */ |
| STORE64H(md->sha256.length, md->sha256.buf+56); |
| sha256_compress(md, md->sha256.buf); |
| |
| /* copy output */ |
| for (i = 0; i < 8; i++) { |
| STORE32H(md->sha256.state[i], out+(4*i)); |
| } |
| } |
| |
| void erofs_sha256(const unsigned char *in, unsigned long in_size, |
| unsigned char out[32]) |
| { |
| struct hash_state md; |
| |
| sha256_init(&md); |
| sha256_process(&md, in, in_size); |
| sha256_done(&md, out); |
| } |
| |
| #ifdef UNITTEST |
| static const struct { |
| char *msg; |
| unsigned char hash[32]; |
| } tests[] = { |
| { "", |
| { 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, |
| 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, |
| 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, |
| 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55 } |
| }, |
| { "abc", |
| { 0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea, |
| 0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23, |
| 0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c, |
| 0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad } |
| }, |
| { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", |
| { 0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8, |
| 0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39, |
| 0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67, |
| 0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1 } |
| }, |
| }; |
| |
| int main(int argc, char **argv) |
| { |
| int i; |
| int errors = 0; |
| unsigned char tmp[32]; |
| |
| for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) { |
| unsigned char *msg = (unsigned char *) tests[i].msg; |
| int len = strlen(tests[i].msg); |
| |
| erofs_sha256(msg, len, tmp); |
| printf("SHA256 test message %d: ", i); |
| if (memcmp(tmp, tests[i].hash, 32) != 0) { |
| printf("FAILED\n"); |
| errors++; |
| } else |
| printf("OK\n"); |
| } |
| return errors; |
| } |
| |
| #endif /* UNITTEST */ |