blob: d49aa17f510a97e9acb3d9100ae8f3473f013c0b [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
namespace Eigen {
namespace internal {
// FFTW uses non-const arguments
// so we must use ugly const_cast calls for all the args it uses
//
// This should be safe as long as
// 1. we use FFTW_ESTIMATE for all our planning
// see the FFTW docs section 4.3.2 "Planner Flags"
// 2. fftw_complex is compatible with std::complex
// This assumes std::complex<T> layout is array of size 2 with real,imag
template <typename T>
inline
T * fftw_cast(const T* p)
{
return const_cast<T*>( p);
}
inline
fftw_complex * fftw_cast( const std::complex<double> * p)
{
return const_cast<fftw_complex*>( reinterpret_cast<const fftw_complex*>(p) );
}
inline
fftwf_complex * fftw_cast( const std::complex<float> * p)
{
return const_cast<fftwf_complex*>( reinterpret_cast<const fftwf_complex*>(p) );
}
inline
fftwl_complex * fftw_cast( const std::complex<long double> * p)
{
return const_cast<fftwl_complex*>( reinterpret_cast<const fftwl_complex*>(p) );
}
template <typename T>
struct fftw_plan {};
template <>
struct fftw_plan<float>
{
typedef float scalar_type;
typedef fftwf_complex complex_type;
fftwf_plan m_plan;
fftw_plan() :m_plan(NULL) {}
~fftw_plan() {if (m_plan) fftwf_destroy_plan(m_plan);}
inline
void fwd(complex_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwf_execute_dft( m_plan, src,dst);
}
inline
void inv(complex_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwf_execute_dft( m_plan, src,dst);
}
inline
void fwd(complex_type * dst,scalar_type * src,int nfft) {
if (m_plan==NULL) m_plan = fftwf_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwf_execute_dft_r2c( m_plan,src,dst);
}
inline
void inv(scalar_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL)
m_plan = fftwf_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwf_execute_dft_c2r( m_plan, src,dst);
}
inline
void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwf_execute_dft( m_plan, src,dst);
}
inline
void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwf_execute_dft( m_plan, src,dst);
}
};
template <>
struct fftw_plan<double>
{
typedef double scalar_type;
typedef fftw_complex complex_type;
::fftw_plan m_plan;
fftw_plan() :m_plan(NULL) {}
~fftw_plan() {if (m_plan) fftw_destroy_plan(m_plan);}
inline
void fwd(complex_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftw_execute_dft( m_plan, src,dst);
}
inline
void inv(complex_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftw_execute_dft( m_plan, src,dst);
}
inline
void fwd(complex_type * dst,scalar_type * src,int nfft) {
if (m_plan==NULL) m_plan = fftw_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftw_execute_dft_r2c( m_plan,src,dst);
}
inline
void inv(scalar_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL)
m_plan = fftw_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftw_execute_dft_c2r( m_plan, src,dst);
}
inline
void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
if (m_plan==NULL) m_plan = fftw_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftw_execute_dft( m_plan, src,dst);
}
inline
void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
if (m_plan==NULL) m_plan = fftw_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftw_execute_dft( m_plan, src,dst);
}
};
template <>
struct fftw_plan<long double>
{
typedef long double scalar_type;
typedef fftwl_complex complex_type;
fftwl_plan m_plan;
fftw_plan() :m_plan(NULL) {}
~fftw_plan() {if (m_plan) fftwl_destroy_plan(m_plan);}
inline
void fwd(complex_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwl_execute_dft( m_plan, src,dst);
}
inline
void inv(complex_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwl_execute_dft( m_plan, src,dst);
}
inline
void fwd(complex_type * dst,scalar_type * src,int nfft) {
if (m_plan==NULL) m_plan = fftwl_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwl_execute_dft_r2c( m_plan,src,dst);
}
inline
void inv(scalar_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL)
m_plan = fftwl_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwl_execute_dft_c2r( m_plan, src,dst);
}
inline
void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwl_execute_dft( m_plan, src,dst);
}
inline
void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwl_execute_dft( m_plan, src,dst);
}
};
template <typename _Scalar>
struct fftw_impl
{
typedef _Scalar Scalar;
typedef std::complex<Scalar> Complex;
inline
void clear()
{
m_plans.clear();
}
// complex-to-complex forward FFT
inline
void fwd( Complex * dst,const Complex *src,int nfft)
{
get_plan(nfft,false,dst,src).fwd(fftw_cast(dst), fftw_cast(src),nfft );
}
// real-to-complex forward FFT
inline
void fwd( Complex * dst,const Scalar * src,int nfft)
{
get_plan(nfft,false,dst,src).fwd(fftw_cast(dst), fftw_cast(src) ,nfft);
}
// 2-d complex-to-complex
inline
void fwd2(Complex * dst, const Complex * src, int n0,int n1)
{
get_plan(n0,n1,false,dst,src).fwd2(fftw_cast(dst), fftw_cast(src) ,n0,n1);
}
// inverse complex-to-complex
inline
void inv(Complex * dst,const Complex *src,int nfft)
{
get_plan(nfft,true,dst,src).inv(fftw_cast(dst), fftw_cast(src),nfft );
}
// half-complex to scalar
inline
void inv( Scalar * dst,const Complex * src,int nfft)
{
get_plan(nfft,true,dst,src).inv(fftw_cast(dst), fftw_cast(src),nfft );
}
// 2-d complex-to-complex
inline
void inv2(Complex * dst, const Complex * src, int n0,int n1)
{
get_plan(n0,n1,true,dst,src).inv2(fftw_cast(dst), fftw_cast(src) ,n0,n1);
}
protected:
typedef fftw_plan<Scalar> PlanData;
typedef std::map<int64_t,PlanData> PlanMap;
PlanMap m_plans;
inline
PlanData & get_plan(int nfft,bool inverse,void * dst,const void * src)
{
bool inplace = (dst==src);
bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
int64_t key = ( (nfft<<3 ) | (inverse<<2) | (inplace<<1) | aligned ) << 1;
return m_plans[key];
}
inline
PlanData & get_plan(int n0,int n1,bool inverse,void * dst,const void * src)
{
bool inplace = (dst==src);
bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
int64_t key = ( ( (((int64_t)n0) << 30)|(n1<<3 ) | (inverse<<2) | (inplace<<1) | aligned ) << 1 ) + 1;
return m_plans[key];
}
};
} // end namespace internal
} // end namespace Eigen
/* vim: set filetype=cpp et sw=2 ts=2 ai: */