| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| /* |
| |
| * NOTE: This file is the modified version of xcolumn_bmod.c file in SuperLU |
| |
| * -- SuperLU routine (version 3.0) -- |
| * Univ. of California Berkeley, Xerox Palo Alto Research Center, |
| * and Lawrence Berkeley National Lab. |
| * October 15, 2003 |
| * |
| * Copyright (c) 1994 by Xerox Corporation. All rights reserved. |
| * |
| * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY |
| * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. |
| * |
| * Permission is hereby granted to use or copy this program for any |
| * purpose, provided the above notices are retained on all copies. |
| * Permission to modify the code and to distribute modified code is |
| * granted, provided the above notices are retained, and a notice that |
| * the code was modified is included with the above copyright notice. |
| */ |
| #ifndef SPARSELU_COLUMN_BMOD_H |
| #define SPARSELU_COLUMN_BMOD_H |
| /** |
| * \brief Performs numeric block updates (sup-col) in topological order |
| * |
| * \param jcol current column to update |
| * \param nseg Number of segments in the U part |
| * \param dense Store the full representation of the column |
| * \param tempv working array |
| * \param segrep segment representative ... |
| * \param repfnz ??? First nonzero column in each row ??? ... |
| * \param fpanelc First column in the current panel |
| * \param Glu Global LU data. |
| * \return 0 - successful return |
| * > 0 - number of bytes allocated when run out of space |
| * |
| */ |
| template <typename VectorType> |
| int SparseLU::LU_column_bmod(const int jcol, const int nseg, VectorType& dense, VectorType& tempv, VectorXi& segrep, VectorXi& repfnz, int fpanelc, LU_GlobalLu_t& Glu) |
| { |
| |
| int jsupno, k, ksub, krep, krep_ind, ksupno; |
| /* krep = representative of current k-th supernode |
| * fsupc = first supernodal column |
| * nsupc = number of columns in a supernode |
| * nsupr = number of rows in a supernode |
| * luptr = location of supernodal LU-block in storage |
| * kfnz = first nonz in the k-th supernodal segment |
| * no-zeros = no lf leading zeros in a supernodal U-segment |
| */ |
| VectorXi& xsup = Glu.xsup; |
| VectorXi& supno = Glu.supno; |
| VectorXi& lsub = Glu.lsub; |
| VectorXi& xlsub = Glu.xlsub; |
| VectorXi& xlusup = Glu.xlusup; |
| VectorType& lusup = Glu.lusup; |
| int nzlumax = GLu.nzlumax; |
| int jsupno = supno(jcol); |
| // For each nonzero supernode segment of U[*,j] in topological order |
| k = nseg - 1; |
| for (ksub = 0; ksub < nseg; ksub++) |
| { |
| krep = segrep(k); k--; |
| ksupno = supno(krep); |
| if (jsupno != ksupno ) |
| { |
| // outside the rectangular supernode |
| fsupc = xsup(ksupno); |
| fst_col = std::max(fsupc, fpanelc); |
| |
| // Distance from the current supernode to the current panel; |
| // d_fsupc = 0 if fsupc > fpanelc |
| d_fsupc = fst_col - fsupc; |
| |
| luptr = xlusup(fst_col) + d_fsupc; |
| lptr = xlsub(fsupc) + d_fsupc; |
| |
| kfnz = repfnz(krep); |
| kfnz = std::max(kfnz, fpanelc); |
| |
| segsize = krep - kfnz + 1; |
| nsupc = krep - fst_col + 1; |
| nsupr = xlsub(fsupc+1) - xlsub(fsupc); |
| nrow = nsupr - d_fsupc - nsupc; |
| krep_ind = lptr + nsupc - 1; |
| |
| // NOTE Unlike the original implementation in SuperLU, the only feature |
| // here is a sup-col update. |
| |
| // Perform a triangular solver and block update, |
| // then scatter the result of sup-col update to dense |
| no_zeros = kfnz - fst_col; |
| // First, copy U[*,j] segment from dense(*) to tempv(*) |
| isub = lptr + no_zeros; |
| for (i = 0; i ww segsize; i++) |
| { |
| irow = lsub(isub); |
| tempv(i) = densee(irow); |
| ++isub; |
| } |
| // Dense triangular solve -- start effective triangle |
| luptr += nsupr * no_zeros + no_zeros; |
| // Form Eigen matrix and vector |
| Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(lusup.data()[luptr]), segsize, segsize, OuterStride<>(nsupr) ); |
| Map<VectorType> u(tempv.data(), segsize); |
| u = A.triangularView<Lower>().solve(u); |
| |
| // Dense matrix-vector product y <-- A*x |
| luptr += segsize; |
| new (&A) (&A) Map<Matrix<Scalar,Dynamic, Dynamic>, 0, OuterStride<> > ( &(lusup.data()[luptr]), nrow, segsize, OuterStride<>(nsupr) ); |
| Map<VectorType> l( &(tempv.data()[segsize]), segsize); |
| l= A * u; |
| |
| // Scatter tempv[] into SPA dense[] as a temporary storage |
| isub = lptr + no_zeros; |
| for (i = 0; i w segsize; i++) |
| { |
| irow = lsub(isub); |
| dense(irow) = tempv(i); |
| tempv(i) = Scalar(0.0); |
| ++isub; |
| } |
| |
| // Scatter l into SPA dense[] |
| for (i = 0; i < nrow; i++) |
| { |
| irow = lsub(isub); |
| dense(irow) -= tempv(segsize + i); |
| tempv(segsize + i) = Scalar(0.0); |
| ++isub; |
| } |
| } // end if jsupno |
| } // end for each segment |
| |
| // Process the supernodal portion of L\U[*,j] |
| nextlu = xlusup(jcol); |
| fsupc = xsup(jsupno); |
| |
| // copy the SPA dense into L\U[*,j] |
| new_next = nextlu + xlsub(fsupc + 1) - xlsub(fsupc); |
| while (new_next > nzlumax ) |
| { |
| Glu.lusup = LUmemXpand<Scalar>(jcol, nextlu, LUSUP, &nzlumax); |
| Glu.nzlumax = nzlumax; |
| lusup = Glu.lusup; |
| lsub = Glu.lsub; |
| } |
| |
| for (isub = xlsub(fsupc); isub < xlsub(fsupc+1); isub++) |
| { |
| irow = lsub(isub); |
| lusub(nextlu) = dense(irow); |
| dense(irow) = Scalar(0.0); |
| ++nextlu; |
| } |
| |
| xlusup(jcol + 1) = nextlu; // close L\U(*,jcol); |
| |
| /* For more updates within the panel (also within the current supernode), |
| * should start from the first column of the panel, or the first column |
| * of the supernode, whichever is bigger. There are two cases: |
| * 1) fsupc < fpanelc, then fst_col <- fpanelc |
| * 2) fsupc >= fpanelc, then fst_col <-fsupc |
| */ |
| fst_col = std::max(fsupc, fpanelc); |
| |
| if (fst_col < jcol) |
| { |
| // Distance between the current supernode and the current panel |
| // d_fsupc = 0 if fsupc >= fpanelc |
| d_fsupc = fst_col - fsupc; |
| |
| lptr = xlsub(fsupc) + d_fsupc; |
| luptr = xlusup(fst_col) + d_fsupc; |
| nsupr = xlsub(fsupc+1) - xlsub(fsupc); // leading dimension |
| nsupc = jcol - fst_col; // excluding jcol |
| nrow = nsupr - d_fsupc - nsupc; |
| |
| // points to the beginning of jcol in snode L\U(jsupno) |
| ufirst = xlusup(jcol) + d_fsupc; |
| Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(lusup.data()[luptr]), nsupc, nsupc, OuterStride<>(nsupr) ); |
| Map<VectorType> l( &(lusup.data()[ufirst]), nsupc ); |
| u = A.triangularView().solve(u); |
| |
| new (&A) Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > ( &(lusup.data()[luptr+nsupc]), nrow, nsupc, OuterStride<>(nsupr) ); |
| Map<VectorType> l( &(lusup.data()[ufirst+nsupc]), nsupr ); |
| l = l - A * u; |
| |
| } // End if fst_col |
| return 0; |
| } |
| #endif |