blob: 08e93a252e5f2119b8ccb4dc8d0aec41e4d2ec6e [file] [log] [blame]
/*-------------------------------------------------------------------------
* drawElements Quality Program Tester Core
* ----------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Texture utilities.
*//*--------------------------------------------------------------------*/
#include "tcuTextureUtil.hpp"
#include "tcuVectorUtil.hpp"
#include "deRandom.hpp"
#include "deMath.h"
#include "deMemory.h"
#include <limits>
namespace tcu
{
float sRGBChannelToLinear(float cs)
{
if (cs <= 0.04045)
return cs / 12.92f;
else
return deFloatPow((cs + 0.055f) / 1.055f, 2.4f);
}
static const uint32_t s_srgb8Lut[256] = {
#include "tcuSRGB8Lut.inl"
};
static inline float sRGB8ChannelToLinear(uint32_t cs)
{
DE_ASSERT(cs < 256);
// \note This triggers UB, but in practice it doesn't cause any problems
return ((const float *)s_srgb8Lut)[cs];
}
float linearChannelToSRGB(float cl)
{
if (cl <= 0.0f)
return 0.0f;
else if (cl < 0.0031308f)
return 12.92f * cl;
else if (cl < 1.0f)
return 1.055f * deFloatPow(cl, 0.41666f) - 0.055f;
else
return 1.0f;
}
//! Convert sRGB to linear colorspace
Vec4 sRGBToLinear(const Vec4 &cs)
{
return Vec4(sRGBChannelToLinear(cs[0]), sRGBChannelToLinear(cs[1]), sRGBChannelToLinear(cs[2]), cs[3]);
}
Vec4 sRGB8ToLinear(const UVec4 &cs)
{
return Vec4(sRGB8ChannelToLinear(cs[0]), sRGB8ChannelToLinear(cs[1]), sRGB8ChannelToLinear(cs[2]), 1.0f);
}
Vec4 sRGBA8ToLinear(const UVec4 &cs)
{
return Vec4(sRGB8ChannelToLinear(cs[0]), sRGB8ChannelToLinear(cs[1]), sRGB8ChannelToLinear(cs[2]),
(float)cs[3] / 255.0f);
}
//! Convert from linear to sRGB colorspace
Vec4 linearToSRGB(const Vec4 &cl)
{
return Vec4(linearChannelToSRGB(cl[0]), linearChannelToSRGB(cl[1]), linearChannelToSRGB(cl[2]), cl[3]);
}
bool isSRGB(TextureFormat format)
{
// make sure to update this if type table is updated
DE_STATIC_ASSERT(TextureFormat::CHANNELORDER_LAST == 22);
return format.order == TextureFormat::sR || format.order == TextureFormat::sRG ||
format.order == TextureFormat::sRGB || format.order == TextureFormat::sRGBA ||
format.order == TextureFormat::sBGR || format.order == TextureFormat::sBGRA;
}
tcu::Vec4 linearToSRGBIfNeeded(const TextureFormat &format, const tcu::Vec4 &color)
{
return isSRGB(format) ? linearToSRGB(color) : color;
}
bool isCombinedDepthStencilType(TextureFormat::ChannelType type)
{
// make sure to update this if type table is updated
DE_STATIC_ASSERT(TextureFormat::CHANNELTYPE_LAST == 48);
return type == TextureFormat::UNSIGNED_INT_16_8_8 || type == TextureFormat::UNSIGNED_INT_24_8 ||
type == TextureFormat::UNSIGNED_INT_24_8_REV || type == TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV;
}
bool hasStencilComponent(TextureFormat::ChannelOrder order)
{
DE_STATIC_ASSERT(TextureFormat::CHANNELORDER_LAST == 22);
switch (order)
{
case TextureFormat::S:
case TextureFormat::DS:
return true;
default:
return false;
}
}
bool hasDepthComponent(TextureFormat::ChannelOrder order)
{
DE_STATIC_ASSERT(TextureFormat::CHANNELORDER_LAST == 22);
switch (order)
{
case TextureFormat::D:
case TextureFormat::DS:
return true;
default:
return false;
}
}
//! Get texture channel class for format - how the values are stored (not how they are sampled)
TextureChannelClass getTextureChannelClass(TextureFormat::ChannelType channelType)
{
// make sure this table is updated if format table is updated
DE_STATIC_ASSERT(TextureFormat::CHANNELTYPE_LAST == 48);
switch (channelType)
{
case TextureFormat::SNORM_INT8:
return TEXTURECHANNELCLASS_SIGNED_FIXED_POINT;
case TextureFormat::SNORM_INT16:
return TEXTURECHANNELCLASS_SIGNED_FIXED_POINT;
case TextureFormat::SNORM_INT32:
return TEXTURECHANNELCLASS_SIGNED_FIXED_POINT;
case TextureFormat::UNORM_INT8:
return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
case TextureFormat::UNORM_INT16:
return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
case TextureFormat::UNORM_INT24:
return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
case TextureFormat::UNORM_INT32:
return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
case TextureFormat::UNORM_BYTE_44:
return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
case TextureFormat::UNORM_SHORT_565:
return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
case TextureFormat::UNORM_SHORT_555:
return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
case TextureFormat::UNORM_SHORT_4444:
return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
case TextureFormat::UNORM_SHORT_5551:
return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
case TextureFormat::UNORM_SHORT_1555:
return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
case TextureFormat::UNSIGNED_BYTE_44:
return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
case TextureFormat::UNSIGNED_SHORT_565:
return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
case TextureFormat::UNSIGNED_SHORT_4444:
return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
case TextureFormat::UNSIGNED_SHORT_5551:
return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
case TextureFormat::UNORM_INT_101010:
return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
case TextureFormat::SNORM_INT_1010102_REV:
return TEXTURECHANNELCLASS_SIGNED_FIXED_POINT;
case TextureFormat::UNORM_INT_1010102_REV:
return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
case TextureFormat::SIGNED_INT_1010102_REV:
return TEXTURECHANNELCLASS_SIGNED_INTEGER;
case TextureFormat::UNSIGNED_INT_1010102_REV:
return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
case TextureFormat::UNSIGNED_INT_11F_11F_10F_REV:
return TEXTURECHANNELCLASS_FLOATING_POINT;
case TextureFormat::UNSIGNED_INT_999_E5_REV:
return TEXTURECHANNELCLASS_FLOATING_POINT;
case TextureFormat::UNSIGNED_INT_16_8_8:
return TEXTURECHANNELCLASS_LAST; //!< packed unorm16-x8-uint8
case TextureFormat::UNSIGNED_INT_24_8:
return TEXTURECHANNELCLASS_LAST; //!< packed unorm24-uint8
case TextureFormat::UNSIGNED_INT_24_8_REV:
return TEXTURECHANNELCLASS_LAST; //!< packed unorm24-uint8
case TextureFormat::SIGNED_INT8:
return TEXTURECHANNELCLASS_SIGNED_INTEGER;
case TextureFormat::SIGNED_INT16:
return TEXTURECHANNELCLASS_SIGNED_INTEGER;
case TextureFormat::SIGNED_INT32:
return TEXTURECHANNELCLASS_SIGNED_INTEGER;
case TextureFormat::SIGNED_INT64:
return TEXTURECHANNELCLASS_SIGNED_INTEGER;
case TextureFormat::UNSIGNED_INT8:
return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
case TextureFormat::UNSIGNED_INT16:
return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
case TextureFormat::UNSIGNED_INT24:
return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
case TextureFormat::UNSIGNED_INT32:
return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
case TextureFormat::UNSIGNED_INT64:
return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
case TextureFormat::HALF_FLOAT:
return TEXTURECHANNELCLASS_FLOATING_POINT;
case TextureFormat::FLOAT:
return TEXTURECHANNELCLASS_FLOATING_POINT;
case TextureFormat::FLOAT64:
return TEXTURECHANNELCLASS_FLOATING_POINT;
case TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV:
return TEXTURECHANNELCLASS_LAST; //!< packed float32-pad24-uint8
case TextureFormat::UNORM_SHORT_10:
return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
case TextureFormat::UNORM_SHORT_12:
return TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
case TextureFormat::USCALED_INT8:
return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
case TextureFormat::USCALED_INT16:
return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
case TextureFormat::SSCALED_INT8:
return TEXTURECHANNELCLASS_SIGNED_INTEGER;
case TextureFormat::SSCALED_INT16:
return TEXTURECHANNELCLASS_SIGNED_INTEGER;
case TextureFormat::USCALED_INT_1010102_REV:
return TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
case TextureFormat::SSCALED_INT_1010102_REV:
return TEXTURECHANNELCLASS_SIGNED_INTEGER;
default:
DE_FATAL("Unknown channel type");
return TEXTURECHANNELCLASS_LAST;
}
}
bool isAccessValid(TextureFormat format, TextureAccessType type)
{
DE_ASSERT(isValid(format));
if (format.order == TextureFormat::DS)
{
// It is never allowed to access combined depth-stencil format with getPixel().
// Instead either getPixDepth() or getPixStencil(), or effective depth- or stencil-
// access must be used.
return false;
}
else if (format.order == TextureFormat::D)
return type == TEXTUREACCESSTYPE_FLOAT;
else if (format.order == TextureFormat::S)
return type == TEXTUREACCESSTYPE_UNSIGNED_INT;
else
{
// A few packed color formats have access type restrictions
if (format.type == TextureFormat::UNSIGNED_INT_11F_11F_10F_REV ||
format.type == TextureFormat::UNSIGNED_INT_999_E5_REV)
return type == TEXTUREACCESSTYPE_FLOAT;
else
return true;
}
}
/*--------------------------------------------------------------------*//*!
* \brief Get access to subregion of pixel buffer
* \param access Parent access object
* \param x X offset
* \param y Y offset
* \param z Z offset
* \param width Width
* \param height Height
* \param depth Depth
* \return Access object that targets given subregion of parent access object
*//*--------------------------------------------------------------------*/
ConstPixelBufferAccess getSubregion(const ConstPixelBufferAccess &access, int x, int y, int z, int width, int height,
int depth)
{
DE_ASSERT(de::inBounds(x, 0, access.getWidth()));
DE_ASSERT(de::inRange(x + width, x + 1, access.getWidth()));
DE_ASSERT(de::inBounds(y, 0, access.getHeight()));
DE_ASSERT(de::inRange(y + height, y + 1, access.getHeight()));
DE_ASSERT(de::inBounds(z, 0, access.getDepth()));
if (depth != -1) // Handles case of VK_REMAINING_ARRAY_LAYERS
DE_ASSERT(de::inRange(z + depth, z + 1, access.getDepth()));
return ConstPixelBufferAccess(access.getFormat(), tcu::IVec3(width, height, depth), access.getPitch(),
(const uint8_t *)access.getDataPtr() + access.getPixelPitch() * x +
access.getRowPitch() * y + access.getSlicePitch() * z);
}
/*--------------------------------------------------------------------*//*!
* \brief Get access to subregion of pixel buffer
* \param access Parent access object
* \param x X offset
* \param y Y offset
* \param z Z offset
* \param width Width
* \param height Height
* \param depth Depth
* \return Access object that targets given subregion of parent access object
*//*--------------------------------------------------------------------*/
PixelBufferAccess getSubregion(const PixelBufferAccess &access, int x, int y, int z, int width, int height, int depth)
{
DE_ASSERT(de::inBounds(x, 0, access.getWidth()));
DE_ASSERT(de::inRange(x + width, x + 1, access.getWidth()));
DE_ASSERT(de::inBounds(y, 0, access.getHeight()));
DE_ASSERT(de::inRange(y + height, y + 1, access.getHeight()));
DE_ASSERT(de::inBounds(z, 0, access.getDepth()));
if (depth != -1) // Handles case of VK_REMAINING_ARRAY_LAYERS
DE_ASSERT(de::inRange(z + depth, z + 1, access.getDepth()));
return PixelBufferAccess(access.getFormat(), tcu::IVec3(width, height, depth), access.getPitch(),
(uint8_t *)access.getDataPtr() + access.getPixelPitch() * x + access.getRowPitch() * y +
access.getSlicePitch() * z);
}
/*--------------------------------------------------------------------*//*!
* \brief Get access to subregion of pixel buffer
* \param access Parent access object
* \param x X offset
* \param y Y offset
* \param width Width
* \param height Height
* \return Access object that targets given subregion of parent access object
*//*--------------------------------------------------------------------*/
PixelBufferAccess getSubregion(const PixelBufferAccess &access, int x, int y, int width, int height)
{
return getSubregion(access, x, y, 0, width, height, 1);
}
/*--------------------------------------------------------------------*//*!
* \brief Get access to subregion of pixel buffer
* \param access Parent access object
* \param x X offset
* \param y Y offset
* \param width Width
* \param height Height
* \return Access object that targets given subregion of parent access object
*//*--------------------------------------------------------------------*/
ConstPixelBufferAccess getSubregion(const ConstPixelBufferAccess &access, int x, int y, int width, int height)
{
return getSubregion(access, x, y, 0, width, height, 1);
}
/*--------------------------------------------------------------------*//*!
* \brief Flip rows in Y direction
* \param access Access object
* \return Modified access object where Y coordinates are reversed
*//*--------------------------------------------------------------------*/
PixelBufferAccess flipYAccess(const PixelBufferAccess &access)
{
const int rowPitch = access.getRowPitch();
const int offsetToLast = rowPitch * (access.getHeight() - 1);
const tcu::IVec3 pitch(access.getPixelPitch(), -rowPitch, access.getSlicePitch());
return PixelBufferAccess(access.getFormat(), access.getSize(), pitch,
(uint8_t *)access.getDataPtr() + offsetToLast);
}
/*--------------------------------------------------------------------*//*!
* \brief Flip rows in Y direction
* \param access Access object
* \return Modified access object where Y coordinates are reversed
*//*--------------------------------------------------------------------*/
ConstPixelBufferAccess flipYAccess(const ConstPixelBufferAccess &access)
{
const int rowPitch = access.getRowPitch();
const int offsetToLast = rowPitch * (access.getHeight() - 1);
const tcu::IVec3 pitch(access.getPixelPitch(), -rowPitch, access.getSlicePitch());
return ConstPixelBufferAccess(access.getFormat(), access.getSize(), pitch,
(uint8_t *)access.getDataPtr() + offsetToLast);
}
static Vec2 getFloatChannelValueRange(TextureFormat::ChannelType channelType)
{
// make sure this table is updated if format table is updated
DE_STATIC_ASSERT(TextureFormat::CHANNELTYPE_LAST == 48);
float cMin = 0.0f;
float cMax = 0.0f;
switch (channelType)
{
// Signed normalized formats.
case TextureFormat::SNORM_INT8:
case TextureFormat::SNORM_INT16:
case TextureFormat::SNORM_INT32:
case TextureFormat::SNORM_INT_1010102_REV:
cMin = -1.0f;
cMax = 1.0f;
break;
// Unsigned normalized formats.
case TextureFormat::UNORM_INT8:
case TextureFormat::UNORM_INT16:
case TextureFormat::UNORM_INT24:
case TextureFormat::UNORM_INT32:
case TextureFormat::UNORM_BYTE_44:
case TextureFormat::UNORM_SHORT_565:
case TextureFormat::UNORM_SHORT_555:
case TextureFormat::UNORM_SHORT_4444:
case TextureFormat::UNORM_SHORT_5551:
case TextureFormat::UNORM_SHORT_1555:
case TextureFormat::UNORM_INT_101010:
case TextureFormat::UNORM_INT_1010102_REV:
case TextureFormat::UNORM_SHORT_10:
case TextureFormat::UNORM_SHORT_12:
cMin = 0.0f;
cMax = 1.0f;
break;
// Misc formats.
case TextureFormat::SIGNED_INT8:
cMin = -128.0f;
cMax = 127.0f;
break;
case TextureFormat::SIGNED_INT16:
cMin = -32768.0f;
cMax = 32767.0f;
break;
case TextureFormat::SIGNED_INT32:
cMin = -2147483520.0f;
cMax = 2147483520.0f;
break; // Maximum exactly representable 31-bit integer: (2^24 - 1) * 2^7
case TextureFormat::UNSIGNED_INT8:
cMin = 0.0f;
cMax = 255.0f;
break;
case TextureFormat::UNSIGNED_INT16:
cMin = 0.0f;
cMax = 65535.0f;
break;
case TextureFormat::UNSIGNED_INT24:
cMin = 0.0f;
cMax = 16777215.0f;
break;
case TextureFormat::UNSIGNED_INT32:
cMin = 0.0f;
cMax = 4294967040.f;
break; // Maximum exactly representable 32-bit integer: (2^24 - 1) * 2^8
case TextureFormat::HALF_FLOAT:
cMin = -1e3f;
cMax = 1e3f;
break;
case TextureFormat::FLOAT:
cMin = -1e5f;
cMax = 1e5f;
break;
case TextureFormat::FLOAT64:
cMin = -1e5f;
cMax = 1e5f;
break;
case TextureFormat::UNSIGNED_INT_11F_11F_10F_REV:
cMin = 0.0f;
cMax = 1e4f;
break;
case TextureFormat::UNSIGNED_INT_999_E5_REV:
cMin = 0.0f;
cMax = 0.5e5f;
break;
case TextureFormat::UNSIGNED_BYTE_44:
cMin = 0.0f;
cMax = 15.f;
break;
case TextureFormat::UNSIGNED_SHORT_4444:
cMin = 0.0f;
cMax = 15.f;
break;
case TextureFormat::USCALED_INT8:
cMin = 0.0f;
cMax = 255.0f;
break;
case TextureFormat::USCALED_INT16:
cMin = 0.0f;
cMax = 65535.0f;
break;
case TextureFormat::SSCALED_INT8:
cMin = -128.0f;
cMax = 127.0f;
break;
case TextureFormat::SSCALED_INT16:
cMin = -32768.0f;
cMax = 32767.0f;
break;
case TextureFormat::USCALED_INT_1010102_REV:
cMin = 0.0f;
cMax = 1023.0f;
break;
case TextureFormat::SSCALED_INT_1010102_REV:
cMin = -512.0f;
cMax = 511.0f;
break;
default:
DE_ASSERT(false);
}
return Vec2(cMin, cMax);
}
/*--------------------------------------------------------------------*//*!
* \brief Get standard parameters for testing texture format
*
* Returns TextureFormatInfo that describes good parameters for exercising
* given TextureFormat. Parameters include value ranges per channel and
* suitable lookup scaling and bias in order to reduce result back to
* 0..1 range.
*//*--------------------------------------------------------------------*/
TextureFormatInfo getTextureFormatInfo(const TextureFormat &format)
{
// Special cases.
if (format.type == TextureFormat::UNSIGNED_INT_1010102_REV)
return TextureFormatInfo(Vec4(0.0f, 0.0f, 0.0f, 0.0f), Vec4(1023.0f, 1023.0f, 1023.0f, 3.0f),
Vec4(1.0f / 1023.f, 1.0f / 1023.0f, 1.0f / 1023.0f, 1.0f / 3.0f),
Vec4(0.0f, 0.0f, 0.0f, 0.0f));
if (format.type == TextureFormat::SIGNED_INT_1010102_REV)
return TextureFormatInfo(Vec4(-512.0f, -512.0f, -512.0f, -2.0f), Vec4(511.0f, 511.0f, 511.0f, 1.0f),
Vec4(1.0f / 1023.f, 1.0f / 1023.0f, 1.0f / 1023.0f, 1.0f / 3.0f),
Vec4(0.5f, 0.5f, 0.5f, 0.5f));
else if (format.order == TextureFormat::D || format.order == TextureFormat::DS)
return TextureFormatInfo(Vec4(0.0f, 0.0f, 0.0f, 0.0f), Vec4(1.0f, 1.0f, 1.0f, 255.0f),
Vec4(1.0f, 1.0f, 1.0f, 1.0f),
Vec4(0.0f, 0.0f, 0.0f, 0.0f)); // Depth / stencil formats.
else if (format == TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_SHORT_5551))
return TextureFormatInfo(Vec4(0.0f, 0.0f, 0.0f, 0.5f), Vec4(1.0f, 1.0f, 1.0f, 1.5f),
Vec4(1.0f, 1.0f, 1.0f, 1.0f), Vec4(0.0f, 0.0f, 0.0f, 0.0f));
else if (format.type == TextureFormat::UNSIGNED_SHORT_5551)
return TextureFormatInfo(Vec4(0.0f, 0.0f, 0.0f, 0.0f), Vec4(31.0f, 31.0f, 31.0f, 1.0f),
Vec4(1.0f / 31.f, 1.0f / 31.0f, 1.0f / 31.0f, 1.0f), Vec4(0.0f, 0.0f, 0.0f, 0.0f));
else if (format.type == TextureFormat::UNSIGNED_SHORT_565)
return TextureFormatInfo(Vec4(0.0f, 0.0f, 0.0f, 0.0f), Vec4(31.0f, 63.0f, 31.0f, 0.0f),
Vec4(1.0f / 31.f, 1.0f / 63.0f, 1.0f / 31.0f, 1.0f), Vec4(0.0f, 0.0f, 0.0f, 0.0f));
const Vec2 cRange = getFloatChannelValueRange(format.type);
const TextureSwizzle::Channel *map = getChannelReadSwizzle(format.order).components;
const BVec4 chnMask = BVec4(deInRange32(map[0], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == true,
deInRange32(map[1], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == true,
deInRange32(map[2], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == true,
deInRange32(map[3], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == true);
const float scale = 1.0f / (cRange[1] - cRange[0]);
const float bias = -cRange[0] * scale;
return TextureFormatInfo(select(cRange[0], 0.0f, chnMask), select(cRange[1], 0.0f, chnMask),
select(scale, 1.0f, chnMask), select(bias, 0.0f, chnMask));
}
IVec4 getFormatMinIntValue(const TextureFormat &format)
{
DE_ASSERT(getTextureChannelClass(format.type) == TEXTURECHANNELCLASS_SIGNED_INTEGER);
switch (format.type)
{
case TextureFormat::SIGNED_INT8:
return IVec4(std::numeric_limits<int8_t>::min());
case TextureFormat::SIGNED_INT16:
return IVec4(std::numeric_limits<int16_t>::min());
case TextureFormat::SIGNED_INT32:
return IVec4(std::numeric_limits<int32_t>::min());
default:
DE_FATAL("Invalid channel type");
return IVec4(0);
}
}
IVec4 getFormatMaxIntValue(const TextureFormat &format)
{
DE_ASSERT(getTextureChannelClass(format.type) == TEXTURECHANNELCLASS_SIGNED_INTEGER);
if (format == TextureFormat(TextureFormat::RGBA, TextureFormat::SIGNED_INT_1010102_REV) ||
format == TextureFormat(TextureFormat::BGRA, TextureFormat::SSCALED_INT_1010102_REV) ||
format == TextureFormat(TextureFormat::RGBA, TextureFormat::SSCALED_INT_1010102_REV) ||
format == TextureFormat(TextureFormat::BGRA, TextureFormat::SIGNED_INT_1010102_REV))
return IVec4(511, 511, 511, 1);
switch (format.type)
{
case TextureFormat::SIGNED_INT8:
return IVec4(std::numeric_limits<int8_t>::max());
case TextureFormat::SIGNED_INT16:
return IVec4(std::numeric_limits<int16_t>::max());
case TextureFormat::SIGNED_INT32:
return IVec4(std::numeric_limits<int32_t>::max());
case TextureFormat::SSCALED_INT8:
return IVec4(std::numeric_limits<int8_t>::max());
case TextureFormat::SSCALED_INT16:
return IVec4(std::numeric_limits<int16_t>::max());
default:
DE_FATAL("Invalid channel type");
return IVec4(0);
}
}
UVec4 getFormatMaxUintValue(const TextureFormat &format)
{
DE_ASSERT(getTextureChannelClass(format.type) == TEXTURECHANNELCLASS_UNSIGNED_INTEGER);
if (format == TextureFormat(TextureFormat::RGBA, TextureFormat::UNSIGNED_INT_1010102_REV) ||
format == TextureFormat(TextureFormat::RGBA, TextureFormat::USCALED_INT_1010102_REV) ||
format == TextureFormat(TextureFormat::BGRA, TextureFormat::USCALED_INT_1010102_REV) ||
format == TextureFormat(TextureFormat::BGRA, TextureFormat::UNSIGNED_INT_1010102_REV))
return UVec4(1023u, 1023u, 1023u, 3u);
switch (format.type)
{
case TextureFormat::UNSIGNED_INT8:
return UVec4(std::numeric_limits<uint8_t>::max());
case TextureFormat::UNSIGNED_INT16:
return UVec4(std::numeric_limits<uint16_t>::max());
case TextureFormat::UNSIGNED_INT24:
return UVec4(0xffffffu);
case TextureFormat::UNSIGNED_INT32:
return UVec4(std::numeric_limits<uint32_t>::max());
case TextureFormat::USCALED_INT8:
return UVec4(std::numeric_limits<uint8_t>::max());
case TextureFormat::USCALED_INT16:
return UVec4(std::numeric_limits<uint16_t>::max());
default:
DE_FATAL("Invalid channel type");
return UVec4(0);
}
}
static IVec4 getChannelBitDepth(TextureFormat::ChannelType channelType)
{
// make sure this table is updated if format table is updated
DE_STATIC_ASSERT(TextureFormat::CHANNELTYPE_LAST == 48);
switch (channelType)
{
case TextureFormat::SNORM_INT8:
return IVec4(8);
case TextureFormat::SNORM_INT16:
return IVec4(16);
case TextureFormat::SNORM_INT32:
return IVec4(32);
case TextureFormat::UNORM_INT8:
return IVec4(8);
case TextureFormat::UNORM_INT16:
return IVec4(16);
case TextureFormat::UNORM_INT24:
return IVec4(24);
case TextureFormat::UNORM_INT32:
return IVec4(32);
case TextureFormat::UNORM_BYTE_44:
return IVec4(4, 4, 0, 0);
case TextureFormat::UNORM_SHORT_565:
return IVec4(5, 6, 5, 0);
case TextureFormat::UNORM_SHORT_4444:
return IVec4(4);
case TextureFormat::UNORM_SHORT_555:
return IVec4(5, 5, 5, 0);
case TextureFormat::UNORM_SHORT_5551:
return IVec4(5, 5, 5, 1);
case TextureFormat::UNORM_SHORT_1555:
return IVec4(1, 5, 5, 5);
case TextureFormat::UNSIGNED_BYTE_44:
return IVec4(4, 4, 0, 0);
case TextureFormat::UNSIGNED_SHORT_565:
return IVec4(5, 6, 5, 0);
case TextureFormat::UNSIGNED_SHORT_4444:
return IVec4(4);
case TextureFormat::UNSIGNED_SHORT_5551:
return IVec4(5, 5, 5, 1);
case TextureFormat::UNORM_INT_101010:
return IVec4(10, 10, 10, 0);
case TextureFormat::SNORM_INT_1010102_REV:
return IVec4(10, 10, 10, 2);
case TextureFormat::UNORM_INT_1010102_REV:
return IVec4(10, 10, 10, 2);
case TextureFormat::SIGNED_INT8:
return IVec4(8);
case TextureFormat::SIGNED_INT16:
return IVec4(16);
case TextureFormat::SIGNED_INT32:
return IVec4(32);
case TextureFormat::SIGNED_INT64:
return IVec4(64);
case TextureFormat::UNSIGNED_INT8:
return IVec4(8);
case TextureFormat::UNSIGNED_INT16:
return IVec4(16);
case TextureFormat::UNSIGNED_INT24:
return IVec4(24);
case TextureFormat::UNSIGNED_INT32:
return IVec4(32);
case TextureFormat::UNSIGNED_INT64:
return IVec4(64);
case TextureFormat::SIGNED_INT_1010102_REV:
return IVec4(10, 10, 10, 2);
case TextureFormat::UNSIGNED_INT_1010102_REV:
return IVec4(10, 10, 10, 2);
case TextureFormat::UNSIGNED_INT_16_8_8:
return IVec4(16, 8, 0, 0);
case TextureFormat::UNSIGNED_INT_24_8:
return IVec4(24, 8, 0, 0);
case TextureFormat::UNSIGNED_INT_24_8_REV:
return IVec4(24, 8, 0, 0);
case TextureFormat::HALF_FLOAT:
return IVec4(16);
case TextureFormat::FLOAT:
return IVec4(32);
case TextureFormat::FLOAT64:
return IVec4(64);
case TextureFormat::UNSIGNED_INT_11F_11F_10F_REV:
return IVec4(11, 11, 10, 0);
case TextureFormat::UNSIGNED_INT_999_E5_REV:
return IVec4(9, 9, 9, 0);
case TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV:
return IVec4(32, 8, 0, 0);
case TextureFormat::UNORM_SHORT_10:
return IVec4(10);
case TextureFormat::UNORM_SHORT_12:
return IVec4(12);
case TextureFormat::USCALED_INT8:
return IVec4(8);
case TextureFormat::USCALED_INT16:
return IVec4(16);
case TextureFormat::SSCALED_INT8:
return IVec4(8);
case TextureFormat::SSCALED_INT16:
return IVec4(16);
case TextureFormat::USCALED_INT_1010102_REV:
return IVec4(10, 10, 10, 2);
case TextureFormat::SSCALED_INT_1010102_REV:
return IVec4(10, 10, 10, 2);
default:
DE_ASSERT(false);
return IVec4(0);
}
}
IVec4 getTextureFormatBitDepth(const TextureFormat &format)
{
const IVec4 chnBits = getChannelBitDepth(format.type);
const TextureSwizzle::Channel *map = getChannelReadSwizzle(format.order).components;
const BVec4 chnMask = BVec4(deInRange32(map[0], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == true,
deInRange32(map[1], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == true,
deInRange32(map[2], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == true,
deInRange32(map[3], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == true);
const IVec4 chnSwz = IVec4((chnMask[0]) ? ((int)map[0]) : (0), (chnMask[1]) ? ((int)map[1]) : (0),
(chnMask[2]) ? ((int)map[2]) : (0), (chnMask[3]) ? ((int)map[3]) : (0));
return select(chnBits.swizzle(chnSwz.x(), chnSwz.y(), chnSwz.z(), chnSwz.w()), IVec4(0), chnMask);
}
static IVec4 getChannelMantissaBitDepth(TextureFormat::ChannelType channelType)
{
// make sure this table is updated if format table is updated
DE_STATIC_ASSERT(TextureFormat::CHANNELTYPE_LAST == 48);
switch (channelType)
{
case TextureFormat::SNORM_INT8:
case TextureFormat::SNORM_INT16:
case TextureFormat::SNORM_INT32:
case TextureFormat::UNORM_INT8:
case TextureFormat::UNORM_INT16:
case TextureFormat::UNORM_INT24:
case TextureFormat::UNORM_INT32:
case TextureFormat::UNORM_BYTE_44:
case TextureFormat::UNORM_SHORT_565:
case TextureFormat::UNORM_SHORT_4444:
case TextureFormat::UNORM_SHORT_555:
case TextureFormat::UNORM_SHORT_5551:
case TextureFormat::UNORM_SHORT_1555:
case TextureFormat::UNSIGNED_BYTE_44:
case TextureFormat::UNSIGNED_SHORT_565:
case TextureFormat::UNSIGNED_SHORT_4444:
case TextureFormat::UNSIGNED_SHORT_5551:
case TextureFormat::UNORM_INT_101010:
case TextureFormat::SNORM_INT_1010102_REV:
case TextureFormat::UNORM_INT_1010102_REV:
case TextureFormat::SIGNED_INT8:
case TextureFormat::SIGNED_INT16:
case TextureFormat::SIGNED_INT32:
case TextureFormat::UNSIGNED_INT8:
case TextureFormat::UNSIGNED_INT16:
case TextureFormat::UNSIGNED_INT24:
case TextureFormat::UNSIGNED_INT32:
case TextureFormat::SIGNED_INT_1010102_REV:
case TextureFormat::UNSIGNED_INT_1010102_REV:
case TextureFormat::UNSIGNED_INT_16_8_8:
case TextureFormat::UNSIGNED_INT_24_8:
case TextureFormat::UNSIGNED_INT_24_8_REV:
case TextureFormat::UNSIGNED_INT_999_E5_REV:
case TextureFormat::UNORM_SHORT_10:
case TextureFormat::UNORM_SHORT_12:
case TextureFormat::USCALED_INT8:
case TextureFormat::USCALED_INT16:
case TextureFormat::SSCALED_INT8:
case TextureFormat::SSCALED_INT16:
case TextureFormat::USCALED_INT_1010102_REV:
case TextureFormat::SSCALED_INT_1010102_REV:
return getChannelBitDepth(channelType);
case TextureFormat::HALF_FLOAT:
return IVec4(10);
case TextureFormat::FLOAT:
return IVec4(23);
case TextureFormat::FLOAT64:
return IVec4(52);
case TextureFormat::UNSIGNED_INT_11F_11F_10F_REV:
return IVec4(6, 6, 5, 0);
case TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV:
return IVec4(23, 8, 0, 0);
default:
DE_ASSERT(false);
return IVec4(0);
}
}
IVec4 getTextureFormatMantissaBitDepth(const TextureFormat &format)
{
const IVec4 chnBits = getChannelMantissaBitDepth(format.type);
const TextureSwizzle::Channel *map = getChannelReadSwizzle(format.order).components;
const BVec4 chnMask = BVec4(deInRange32(map[0], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == true,
deInRange32(map[1], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == true,
deInRange32(map[2], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == true,
deInRange32(map[3], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == true);
const IVec4 chnSwz = IVec4((chnMask[0]) ? ((int)map[0]) : (0), (chnMask[1]) ? ((int)map[1]) : (0),
(chnMask[2]) ? ((int)map[2]) : (0), (chnMask[3]) ? ((int)map[3]) : (0));
return select(chnBits.swizzle(chnSwz.x(), chnSwz.y(), chnSwz.z(), chnSwz.w()), IVec4(0), chnMask);
}
BVec4 getTextureFormatChannelMask(const TextureFormat &format)
{
const TextureSwizzle::Channel *const map = getChannelReadSwizzle(format.order).components;
return BVec4(deInRange32(map[0], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == true,
deInRange32(map[1], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == true,
deInRange32(map[2], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == true,
deInRange32(map[3], TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == true);
}
static inline float linearInterpolate(float t, float minVal, float maxVal)
{
return minVal + (maxVal - minVal) * t;
}
static inline Vec4 linearInterpolate(float t, const Vec4 &a, const Vec4 &b)
{
return a + (b - a) * t;
}
enum
{
CLEAR_OPTIMIZE_THRESHOLD = 128,
CLEAR_OPTIMIZE_MAX_PIXEL_SIZE = 8
};
inline void fillRow(const PixelBufferAccess &dst, int y, int z, int pixelSize, const uint8_t *pixel)
{
DE_ASSERT(dst.getPixelPitch() == pixelSize); // only tightly packed
uint8_t *dstPtr = (uint8_t *)dst.getPixelPtr(0, y, z);
int width = dst.getWidth();
if (pixelSize == 8 && deIsAlignedPtr(dstPtr, pixelSize))
{
uint64_t val;
memcpy(&val, pixel, sizeof(val));
for (int i = 0; i < width; i++)
((uint64_t *)dstPtr)[i] = val;
}
else if (pixelSize == 4 && deIsAlignedPtr(dstPtr, pixelSize))
{
uint32_t val;
memcpy(&val, pixel, sizeof(val));
for (int i = 0; i < width; i++)
((uint32_t *)dstPtr)[i] = val;
}
else
{
for (int i = 0; i < width; i++)
for (int j = 0; j < pixelSize; j++)
dstPtr[i * pixelSize + j] = pixel[j];
}
}
void clear(const PixelBufferAccess &access, const Vec4 &color)
{
const int pixelSize = access.getFormat().getPixelSize();
const int pixelPitch = access.getPixelPitch();
const bool rowPixelsTightlyPacked = (pixelSize == pixelPitch);
if (access.getWidth() * access.getHeight() * access.getDepth() >= CLEAR_OPTIMIZE_THRESHOLD &&
pixelSize < CLEAR_OPTIMIZE_MAX_PIXEL_SIZE && rowPixelsTightlyPacked)
{
// Convert to destination format.
union
{
uint8_t u8[CLEAR_OPTIMIZE_MAX_PIXEL_SIZE];
uint64_t u64; // Forces 64-bit alignment.
} pixel;
DE_STATIC_ASSERT(sizeof(pixel) == CLEAR_OPTIMIZE_MAX_PIXEL_SIZE);
PixelBufferAccess(access.getFormat(), 1, 1, 1, 0, 0, &pixel.u8[0]).setPixel(color, 0, 0);
for (int z = 0; z < access.getDepth(); z++)
for (int y = 0; y < access.getHeight(); y++)
fillRow(access, y, z, pixelSize, &pixel.u8[0]);
}
else
{
for (int z = 0; z < access.getDepth(); z++)
for (int y = 0; y < access.getHeight(); y++)
for (int x = 0; x < access.getWidth(); x++)
access.setPixel(color, x, y, z);
}
}
void clear(const PixelBufferAccess &access, const IVec4 &color)
{
const int pixelSize = access.getFormat().getPixelSize();
const int pixelPitch = access.getPixelPitch();
const bool rowPixelsTightlyPacked = (pixelSize == pixelPitch);
if (access.getWidth() * access.getHeight() * access.getDepth() >= CLEAR_OPTIMIZE_THRESHOLD &&
pixelSize < CLEAR_OPTIMIZE_MAX_PIXEL_SIZE && rowPixelsTightlyPacked)
{
// Convert to destination format.
union
{
uint8_t u8[CLEAR_OPTIMIZE_MAX_PIXEL_SIZE];
uint64_t u64; // Forces 64-bit alignment.
} pixel;
DE_STATIC_ASSERT(sizeof(pixel) == CLEAR_OPTIMIZE_MAX_PIXEL_SIZE);
PixelBufferAccess(access.getFormat(), 1, 1, 1, 0, 0, &pixel.u8[0]).setPixel(color, 0, 0);
for (int z = 0; z < access.getDepth(); z++)
for (int y = 0; y < access.getHeight(); y++)
fillRow(access, y, z, pixelSize, &pixel.u8[0]);
}
else
{
for (int z = 0; z < access.getDepth(); z++)
for (int y = 0; y < access.getHeight(); y++)
for (int x = 0; x < access.getWidth(); x++)
access.setPixel(color, x, y, z);
}
}
void clear(const PixelBufferAccess &access, const UVec4 &color)
{
clear(access, color.cast<int32_t>());
}
void clearDepth(const PixelBufferAccess &access, float depth)
{
DE_ASSERT(access.getFormat().order == TextureFormat::DS || access.getFormat().order == TextureFormat::D);
clear(getEffectiveDepthStencilAccess(access, Sampler::MODE_DEPTH), tcu::Vec4(depth, 0.0f, 0.0f, 0.0f));
}
void clearStencil(const PixelBufferAccess &access, int stencil)
{
DE_ASSERT(access.getFormat().order == TextureFormat::DS || access.getFormat().order == TextureFormat::S);
clear(getEffectiveDepthStencilAccess(access, Sampler::MODE_STENCIL), tcu::UVec4(stencil, 0u, 0u, 0u));
}
enum GradientStyle
{
GRADIENT_STYLE_OLD = 0,
GRADIENT_STYLE_NEW = 1,
GRADIENT_STYLE_PYRAMID = 2
};
static void fillWithComponentGradients1D(const PixelBufferAccess &access, const Vec4 &minVal, const Vec4 &maxVal,
GradientStyle)
{
DE_ASSERT(access.getHeight() == 1);
for (int x = 0; x < access.getWidth(); x++)
{
float s = ((float)x + 0.5f) / (float)access.getWidth();
float r = linearInterpolate(s, minVal.x(), maxVal.x());
float g = linearInterpolate(s, minVal.y(), maxVal.y());
float b = linearInterpolate(s, minVal.z(), maxVal.z());
float a = linearInterpolate(s, minVal.w(), maxVal.w());
access.setPixel(tcu::Vec4(r, g, b, a), x, 0);
}
}
static void fillWithComponentGradients2D(const PixelBufferAccess &access, const Vec4 &minVal, const Vec4 &maxVal,
GradientStyle style)
{
if (style == GRADIENT_STYLE_PYRAMID)
{
int xedge = deFloorFloatToInt32(float(access.getWidth()) * 0.6f);
int yedge = deFloorFloatToInt32(float(access.getHeight()) * 0.6f);
for (int y = 0; y < access.getHeight(); y++)
{
for (int x = 0; x < access.getWidth(); x++)
{
float s = ((float)x + 0.5f) / (float)access.getWidth();
float t = ((float)y + 0.5f) / (float)access.getHeight();
float coefR = 0.0f;
float coefG = 0.0f;
float coefB = 0.0f;
float coefA = 0.0f;
coefR = (x < xedge) ? s * 0.4f : (1 - s) * 0.6f;
coefG = (x < xedge) ? s * 0.4f : (1 - s) * 0.6f;
coefB = (x < xedge) ? (1.0f - s) * 0.4f : s * 0.6f - 0.2f;
coefA = (x < xedge) ? (1.0f - s) * 0.4f : s * 0.6f - 0.2f;
coefR += (y < yedge) ? t * 0.4f : (1 - t) * 0.6f;
coefG += (y < yedge) ? (1.0f - t) * 0.4f : t * 0.6f - 0.2f;
coefB += (y < yedge) ? t * 0.4f : (1 - t) * 0.6f;
coefA += (y < yedge) ? (1.0f - t) * 0.4f : t * 0.6f - 0.2f;
float r = linearInterpolate(coefR, minVal.x(), maxVal.x());
float g = linearInterpolate(coefG, minVal.y(), maxVal.y());
float b = linearInterpolate(coefB, minVal.z(), maxVal.z());
float a = linearInterpolate(coefA, minVal.w(), maxVal.w());
access.setPixel(tcu::Vec4(r, g, b, a), x, y);
}
}
}
else
{
for (int y = 0; y < access.getHeight(); y++)
{
for (int x = 0; x < access.getWidth(); x++)
{
float s = ((float)x + 0.5f) / (float)access.getWidth();
float t = ((float)y + 0.5f) / (float)access.getHeight();
float r = linearInterpolate((s + t) * 0.5f, minVal.x(), maxVal.x());
float g = linearInterpolate((s + (1.0f - t)) * 0.5f, minVal.y(), maxVal.y());
float b = linearInterpolate(((1.0f - s) + t) * 0.5f, minVal.z(), maxVal.z());
float a = linearInterpolate(((1.0f - s) + (1.0f - t)) * 0.5f, minVal.w(), maxVal.w());
access.setPixel(tcu::Vec4(r, g, b, a), x, y);
}
}
}
}
static void fillWithComponentGradients3D(const PixelBufferAccess &dst, const Vec4 &minVal, const Vec4 &maxVal,
GradientStyle style)
{
for (int z = 0; z < dst.getDepth(); z++)
{
for (int y = 0; y < dst.getHeight(); y++)
{
for (int x = 0; x < dst.getWidth(); x++)
{
float s = ((float)x + 0.5f) / (float)dst.getWidth();
float t = ((float)y + 0.5f) / (float)dst.getHeight();
float p = ((float)z + 0.5f) / (float)dst.getDepth();
float r, g, b, a;
if (style == GRADIENT_STYLE_NEW)
{
// R, G, B and A all depend on every coordinate.
r = linearInterpolate((s + t + p) / 3.0f, minVal.x(), maxVal.x());
g = linearInterpolate((s + (1.0f - (t + p) * 0.5f) * 2.0f) / 3.0f, minVal.y(), maxVal.y());
b = linearInterpolate(((1.0f - (s + t) * 0.5f) * 2.0f + p) / 3.0f, minVal.z(), maxVal.z());
a = linearInterpolate(1.0f - (s + t + p) / 3.0f, minVal.w(), maxVal.w());
}
else // GRADIENT_STYLE_OLD
{
// Each of R, G and B only depend on X, Y and Z, respectively.
r = linearInterpolate(s, minVal.x(), maxVal.x());
g = linearInterpolate(t, minVal.y(), maxVal.y());
b = linearInterpolate(p, minVal.z(), maxVal.z());
a = linearInterpolate(1.0f - (s + t + p) / 3.0f, minVal.w(), maxVal.w());
}
dst.setPixel(tcu::Vec4(r, g, b, a), x, y, z);
}
}
}
}
void fillWithComponentGradientsStyled(const PixelBufferAccess &access, const Vec4 &minVal, const Vec4 &maxVal,
GradientStyle style)
{
if (isCombinedDepthStencilType(access.getFormat().type))
{
const bool hasDepth =
access.getFormat().order == tcu::TextureFormat::DS || access.getFormat().order == tcu::TextureFormat::D;
const bool hasStencil =
access.getFormat().order == tcu::TextureFormat::DS || access.getFormat().order == tcu::TextureFormat::S;
DE_ASSERT(hasDepth || hasStencil);
// For combined formats, treat D and S as separate channels
if (hasDepth)
fillWithComponentGradientsStyled(getEffectiveDepthStencilAccess(access, tcu::Sampler::MODE_DEPTH), minVal,
maxVal, style);
if (hasStencil)
fillWithComponentGradientsStyled(getEffectiveDepthStencilAccess(access, tcu::Sampler::MODE_STENCIL),
minVal.swizzle(3, 2, 1, 0), maxVal.swizzle(3, 2, 1, 0), style);
}
else
{
if (access.getHeight() == 1 && access.getDepth() == 1)
fillWithComponentGradients1D(access, minVal, maxVal, style);
else if (access.getDepth() == 1)
fillWithComponentGradients2D(access, minVal, maxVal, style);
else
fillWithComponentGradients3D(access, minVal, maxVal, style);
}
}
void fillWithComponentGradients(const PixelBufferAccess &access, const Vec4 &minVal, const Vec4 &maxVal)
{
fillWithComponentGradientsStyled(access, minVal, maxVal, GRADIENT_STYLE_OLD);
}
void fillWithComponentGradients2(const PixelBufferAccess &access, const Vec4 &minVal, const Vec4 &maxVal)
{
fillWithComponentGradientsStyled(access, minVal, maxVal, GRADIENT_STYLE_NEW);
}
void fillWithComponentGradients3(const PixelBufferAccess &access, const Vec4 &minVal, const Vec4 &maxVal)
{
fillWithComponentGradientsStyled(access, minVal, maxVal, GRADIENT_STYLE_PYRAMID);
}
static void fillWithGrid1D(const PixelBufferAccess &access, int cellSize, const Vec4 &colorA, const Vec4 &colorB)
{
for (int x = 0; x < access.getWidth(); x++)
{
int mx = (x / cellSize) % 2;
if (mx)
access.setPixel(colorB, x, 0);
else
access.setPixel(colorA, x, 0);
}
}
static void fillWithGrid2D(const PixelBufferAccess &access, int cellSize, const Vec4 &colorA, const Vec4 &colorB)
{
for (int y = 0; y < access.getHeight(); y++)
{
for (int x = 0; x < access.getWidth(); x++)
{
int mx = (x / cellSize) % 2;
int my = (y / cellSize) % 2;
if (mx ^ my)
access.setPixel(colorB, x, y);
else
access.setPixel(colorA, x, y);
}
}
}
static void fillWithGrid3D(const PixelBufferAccess &access, int cellSize, const Vec4 &colorA, const Vec4 &colorB)
{
for (int z = 0; z < access.getDepth(); z++)
{
for (int y = 0; y < access.getHeight(); y++)
{
for (int x = 0; x < access.getWidth(); x++)
{
int mx = (x / cellSize) % 2;
int my = (y / cellSize) % 2;
int mz = (z / cellSize) % 2;
if (mx ^ my ^ mz)
access.setPixel(colorB, x, y, z);
else
access.setPixel(colorA, x, y, z);
}
}
}
}
void fillWithGrid(const PixelBufferAccess &access, int cellSize, const Vec4 &colorA, const Vec4 &colorB)
{
if (isCombinedDepthStencilType(access.getFormat().type))
{
const bool hasDepth =
access.getFormat().order == tcu::TextureFormat::DS || access.getFormat().order == tcu::TextureFormat::D;
const bool hasStencil =
access.getFormat().order == tcu::TextureFormat::DS || access.getFormat().order == tcu::TextureFormat::S;
DE_ASSERT(hasDepth || hasStencil);
// For combined formats, treat D and S as separate channels
if (hasDepth)
fillWithGrid(getEffectiveDepthStencilAccess(access, tcu::Sampler::MODE_DEPTH), cellSize, colorA, colorB);
if (hasStencil)
fillWithGrid(getEffectiveDepthStencilAccess(access, tcu::Sampler::MODE_STENCIL), cellSize,
colorA.swizzle(3, 2, 1, 0), colorB.swizzle(3, 2, 1, 0));
}
else
{
if (access.getHeight() == 1 && access.getDepth() == 1)
fillWithGrid1D(access, cellSize, colorA, colorB);
else if (access.getDepth() == 1)
fillWithGrid2D(access, cellSize, colorA, colorB);
else
fillWithGrid3D(access, cellSize, colorA, colorB);
}
}
void fillWithRepeatableGradient(const PixelBufferAccess &access, const Vec4 &colorA, const Vec4 &colorB)
{
for (int y = 0; y < access.getHeight(); y++)
{
for (int x = 0; x < access.getWidth(); x++)
{
float s = ((float)x + 0.5f) / (float)access.getWidth();
float t = ((float)y + 0.5f) / (float)access.getHeight();
float a = s > 0.5f ? (2.0f - 2.0f * s) : 2.0f * s;
float b = t > 0.5f ? (2.0f - 2.0f * t) : 2.0f * t;
float p = deFloatClamp(deFloatSqrt(a * a + b * b), 0.0f, 1.0f);
access.setPixel(linearInterpolate(p, colorA, colorB), x, y);
}
}
}
void fillWithRGBAQuads(const PixelBufferAccess &dst)
{
TCU_CHECK_INTERNAL(dst.getDepth() == 1);
int width = dst.getWidth();
int height = dst.getHeight();
int left = width / 2;
int top = height / 2;
clear(getSubregion(dst, 0, 0, 0, left, top, 1), Vec4(1.0f, 0.0f, 0.0f, 1.0f));
clear(getSubregion(dst, left, 0, 0, width - left, top, 1), Vec4(0.0f, 1.0f, 0.0f, 1.0f));
clear(getSubregion(dst, 0, top, 0, left, height - top, 1), Vec4(0.0f, 0.0f, 1.0f, 0.0f));
clear(getSubregion(dst, left, top, 0, width - left, height - top, 1), Vec4(0.5f, 0.5f, 0.5f, 1.0f));
}
// \todo [2012-11-13 pyry] There is much better metaballs code in CL SIR value generators.
void fillWithMetaballs(const PixelBufferAccess &dst, int numBalls, uint32_t seed)
{
TCU_CHECK_INTERNAL(dst.getDepth() == 1);
std::vector<Vec2> points(numBalls);
de::Random rnd(seed);
for (int i = 0; i < numBalls; i++)
{
float x = rnd.getFloat();
float y = rnd.getFloat();
points[i] = (Vec2(x, y));
}
for (int y = 0; y < dst.getHeight(); y++)
for (int x = 0; x < dst.getWidth(); x++)
{
Vec2 p((float)x / (float)dst.getWidth(), (float)y / (float)dst.getHeight());
float sum = 0.0f;
for (std::vector<Vec2>::const_iterator i = points.begin(); i != points.end(); i++)
{
Vec2 d = p - *i;
float f = 0.01f / (d.x() * d.x() + d.y() * d.y());
sum += f;
}
dst.setPixel(Vec4(sum), x, y);
}
}
void copy(const PixelBufferAccess &dst, const ConstPixelBufferAccess &src, const bool clearUnused)
{
DE_ASSERT(src.getSize() == dst.getSize());
const int width = dst.getWidth();
const int height = dst.getHeight();
const int depth = dst.getDepth();
const int srcPixelSize = src.getFormat().getPixelSize();
const int dstPixelSize = dst.getFormat().getPixelSize();
const int srcPixelPitch = src.getPixelPitch();
const int dstPixelPitch = dst.getPixelPitch();
const bool srcTightlyPacked = (srcPixelSize == srcPixelPitch);
const bool dstTightlyPacked = (dstPixelSize == dstPixelPitch);
const bool srcHasDepth =
(src.getFormat().order == tcu::TextureFormat::DS || src.getFormat().order == tcu::TextureFormat::D);
const bool srcHasStencil =
(src.getFormat().order == tcu::TextureFormat::DS || src.getFormat().order == tcu::TextureFormat::S);
const bool dstHasDepth =
(dst.getFormat().order == tcu::TextureFormat::DS || dst.getFormat().order == tcu::TextureFormat::D);
const bool dstHasStencil =
(dst.getFormat().order == tcu::TextureFormat::DS || dst.getFormat().order == tcu::TextureFormat::S);
if (src.getFormat() == dst.getFormat() && srcTightlyPacked && dstTightlyPacked)
{
// Fast-path for matching formats.
for (int z = 0; z < depth; z++)
for (int y = 0; y < height; y++)
deMemcpy(dst.getPixelPtr(0, y, z), src.getPixelPtr(0, y, z), srcPixelSize * width);
}
else if (src.getFormat() == dst.getFormat())
{
// Bit-exact copy for matching formats.
for (int z = 0; z < depth; z++)
for (int y = 0; y < height; y++)
for (int x = 0; x < width; x++)
deMemcpy(dst.getPixelPtr(x, y, z), src.getPixelPtr(x, y, z), srcPixelSize);
}
else if (srcHasDepth || srcHasStencil || dstHasDepth || dstHasStencil)
{
DE_ASSERT((srcHasDepth && dstHasDepth) ||
(srcHasStencil && dstHasStencil)); // must have at least one common channel
if (dstHasDepth && srcHasDepth)
{
for (int z = 0; z < depth; z++)
for (int y = 0; y < height; y++)
for (int x = 0; x < width; x++)
dst.setPixDepth(src.getPixDepth(x, y, z), x, y, z);
}
else if (dstHasDepth && !srcHasDepth && clearUnused)
{
// consistency with color copies
tcu::clearDepth(dst, 0.0f);
}
if (dstHasStencil && srcHasStencil)
{
for (int z = 0; z < depth; z++)
for (int y = 0; y < height; y++)
for (int x = 0; x < width; x++)
dst.setPixStencil(src.getPixStencil(x, y, z), x, y, z);
}
else if (dstHasStencil && !srcHasStencil && clearUnused)
{
// consistency with color copies
tcu::clearStencil(dst, 0u);
}
}
else
{
TextureChannelClass srcClass = getTextureChannelClass(src.getFormat().type);
TextureChannelClass dstClass = getTextureChannelClass(dst.getFormat().type);
bool srcIsInt =
srcClass == TEXTURECHANNELCLASS_SIGNED_INTEGER || srcClass == TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
bool dstIsInt =
dstClass == TEXTURECHANNELCLASS_SIGNED_INTEGER || dstClass == TEXTURECHANNELCLASS_UNSIGNED_INTEGER;
if (srcIsInt && dstIsInt)
{
for (int z = 0; z < depth; z++)
for (int y = 0; y < height; y++)
for (int x = 0; x < width; x++)
dst.setPixel(src.getPixelInt(x, y, z), x, y, z);
}
else
{
for (int z = 0; z < depth; z++)
for (int y = 0; y < height; y++)
for (int x = 0; x < width; x++)
dst.setPixel(src.getPixel(x, y, z), x, y, z);
}
}
}
void scale(const PixelBufferAccess &dst, const ConstPixelBufferAccess &src, Sampler::FilterMode filter)
{
DE_ASSERT(filter == Sampler::NEAREST || filter == Sampler::LINEAR);
Sampler sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, filter, filter, 0.0f,
false);
float sX = (float)src.getWidth() / (float)dst.getWidth();
float sY = (float)src.getHeight() / (float)dst.getHeight();
float sZ = (float)src.getDepth() / (float)dst.getDepth();
if (dst.getDepth() == 1 && src.getDepth() == 1)
{
for (int y = 0; y < dst.getHeight(); y++)
for (int x = 0; x < dst.getWidth(); x++)
dst.setPixel(linearToSRGBIfNeeded(dst.getFormat(), src.sample2D(sampler, filter, ((float)x + 0.5f) * sX,
((float)y + 0.5f) * sY, 0)),
x, y);
}
else
{
for (int z = 0; z < dst.getDepth(); z++)
for (int y = 0; y < dst.getHeight(); y++)
for (int x = 0; x < dst.getWidth(); x++)
dst.setPixel(linearToSRGBIfNeeded(dst.getFormat(),
src.sample3D(sampler, filter, ((float)x + 0.5f) * sX,
((float)y + 0.5f) * sY, ((float)z + 0.5f) * sZ)),
x, y, z);
}
}
void estimatePixelValueRange(const ConstPixelBufferAccess &access, Vec4 &minVal, Vec4 &maxVal)
{
const TextureFormat &format = access.getFormat();
switch (getTextureChannelClass(format.type))
{
case TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT:
// Normalized unsigned formats.
minVal = Vec4(0.0f);
maxVal = Vec4(1.0f);
break;
case TEXTURECHANNELCLASS_SIGNED_FIXED_POINT:
// Normalized signed formats.
minVal = Vec4(-1.0f);
maxVal = Vec4(+1.0f);
break;
default:
// \note Samples every 4/8th pixel.
minVal = Vec4(std::numeric_limits<float>::max());
maxVal = Vec4(std::numeric_limits<float>::min());
for (int z = 0; z < access.getDepth(); z += 2)
{
for (int y = 0; y < access.getHeight(); y += 2)
{
for (int x = 0; x < access.getWidth(); x += 2)
{
Vec4 p = access.getPixel(x, y, z);
minVal[0] = (deFloatIsNaN(p[0]) ? minVal[0] : de::min(minVal[0], p[0]));
minVal[1] = (deFloatIsNaN(p[1]) ? minVal[1] : de::min(minVal[1], p[1]));
minVal[2] = (deFloatIsNaN(p[2]) ? minVal[2] : de::min(minVal[2], p[2]));
minVal[3] = (deFloatIsNaN(p[3]) ? minVal[3] : de::min(minVal[3], p[3]));
maxVal[0] = (deFloatIsNaN(p[0]) ? maxVal[0] : de::max(maxVal[0], p[0]));
maxVal[1] = (deFloatIsNaN(p[1]) ? maxVal[1] : de::max(maxVal[1], p[1]));
maxVal[2] = (deFloatIsNaN(p[2]) ? maxVal[2] : de::max(maxVal[2], p[2]));
maxVal[3] = (deFloatIsNaN(p[3]) ? maxVal[3] : de::max(maxVal[3], p[3]));
}
}
}
break;
}
}
void computePixelScaleBias(const ConstPixelBufferAccess &access, Vec4 &scale, Vec4 &bias)
{
Vec4 minVal, maxVal;
estimatePixelValueRange(access, minVal, maxVal);
const float eps = 0.0001f;
for (int c = 0; c < 4; c++)
{
if (maxVal[c] - minVal[c] < eps)
{
scale[c] = (maxVal[c] < eps) ? 1.0f : (1.0f / maxVal[c]);
bias[c] = (c == 3) ? (1.0f - maxVal[c] * scale[c]) : (0.0f - minVal[c] * scale[c]);
}
else
{
scale[c] = 1.0f / (maxVal[c] - minVal[c]);
bias[c] = 0.0f - minVal[c] * scale[c];
}
}
}
int getCubeArrayFaceIndex(CubeFace face)
{
DE_ASSERT((int)face >= 0 && face < CUBEFACE_LAST);
switch (face)
{
case CUBEFACE_POSITIVE_X:
return 0;
case CUBEFACE_NEGATIVE_X:
return 1;
case CUBEFACE_POSITIVE_Y:
return 2;
case CUBEFACE_NEGATIVE_Y:
return 3;
case CUBEFACE_POSITIVE_Z:
return 4;
case CUBEFACE_NEGATIVE_Z:
return 5;
default:
return -1;
}
}
uint32_t packRGB999E5(const tcu::Vec4 &color)
{
const int mBits = 9;
const int eBits = 5;
const int eBias = 15;
const int eMax = (1 << eBits) - 1;
const float maxVal = (float)(((1 << mBits) - 1) * (1 << (eMax - eBias))) / (float)(1 << mBits);
float rc = deFloatClamp(color[0], 0.0f, maxVal);
float gc = deFloatClamp(color[1], 0.0f, maxVal);
float bc = deFloatClamp(color[2], 0.0f, maxVal);
float maxc = de::max(rc, de::max(gc, bc));
float log2c = deFloatLog2(maxc);
int32_t floorc = deIsInf(log2c) ? std::numeric_limits<int32_t>::min() : deFloorFloatToInt32(log2c);
int exps = de::max(-eBias - 1, floorc) + 1 + eBias;
float e = deFloatPow(2.0f, (float)(exps - eBias - mBits));
int maxs = deFloorFloatToInt32(maxc / e + 0.5f);
if (maxs == (1 << mBits))
{
exps++;
e *= 2.0f;
}
uint32_t rs = (uint32_t)deFloorFloatToInt32(rc / e + 0.5f);
uint32_t gs = (uint32_t)deFloorFloatToInt32(gc / e + 0.5f);
uint32_t bs = (uint32_t)deFloorFloatToInt32(bc / e + 0.5f);
DE_ASSERT((exps & ~((1 << 5) - 1)) == 0);
DE_ASSERT((rs & ~((1 << 9) - 1)) == 0);
DE_ASSERT((gs & ~((1 << 9) - 1)) == 0);
DE_ASSERT((bs & ~((1 << 9) - 1)) == 0);
return rs | (gs << 9) | (bs << 18) | (exps << 27);
}
// Sampler utils
static const void *addOffset(const void *ptr, int numBytes)
{
return (const uint8_t *)ptr + numBytes;
}
static void *addOffset(void *ptr, int numBytes)
{
return (uint8_t *)ptr + numBytes;
}
template <typename AccessType>
static AccessType toSamplerAccess(const AccessType &baseAccess, Sampler::DepthStencilMode mode)
{
// make sure to update this if type table is updated
DE_STATIC_ASSERT(TextureFormat::CHANNELTYPE_LAST == 48);
if (!isCombinedDepthStencilType(baseAccess.getFormat().type))
return baseAccess;
else
{
#if (DE_ENDIANNESS == DE_LITTLE_ENDIAN)
const uint32_t uint32ByteOffsetBits0To8 = 0; //!< least significant byte in the lowest address
const uint32_t uint32ByteOffsetBits0To24 = 0;
const uint32_t uint32ByteOffsetBits8To32 = 1;
const uint32_t uint32ByteOffsetBits16To32 = 2;
const uint32_t uint32ByteOffsetBits24To32 = 3;
#else
const uint32_t uint32ByteOffsetBits0To8 = 3; //!< least significant byte in the highest address
const uint32_t uint32ByteOffsetBits0To24 = 1;
const uint32_t uint32ByteOffsetBits8To32 = 0;
const uint32_t uint32ByteOffsetBits16To32 = 0;
const uint32_t uint32ByteOffsetBits24To32 = 0;
#endif
// Sampled channel must exist
DE_ASSERT(baseAccess.getFormat().order == TextureFormat::DS ||
(mode == Sampler::MODE_DEPTH && baseAccess.getFormat().order == TextureFormat::D) ||
(mode == Sampler::MODE_STENCIL && baseAccess.getFormat().order == TextureFormat::S));
// combined formats have multiple channel classes, detect on sampler settings
switch (baseAccess.getFormat().type)
{
case TextureFormat::FLOAT_UNSIGNED_INT_24_8_REV:
{
if (mode == Sampler::MODE_DEPTH)
{
// select the float component
return AccessType(TextureFormat(TextureFormat::D, TextureFormat::FLOAT), baseAccess.getSize(),
baseAccess.getPitch(), baseAccess.getDataPtr());
}
else if (mode == Sampler::MODE_STENCIL)
{
// select the uint 8 component
return AccessType(TextureFormat(TextureFormat::S, TextureFormat::UNSIGNED_INT8), baseAccess.getSize(),
baseAccess.getPitch(),
addOffset(baseAccess.getDataPtr(), 4 + uint32ByteOffsetBits0To8));
}
else
{
// unknown sampler mode
DE_ASSERT(false);
return AccessType();
}
}
case TextureFormat::UNSIGNED_INT_16_8_8:
{
if (mode == Sampler::MODE_DEPTH)
{
// select the unorm16 component
return AccessType(TextureFormat(TextureFormat::D, TextureFormat::UNORM_INT16), baseAccess.getSize(),
baseAccess.getPitch(),
addOffset(baseAccess.getDataPtr(), uint32ByteOffsetBits16To32));
}
else if (mode == Sampler::MODE_STENCIL)
{
// select the uint 8 component
return AccessType(TextureFormat(TextureFormat::S, TextureFormat::UNSIGNED_INT8), baseAccess.getSize(),
baseAccess.getPitch(), addOffset(baseAccess.getDataPtr(), uint32ByteOffsetBits0To8));
}
else
{
// unknown sampler mode
DE_ASSERT(false);
return AccessType();
}
}
case TextureFormat::UNSIGNED_INT_24_8:
{
if (mode == Sampler::MODE_DEPTH)
{
// select the unorm24 component
return AccessType(TextureFormat(TextureFormat::D, TextureFormat::UNORM_INT24), baseAccess.getSize(),
baseAccess.getPitch(), addOffset(baseAccess.getDataPtr(), uint32ByteOffsetBits8To32));
}
else if (mode == Sampler::MODE_STENCIL)
{
// select the uint 8 component
return AccessType(TextureFormat(TextureFormat::S, TextureFormat::UNSIGNED_INT8), baseAccess.getSize(),
baseAccess.getPitch(), addOffset(baseAccess.getDataPtr(), uint32ByteOffsetBits0To8));
}
else
{
// unknown sampler mode
DE_ASSERT(false);
return AccessType();
}
}
case TextureFormat::UNSIGNED_INT_24_8_REV:
{
if (mode == Sampler::MODE_DEPTH)
{
// select the unorm24 component
return AccessType(TextureFormat(TextureFormat::D, TextureFormat::UNORM_INT24), baseAccess.getSize(),
baseAccess.getPitch(), addOffset(baseAccess.getDataPtr(), uint32ByteOffsetBits0To24));
}
else if (mode == Sampler::MODE_STENCIL)
{
// select the uint 8 component
return AccessType(TextureFormat(TextureFormat::S, TextureFormat::UNSIGNED_INT8), baseAccess.getSize(),
baseAccess.getPitch(),
addOffset(baseAccess.getDataPtr(), uint32ByteOffsetBits24To32));
}
else
{
// unknown sampler mode
DE_ASSERT(false);
return AccessType();
}
}
default:
{
// unknown combined format
DE_ASSERT(false);
return AccessType();
}
}
}
}
PixelBufferAccess getEffectiveDepthStencilAccess(const PixelBufferAccess &baseAccess, Sampler::DepthStencilMode mode)
{
return toSamplerAccess<PixelBufferAccess>(baseAccess, mode);
}
ConstPixelBufferAccess getEffectiveDepthStencilAccess(const ConstPixelBufferAccess &baseAccess,
Sampler::DepthStencilMode mode)
{
return toSamplerAccess<ConstPixelBufferAccess>(baseAccess, mode);
}
TextureFormat getEffectiveDepthStencilTextureFormat(const TextureFormat &baseFormat, Sampler::DepthStencilMode mode)
{
return toSamplerAccess(ConstPixelBufferAccess(baseFormat, IVec3(0, 0, 0), DE_NULL), mode).getFormat();
}
template <typename ViewType>
ViewType getEffectiveTView(const ViewType &src, std::vector<tcu::ConstPixelBufferAccess> &storage,
const tcu::Sampler &sampler)
{
storage.resize(src.getNumLevels());
ViewType view = ViewType(src.getNumLevels(), &storage[0], src.isES2(), src.getImageViewMinLodParams());
for (int levelNdx = 0; levelNdx < src.getNumLevels(); ++levelNdx)
storage[levelNdx] = tcu::getEffectiveDepthStencilAccess(src.getLevel(levelNdx), sampler.depthStencilMode);
return view;
}
tcu::TextureCubeView getEffectiveTView(const tcu::TextureCubeView &src,
std::vector<tcu::ConstPixelBufferAccess> &storage, const tcu::Sampler &sampler)
{
storage.resize(tcu::CUBEFACE_LAST * src.getNumLevels());
const tcu::ConstPixelBufferAccess *storagePtrs[tcu::CUBEFACE_LAST] = {
&storage[0 * src.getNumLevels()], &storage[1 * src.getNumLevels()], &storage[2 * src.getNumLevels()],
&storage[3 * src.getNumLevels()], &storage[4 * src.getNumLevels()], &storage[5 * src.getNumLevels()],
};
tcu::TextureCubeView view =
tcu::TextureCubeView(src.getNumLevels(), storagePtrs, false, src.getImageViewMinLodParams());
for (int faceNdx = 0; faceNdx < tcu::CUBEFACE_LAST; ++faceNdx)
for (int levelNdx = 0; levelNdx < src.getNumLevels(); ++levelNdx)
storage[faceNdx * src.getNumLevels() + levelNdx] = tcu::getEffectiveDepthStencilAccess(
src.getLevelFace(levelNdx, (tcu::CubeFace)faceNdx), sampler.depthStencilMode);
return view;
}
tcu::Texture1DView getEffectiveTextureView(const tcu::Texture1DView &src,
std::vector<tcu::ConstPixelBufferAccess> &storage,
const tcu::Sampler &sampler)
{
return getEffectiveTView(src, storage, sampler);
}
tcu::Texture2DView getEffectiveTextureView(const tcu::Texture2DView &src,
std::vector<tcu::ConstPixelBufferAccess> &storage,
const tcu::Sampler &sampler)
{
return getEffectiveTView(src, storage, sampler);
}
tcu::Texture3DView getEffectiveTextureView(const tcu::Texture3DView &src,
std::vector<tcu::ConstPixelBufferAccess> &storage,
const tcu::Sampler &sampler)
{
return getEffectiveTView(src, storage, sampler);
}
tcu::Texture1DArrayView getEffectiveTextureView(const tcu::Texture1DArrayView &src,
std::vector<tcu::ConstPixelBufferAccess> &storage,
const tcu::Sampler &sampler)
{
return getEffectiveTView(src, storage, sampler);
}
tcu::Texture2DArrayView getEffectiveTextureView(const tcu::Texture2DArrayView &src,
std::vector<tcu::ConstPixelBufferAccess> &storage,
const tcu::Sampler &sampler)
{
return getEffectiveTView(src, storage, sampler);
}
tcu::TextureCubeView getEffectiveTextureView(const tcu::TextureCubeView &src,
std::vector<tcu::ConstPixelBufferAccess> &storage,
const tcu::Sampler &sampler)
{
return getEffectiveTView(src, storage, sampler);
}
tcu::TextureCubeArrayView getEffectiveTextureView(const tcu::TextureCubeArrayView &src,
std::vector<tcu::ConstPixelBufferAccess> &storage,
const tcu::Sampler &sampler)
{
return getEffectiveTView(src, storage, sampler);
}
//! Returns the effective swizzle of a border color. The effective swizzle is the
//! equal to first writing an RGBA color with a write swizzle and then reading
//! it back using a read swizzle, i.e. BorderSwizzle(c) == readSwizzle(writeSwizzle(C))
static const TextureSwizzle &getBorderColorReadSwizzle(TextureFormat::ChannelOrder order)
{
// make sure to update these tables when channel orders are updated
DE_STATIC_ASSERT(TextureFormat::CHANNELORDER_LAST == 22);
static const TextureSwizzle INV = {{TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ZERO,
TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ONE}};
static const TextureSwizzle R = {{TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_ZERO,
TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ONE}};
static const TextureSwizzle A = {{TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ZERO,
TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_3}};
static const TextureSwizzle I = {
{TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0}};
static const TextureSwizzle L = {
{TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_ONE}};
static const TextureSwizzle LA = {
{TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3}};
static const TextureSwizzle RG = {{TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_1,
TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ONE}};
static const TextureSwizzle RA = {{TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_ZERO,
TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_3}};
static const TextureSwizzle RGB = {
{TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_1, TextureSwizzle::CHANNEL_2, TextureSwizzle::CHANNEL_ONE}};
static const TextureSwizzle RGBA = {
{TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_1, TextureSwizzle::CHANNEL_2, TextureSwizzle::CHANNEL_3}};
static const TextureSwizzle D = {{TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_ZERO,
TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ONE}};
static const TextureSwizzle S = {{TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_ZERO,
TextureSwizzle::CHANNEL_ZERO, TextureSwizzle::CHANNEL_ONE}};
const TextureSwizzle *swizzle;
switch (order)
{
case TextureFormat::R:
swizzle = &R;
break;
case TextureFormat::A:
swizzle = &A;
break;
case TextureFormat::I:
swizzle = &I;
break;
case TextureFormat::L:
swizzle = &L;
break;
case TextureFormat::LA:
swizzle = &LA;
break;
case TextureFormat::RG:
swizzle = &RG;
break;
case TextureFormat::RA:
swizzle = &RA;
break;
case TextureFormat::RGB:
swizzle = &RGB;
break;
case TextureFormat::RGBA:
swizzle = &RGBA;
break;
case TextureFormat::ARGB:
swizzle = &RGBA;
break;
case TextureFormat::ABGR:
swizzle = &RGBA;
break;
case TextureFormat::BGR:
swizzle = &RGB;
break;
case TextureFormat::BGRA:
swizzle = &RGBA;
break;
case TextureFormat::sR:
swizzle = &R;
break;
case TextureFormat::sRG:
swizzle = &RG;
break;
case TextureFormat::sRGB:
swizzle = &RGB;
break;
case TextureFormat::sRGBA:
swizzle = &RGBA;
break;
case TextureFormat::sBGR:
swizzle = &RGB;
break;
case TextureFormat::sBGRA:
swizzle = &RGBA;
break;
case TextureFormat::D:
swizzle = &D;
break;
case TextureFormat::S:
swizzle = &S;
break;
case TextureFormat::DS:
DE_ASSERT(false); // combined depth-stencil border color?
swizzle = &INV;
break;
default:
DE_ASSERT(false);
swizzle = &INV;
break;
}
#ifdef DE_DEBUG
{
// check that BorderSwizzle(c) == readSwizzle(writeSwizzle(C))
const TextureSwizzle &readSwizzle = getChannelReadSwizzle(order);
const TextureSwizzle &writeSwizzle = getChannelWriteSwizzle(order);
for (int ndx = 0; ndx < 4; ++ndx)
{
TextureSwizzle::Channel writeRead = readSwizzle.components[ndx];
if (deInRange32(writeRead, TextureSwizzle::CHANNEL_0, TextureSwizzle::CHANNEL_3) == true)
writeRead = writeSwizzle.components[(int)writeRead];
DE_ASSERT(writeRead == swizzle->components[ndx]);
}
}
#endif
return *swizzle;
}
static tcu::UVec4 getNBitUnsignedIntegerVec4MaxValue(const tcu::IVec4 &numBits)
{
return tcu::UVec4((numBits[0] > 0) ? (deUintMaxValue32(numBits[0])) : (0),
(numBits[1] > 0) ? (deUintMaxValue32(numBits[1])) : (0),
(numBits[2] > 0) ? (deUintMaxValue32(numBits[2])) : (0),
(numBits[3] > 0) ? (deUintMaxValue32(numBits[3])) : (0));
}
static tcu::IVec4 getNBitSignedIntegerVec4MaxValue(const tcu::IVec4 &numBits)
{
return tcu::IVec4(
(numBits[0] > 0) ? (deIntMaxValue32(numBits[0])) : (0), (numBits[1] > 0) ? (deIntMaxValue32(numBits[1])) : (0),
(numBits[2] > 0) ? (deIntMaxValue32(numBits[2])) : (0), (numBits[3] > 0) ? (deIntMaxValue32(numBits[3])) : (0));
}
static tcu::IVec4 getNBitSignedIntegerVec4MinValue(const tcu::IVec4 &numBits)
{
return tcu::IVec4(
(numBits[0] > 0) ? (deIntMinValue32(numBits[0])) : (0), (numBits[1] > 0) ? (deIntMinValue32(numBits[1])) : (0),
(numBits[2] > 0) ? (deIntMinValue32(numBits[2])) : (0), (numBits[3] > 0) ? (deIntMinValue32(numBits[3])) : (0));
}
static tcu::Vec4 getTextureBorderColorFloat(const TextureFormat &format, const Sampler &sampler)
{
const tcu::TextureChannelClass channelClass = getTextureChannelClass(format.type);
const TextureSwizzle::Channel *channelMap = getBorderColorReadSwizzle(format.order).components;
const bool isFloat = channelClass == tcu::TEXTURECHANNELCLASS_FLOATING_POINT;
const bool isSigned = channelClass != tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT;
const float valueMin = (isSigned) ? (-1.0f) : (0.0f);
const float valueMax = 1.0f;
Vec4 result;
DE_ASSERT(channelClass == tcu::TEXTURECHANNELCLASS_FLOATING_POINT ||
channelClass == tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT ||
channelClass == tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT);
for (int c = 0; c < 4; c++)
{
const TextureSwizzle::Channel map = channelMap[c];
if (map == TextureSwizzle::CHANNEL_ZERO)
result[c] = 0.0f;
else if (map == TextureSwizzle::CHANNEL_ONE)
result[c] = 1.0f;
else if (isFloat)
{
// floating point values are not clamped
result[c] = sampler.borderColor.getAccess<float>()[(int)map];
}
else
{
// fixed point values are clamped to a representable range
result[c] = de::clamp(sampler.borderColor.getAccess<float>()[(int)map], valueMin, valueMax);
}
}
return result;
}
static tcu::IVec4 getTextureBorderColorInt(const TextureFormat &format, const Sampler &sampler)
{
const tcu::TextureChannelClass channelClass = getTextureChannelClass(format.type);
const TextureSwizzle::Channel *channelMap = getBorderColorReadSwizzle(format.order).components;
const IVec4 channelBits = getChannelBitDepth(format.type);
const IVec4 valueMin = getNBitSignedIntegerVec4MinValue(channelBits);
const IVec4 valueMax = getNBitSignedIntegerVec4MaxValue(channelBits);
IVec4 result;
DE_ASSERT(channelClass == tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER);
DE_UNREF(channelClass);
for (int c = 0; c < 4; c++)
{
const TextureSwizzle::Channel map = channelMap[c];
if (map == TextureSwizzle::CHANNEL_ZERO)
result[c] = 0;
else if (map == TextureSwizzle::CHANNEL_ONE)
result[c] = 1;
else
{
// integer values are clamped to a representable range
result[c] =
de::clamp(sampler.borderColor.getAccess<int32_t>()[(int)map], valueMin[(int)map], valueMax[(int)map]);
}
}
return result;
}
static tcu::UVec4 getTextureBorderColorUint(const TextureFormat &format, const Sampler &sampler)
{
const tcu::TextureChannelClass channelClass = getTextureChannelClass(format.type);
const TextureSwizzle::Channel *channelMap = getBorderColorReadSwizzle(format.order).components;
const IVec4 channelBits = getChannelBitDepth(format.type);
const UVec4 valueMax = getNBitUnsignedIntegerVec4MaxValue(channelBits);
UVec4 result;
DE_ASSERT(channelClass == tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER);
DE_UNREF(channelClass);
for (int c = 0; c < 4; c++)
{
const TextureSwizzle::Channel map = channelMap[c];
if (map == TextureSwizzle::CHANNEL_ZERO)
result[c] = 0;
else if (map == TextureSwizzle::CHANNEL_ONE)
result[c] = 1;
else
{
// integer values are clamped to a representable range
result[c] = de::min(sampler.borderColor.getAccess<uint32_t>()[(int)map], valueMax[(int)map]);
}
}
return result;
}
template <typename ScalarType>
tcu::Vector<ScalarType, 4> sampleTextureBorder(const TextureFormat &format, const Sampler &sampler)
{
const tcu::TextureChannelClass channelClass = getTextureChannelClass(format.type);
switch (channelClass)
{
case tcu::TEXTURECHANNELCLASS_FLOATING_POINT:
case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT:
case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT:
return getTextureBorderColorFloat(format, sampler).cast<ScalarType>();
case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER:
return getTextureBorderColorInt(format, sampler).cast<ScalarType>();
case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER:
return getTextureBorderColorUint(format, sampler).cast<ScalarType>();
default:
DE_ASSERT(false);
return tcu::Vector<ScalarType, 4>();
}
}
// instantiation
template tcu::Vector<float, 4> sampleTextureBorder(const TextureFormat &format, const Sampler &sampler);
template tcu::Vector<int32_t, 4> sampleTextureBorder(const TextureFormat &format, const Sampler &sampler);
template tcu::Vector<uint32_t, 4> sampleTextureBorder(const TextureFormat &format, const Sampler &sampler);
} // namespace tcu