blob: 2cdc7266f741203edddbdf7c66ccb46bd793817f [file] [log] [blame]
/*-------------------------------------------------------------------------
* drawElements Quality Program Tester Core
* ----------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Compressed Texture Utilities.
*//*--------------------------------------------------------------------*/
#include "tcuCompressedTexture.hpp"
#include "tcuTextureUtil.hpp"
#include "tcuAstcUtil.hpp"
#include "deStringUtil.hpp"
#include "deFloat16.h"
#include <algorithm>
namespace tcu
{
int getBlockSize(CompressedTexFormat format)
{
if (isAstcFormat(format))
{
return astc::BLOCK_SIZE_BYTES;
}
else if (isEtcFormat(format))
{
switch (format)
{
case COMPRESSEDTEXFORMAT_ETC1_RGB8:
return 8;
case COMPRESSEDTEXFORMAT_EAC_R11:
return 8;
case COMPRESSEDTEXFORMAT_EAC_SIGNED_R11:
return 8;
case COMPRESSEDTEXFORMAT_EAC_RG11:
return 16;
case COMPRESSEDTEXFORMAT_EAC_SIGNED_RG11:
return 16;
case COMPRESSEDTEXFORMAT_ETC2_RGB8:
return 8;
case COMPRESSEDTEXFORMAT_ETC2_SRGB8:
return 8;
case COMPRESSEDTEXFORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
return 8;
case COMPRESSEDTEXFORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
return 8;
case COMPRESSEDTEXFORMAT_ETC2_EAC_RGBA8:
return 16;
case COMPRESSEDTEXFORMAT_ETC2_EAC_SRGB8_ALPHA8:
return 16;
default:
DE_ASSERT(false);
return -1;
}
}
else if (isBcFormat(format))
{
switch (format)
{
case COMPRESSEDTEXFORMAT_BC1_RGB_UNORM_BLOCK:
return 8;
case COMPRESSEDTEXFORMAT_BC1_RGB_SRGB_BLOCK:
return 8;
case COMPRESSEDTEXFORMAT_BC1_RGBA_UNORM_BLOCK:
return 8;
case COMPRESSEDTEXFORMAT_BC1_RGBA_SRGB_BLOCK:
return 8;
case COMPRESSEDTEXFORMAT_BC2_UNORM_BLOCK:
return 16;
case COMPRESSEDTEXFORMAT_BC2_SRGB_BLOCK:
return 16;
case COMPRESSEDTEXFORMAT_BC3_UNORM_BLOCK:
return 16;
case COMPRESSEDTEXFORMAT_BC3_SRGB_BLOCK:
return 16;
case COMPRESSEDTEXFORMAT_BC4_UNORM_BLOCK:
return 8;
case COMPRESSEDTEXFORMAT_BC4_SNORM_BLOCK:
return 8;
case COMPRESSEDTEXFORMAT_BC5_UNORM_BLOCK:
return 16;
case COMPRESSEDTEXFORMAT_BC5_SNORM_BLOCK:
return 16;
case COMPRESSEDTEXFORMAT_BC6H_UFLOAT_BLOCK:
return 16;
case COMPRESSEDTEXFORMAT_BC6H_SFLOAT_BLOCK:
return 16;
case COMPRESSEDTEXFORMAT_BC7_UNORM_BLOCK:
return 16;
case COMPRESSEDTEXFORMAT_BC7_SRGB_BLOCK:
return 16;
default:
DE_ASSERT(false);
return -1;
}
}
else if (isAhbRawFormat(format))
{
switch (format)
{
case COMPRESSEDTEXFORMAT_AHB_RAW10:
return 5;
case COMPRESSEDTEXFORMAT_AHB_RAW12:
return 3;
default:
DE_ASSERT(false);
return -1;
}
}
else
{
DE_ASSERT(false);
return -1;
}
}
IVec3 getBlockPixelSize(CompressedTexFormat format)
{
if (isEtcFormat(format))
{
return IVec3(4, 4, 1);
}
else if (isAstcFormat(format))
{
switch (format)
{
case COMPRESSEDTEXFORMAT_ASTC_4x4_RGBA:
return IVec3(4, 4, 1);
case COMPRESSEDTEXFORMAT_ASTC_5x4_RGBA:
return IVec3(5, 4, 1);
case COMPRESSEDTEXFORMAT_ASTC_5x5_RGBA:
return IVec3(5, 5, 1);
case COMPRESSEDTEXFORMAT_ASTC_6x5_RGBA:
return IVec3(6, 5, 1);
case COMPRESSEDTEXFORMAT_ASTC_6x6_RGBA:
return IVec3(6, 6, 1);
case COMPRESSEDTEXFORMAT_ASTC_8x5_RGBA:
return IVec3(8, 5, 1);
case COMPRESSEDTEXFORMAT_ASTC_8x6_RGBA:
return IVec3(8, 6, 1);
case COMPRESSEDTEXFORMAT_ASTC_8x8_RGBA:
return IVec3(8, 8, 1);
case COMPRESSEDTEXFORMAT_ASTC_10x5_RGBA:
return IVec3(10, 5, 1);
case COMPRESSEDTEXFORMAT_ASTC_10x6_RGBA:
return IVec3(10, 6, 1);
case COMPRESSEDTEXFORMAT_ASTC_10x8_RGBA:
return IVec3(10, 8, 1);
case COMPRESSEDTEXFORMAT_ASTC_10x10_RGBA:
return IVec3(10, 10, 1);
case COMPRESSEDTEXFORMAT_ASTC_12x10_RGBA:
return IVec3(12, 10, 1);
case COMPRESSEDTEXFORMAT_ASTC_12x12_RGBA:
return IVec3(12, 12, 1);
case COMPRESSEDTEXFORMAT_ASTC_4x4_SRGB8_ALPHA8:
return IVec3(4, 4, 1);
case COMPRESSEDTEXFORMAT_ASTC_5x4_SRGB8_ALPHA8:
return IVec3(5, 4, 1);
case COMPRESSEDTEXFORMAT_ASTC_5x5_SRGB8_ALPHA8:
return IVec3(5, 5, 1);
case COMPRESSEDTEXFORMAT_ASTC_6x5_SRGB8_ALPHA8:
return IVec3(6, 5, 1);
case COMPRESSEDTEXFORMAT_ASTC_6x6_SRGB8_ALPHA8:
return IVec3(6, 6, 1);
case COMPRESSEDTEXFORMAT_ASTC_8x5_SRGB8_ALPHA8:
return IVec3(8, 5, 1);
case COMPRESSEDTEXFORMAT_ASTC_8x6_SRGB8_ALPHA8:
return IVec3(8, 6, 1);
case COMPRESSEDTEXFORMAT_ASTC_8x8_SRGB8_ALPHA8:
return IVec3(8, 8, 1);
case COMPRESSEDTEXFORMAT_ASTC_10x5_SRGB8_ALPHA8:
return IVec3(10, 5, 1);
case COMPRESSEDTEXFORMAT_ASTC_10x6_SRGB8_ALPHA8:
return IVec3(10, 6, 1);
case COMPRESSEDTEXFORMAT_ASTC_10x8_SRGB8_ALPHA8:
return IVec3(10, 8, 1);
case COMPRESSEDTEXFORMAT_ASTC_10x10_SRGB8_ALPHA8:
return IVec3(10, 10, 1);
case COMPRESSEDTEXFORMAT_ASTC_12x10_SRGB8_ALPHA8:
return IVec3(12, 10, 1);
case COMPRESSEDTEXFORMAT_ASTC_12x12_SRGB8_ALPHA8:
return IVec3(12, 12, 1);
default:
DE_ASSERT(false);
return IVec3();
}
}
else if (isBcFormat(format))
{
return IVec3(4, 4, 1);
}
else if (isAhbRawFormat(format))
{
switch (format)
{
case COMPRESSEDTEXFORMAT_AHB_RAW10:
return IVec3(4, 1, 1);
case COMPRESSEDTEXFORMAT_AHB_RAW12:
return IVec3(2, 1, 1);
default:
DE_ASSERT(false);
return IVec3();
}
}
else
{
DE_ASSERT(false);
return IVec3(-1);
}
}
bool isEtcFormat(CompressedTexFormat format)
{
switch (format)
{
case COMPRESSEDTEXFORMAT_ETC1_RGB8:
case COMPRESSEDTEXFORMAT_EAC_R11:
case COMPRESSEDTEXFORMAT_EAC_SIGNED_R11:
case COMPRESSEDTEXFORMAT_EAC_RG11:
case COMPRESSEDTEXFORMAT_EAC_SIGNED_RG11:
case COMPRESSEDTEXFORMAT_ETC2_RGB8:
case COMPRESSEDTEXFORMAT_ETC2_SRGB8:
case COMPRESSEDTEXFORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
case COMPRESSEDTEXFORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
case COMPRESSEDTEXFORMAT_ETC2_EAC_RGBA8:
case COMPRESSEDTEXFORMAT_ETC2_EAC_SRGB8_ALPHA8:
return true;
default:
return false;
}
}
bool isBcFormat(CompressedTexFormat format)
{
switch (format)
{
case COMPRESSEDTEXFORMAT_BC1_RGB_UNORM_BLOCK:
case COMPRESSEDTEXFORMAT_BC1_RGB_SRGB_BLOCK:
case COMPRESSEDTEXFORMAT_BC1_RGBA_UNORM_BLOCK:
case COMPRESSEDTEXFORMAT_BC1_RGBA_SRGB_BLOCK:
case COMPRESSEDTEXFORMAT_BC2_UNORM_BLOCK:
case COMPRESSEDTEXFORMAT_BC2_SRGB_BLOCK:
case COMPRESSEDTEXFORMAT_BC3_UNORM_BLOCK:
case COMPRESSEDTEXFORMAT_BC3_SRGB_BLOCK:
case COMPRESSEDTEXFORMAT_BC4_UNORM_BLOCK:
case COMPRESSEDTEXFORMAT_BC4_SNORM_BLOCK:
case COMPRESSEDTEXFORMAT_BC5_UNORM_BLOCK:
case COMPRESSEDTEXFORMAT_BC5_SNORM_BLOCK:
case COMPRESSEDTEXFORMAT_BC6H_UFLOAT_BLOCK:
case COMPRESSEDTEXFORMAT_BC6H_SFLOAT_BLOCK:
case COMPRESSEDTEXFORMAT_BC7_UNORM_BLOCK:
case COMPRESSEDTEXFORMAT_BC7_SRGB_BLOCK:
return true;
default:
return false;
}
}
bool isBcBitExactFormat(CompressedTexFormat format)
{
switch (format)
{
case COMPRESSEDTEXFORMAT_BC6H_UFLOAT_BLOCK:
case COMPRESSEDTEXFORMAT_BC6H_SFLOAT_BLOCK:
case COMPRESSEDTEXFORMAT_BC7_UNORM_BLOCK:
case COMPRESSEDTEXFORMAT_BC7_SRGB_BLOCK:
return true;
default:
return false;
}
}
bool isBcSRGBFormat(CompressedTexFormat format)
{
switch (format)
{
case COMPRESSEDTEXFORMAT_BC1_RGB_SRGB_BLOCK:
case COMPRESSEDTEXFORMAT_BC1_RGBA_SRGB_BLOCK:
case COMPRESSEDTEXFORMAT_BC2_SRGB_BLOCK:
case COMPRESSEDTEXFORMAT_BC3_SRGB_BLOCK:
case COMPRESSEDTEXFORMAT_BC7_SRGB_BLOCK:
return true;
default:
return false;
}
}
bool isAstcFormat(CompressedTexFormat format)
{
switch (format)
{
case COMPRESSEDTEXFORMAT_ASTC_4x4_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_5x4_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_5x5_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_6x5_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_6x6_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_8x5_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_8x6_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_8x8_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_10x5_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_10x6_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_10x8_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_10x10_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_12x10_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_12x12_RGBA:
case COMPRESSEDTEXFORMAT_ASTC_4x4_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_5x4_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_5x5_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_6x5_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_6x6_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_8x5_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_8x6_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_8x8_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_10x5_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_10x6_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_10x8_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_10x10_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_12x10_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_12x12_SRGB8_ALPHA8:
return true;
default:
return false;
}
}
bool isAstcSRGBFormat(CompressedTexFormat format)
{
switch (format)
{
case COMPRESSEDTEXFORMAT_ASTC_4x4_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_5x4_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_5x5_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_6x5_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_6x6_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_8x5_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_8x6_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_8x8_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_10x5_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_10x6_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_10x8_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_10x10_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_12x10_SRGB8_ALPHA8:
case COMPRESSEDTEXFORMAT_ASTC_12x12_SRGB8_ALPHA8:
return true;
default:
return false;
}
}
bool isAhbRawFormat(CompressedTexFormat format)
{
switch (format)
{
case COMPRESSEDTEXFORMAT_AHB_RAW10:
case COMPRESSEDTEXFORMAT_AHB_RAW12:
return true;
default:
return false;
}
}
TextureFormat getUncompressedFormat(CompressedTexFormat format)
{
if (isEtcFormat(format))
{
switch (format)
{
case COMPRESSEDTEXFORMAT_ETC1_RGB8:
return TextureFormat(TextureFormat::RGB, TextureFormat::UNORM_INT8);
case COMPRESSEDTEXFORMAT_EAC_R11:
return TextureFormat(TextureFormat::R, TextureFormat::UNORM_INT16);
case COMPRESSEDTEXFORMAT_EAC_SIGNED_R11:
return TextureFormat(TextureFormat::R, TextureFormat::SNORM_INT16);
case COMPRESSEDTEXFORMAT_EAC_RG11:
return TextureFormat(TextureFormat::RG, TextureFormat::UNORM_INT16);
case COMPRESSEDTEXFORMAT_EAC_SIGNED_RG11:
return TextureFormat(TextureFormat::RG, TextureFormat::SNORM_INT16);
case COMPRESSEDTEXFORMAT_ETC2_RGB8:
return TextureFormat(TextureFormat::RGB, TextureFormat::UNORM_INT8);
case COMPRESSEDTEXFORMAT_ETC2_SRGB8:
return TextureFormat(TextureFormat::sRGB, TextureFormat::UNORM_INT8);
case COMPRESSEDTEXFORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
return TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8);
case COMPRESSEDTEXFORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
return TextureFormat(TextureFormat::sRGBA, TextureFormat::UNORM_INT8);
case COMPRESSEDTEXFORMAT_ETC2_EAC_RGBA8:
return TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8);
case COMPRESSEDTEXFORMAT_ETC2_EAC_SRGB8_ALPHA8:
return TextureFormat(TextureFormat::sRGBA, TextureFormat::UNORM_INT8);
default:
DE_ASSERT(false);
return TextureFormat();
}
}
else if (isAstcFormat(format))
{
if (isAstcSRGBFormat(format))
return TextureFormat(TextureFormat::sRGBA, TextureFormat::UNORM_INT8);
else
return TextureFormat(TextureFormat::RGBA, TextureFormat::HALF_FLOAT);
}
else if (isBcFormat(format))
{
if (format == COMPRESSEDTEXFORMAT_BC4_UNORM_BLOCK || format == COMPRESSEDTEXFORMAT_BC4_SNORM_BLOCK)
return TextureFormat(TextureFormat::R, TextureFormat::FLOAT);
else if (format == COMPRESSEDTEXFORMAT_BC5_UNORM_BLOCK || format == COMPRESSEDTEXFORMAT_BC5_SNORM_BLOCK)
return TextureFormat(TextureFormat::RG, TextureFormat::FLOAT);
else if (format == COMPRESSEDTEXFORMAT_BC6H_UFLOAT_BLOCK || format == COMPRESSEDTEXFORMAT_BC6H_SFLOAT_BLOCK)
return TextureFormat(TextureFormat::RGB, TextureFormat::HALF_FLOAT);
else if (isBcSRGBFormat(format))
return TextureFormat(TextureFormat::sRGBA, TextureFormat::UNORM_INT8);
else
return TextureFormat(TextureFormat::RGBA, TextureFormat::UNORM_INT8);
}
else if (isAhbRawFormat(format))
{
if (format == COMPRESSEDTEXFORMAT_AHB_RAW10)
return TextureFormat(TextureFormat::R,
TextureFormat::UNORM_SHORT_10); // Can be changed to a more fitting value if needed
else // COMPRESSEDTEXFORMAT_AHB_RAW12
return TextureFormat(TextureFormat::R,
TextureFormat::UNORM_SHORT_12); // Can be changed to a more fitting value if needed
}
else
{
DE_ASSERT(false);
return TextureFormat();
}
}
CompressedTexFormat getAstcFormatByBlockSize(const IVec3 &size, bool isSRGB)
{
if (size.z() > 1)
throw InternalError("3D ASTC textures not currently supported");
for (int fmtI = 0; fmtI < COMPRESSEDTEXFORMAT_LAST; fmtI++)
{
const CompressedTexFormat fmt = (CompressedTexFormat)fmtI;
if (isAstcFormat(fmt) && getBlockPixelSize(fmt) == size && isAstcSRGBFormat(fmt) == isSRGB)
return fmt;
}
throw InternalError("Invalid ASTC block size " + de::toString(size.x()) + "x" + de::toString(size.y()) + "x" +
de::toString(size.z()));
}
namespace
{
inline uint8_t extend4To8(uint8_t src)
{
DE_ASSERT((src & ~((1 << 4) - 1)) == 0);
return (uint8_t)((src << 4) | src);
}
inline uint8_t extend5To8(uint8_t src)
{
DE_ASSERT((src & ~((1 << 5) - 1)) == 0);
return (uint8_t)((src << 3) | (src >> 2));
}
inline uint8_t extend6To8(uint8_t src)
{
DE_ASSERT((src & ~((1 << 6) - 1)) == 0);
return (uint8_t)((src << 2) | (src >> 4));
}
// \todo [2013-08-06 nuutti] ETC and ASTC decompression codes are rather unrelated, and are already in their own "private" namespaces - should this be split to multiple files?
namespace EtcDecompressInternal
{
enum
{
ETC2_BLOCK_WIDTH = 4,
ETC2_BLOCK_HEIGHT = 4,
ETC2_UNCOMPRESSED_PIXEL_SIZE_A8 = 1,
ETC2_UNCOMPRESSED_PIXEL_SIZE_R11 = 2,
ETC2_UNCOMPRESSED_PIXEL_SIZE_RG11 = 4,
ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8 = 3,
ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8 = 4,
ETC2_UNCOMPRESSED_BLOCK_SIZE_A8 = ETC2_BLOCK_WIDTH * ETC2_BLOCK_HEIGHT * ETC2_UNCOMPRESSED_PIXEL_SIZE_A8,
ETC2_UNCOMPRESSED_BLOCK_SIZE_R11 = ETC2_BLOCK_WIDTH * ETC2_BLOCK_HEIGHT * ETC2_UNCOMPRESSED_PIXEL_SIZE_R11,
ETC2_UNCOMPRESSED_BLOCK_SIZE_RG11 = ETC2_BLOCK_WIDTH * ETC2_BLOCK_HEIGHT * ETC2_UNCOMPRESSED_PIXEL_SIZE_RG11,
ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8 = ETC2_BLOCK_WIDTH * ETC2_BLOCK_HEIGHT * ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8,
ETC2_UNCOMPRESSED_BLOCK_SIZE_RGBA8 = ETC2_BLOCK_WIDTH * ETC2_BLOCK_HEIGHT * ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8
};
inline uint64_t get64BitBlock(const uint8_t *src, int blockNdx)
{
// Stored in big-endian form.
uint64_t block = 0;
for (int i = 0; i < 8; i++)
block = (block << 8ull) | (uint64_t)(src[blockNdx * 8 + i]);
return block;
}
// Return the first 64 bits of a 128 bit block.
inline uint64_t get128BitBlockStart(const uint8_t *src, int blockNdx)
{
return get64BitBlock(src, 2 * blockNdx);
}
// Return the last 64 bits of a 128 bit block.
inline uint64_t get128BitBlockEnd(const uint8_t *src, int blockNdx)
{
return get64BitBlock(src, 2 * blockNdx + 1);
}
inline uint32_t getBit(uint64_t src, int bit)
{
return (src >> bit) & 1;
}
inline uint32_t getBits(uint64_t src, int low, int high)
{
const int numBits = (high - low) + 1;
DE_ASSERT(de::inRange(numBits, 1, 32));
if (numBits < 32)
return (uint32_t)((src >> low) & ((1u << numBits) - 1));
else
return (uint32_t)((src >> low) & 0xFFFFFFFFu);
}
inline uint8_t extend7To8(uint8_t src)
{
DE_ASSERT((src & ~((1 << 7) - 1)) == 0);
return (uint8_t)((src << 1) | (src >> 6));
}
inline int8_t extendSigned3To8(uint8_t src)
{
const bool isNeg = (src & (1 << 2)) != 0;
return (int8_t)((isNeg ? ~((1 << 3) - 1) : 0) | src);
}
inline uint8_t extend5Delta3To8(uint8_t base5, uint8_t delta3)
{
const uint8_t t = (uint8_t)((int8_t)base5 + extendSigned3To8(delta3));
return extend5To8(t);
}
inline uint16_t extend11To16(uint16_t src)
{
DE_ASSERT((src & ~((1 << 11) - 1)) == 0);
return (uint16_t)((src << 5) | (src >> 6));
}
inline int16_t extend11To16WithSign(int16_t src)
{
if (src < 0)
return (int16_t)(-(int16_t)extend11To16((uint16_t)(-src)));
else
return (int16_t)extend11To16(src);
}
void decompressETC1Block(uint8_t dst[ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8], uint64_t src)
{
const int diffBit = (int)getBit(src, 33);
const int flipBit = (int)getBit(src, 32);
const uint32_t table[2] = {getBits(src, 37, 39), getBits(src, 34, 36)};
uint8_t baseR[2];
uint8_t baseG[2];
uint8_t baseB[2];
if (diffBit == 0)
{
// Individual mode.
baseR[0] = extend4To8((uint8_t)getBits(src, 60, 63));
baseR[1] = extend4To8((uint8_t)getBits(src, 56, 59));
baseG[0] = extend4To8((uint8_t)getBits(src, 52, 55));
baseG[1] = extend4To8((uint8_t)getBits(src, 48, 51));
baseB[0] = extend4To8((uint8_t)getBits(src, 44, 47));
baseB[1] = extend4To8((uint8_t)getBits(src, 40, 43));
}
else
{
// Differential mode (diffBit == 1).
uint8_t bR = (uint8_t)getBits(src, 59, 63); // 5b
uint8_t dR = (uint8_t)getBits(src, 56, 58); // 3b
uint8_t bG = (uint8_t)getBits(src, 51, 55);
uint8_t dG = (uint8_t)getBits(src, 48, 50);
uint8_t bB = (uint8_t)getBits(src, 43, 47);
uint8_t dB = (uint8_t)getBits(src, 40, 42);
baseR[0] = extend5To8(bR);
baseG[0] = extend5To8(bG);
baseB[0] = extend5To8(bB);
baseR[1] = extend5Delta3To8(bR, dR);
baseG[1] = extend5Delta3To8(bG, dG);
baseB[1] = extend5Delta3To8(bB, dB);
}
static const int modifierTable[8][4] = {// 00 01 10 11
{2, 8, -2, -8}, {5, 17, -5, -17}, {9, 29, -9, -29},
{13, 42, -13, -42}, {18, 60, -18, -60}, {24, 80, -24, -80},
{33, 106, -33, -106}, {47, 183, -47, -183}};
// Write final pixels.
for (int pixelNdx = 0; pixelNdx < ETC2_BLOCK_HEIGHT * ETC2_BLOCK_WIDTH; pixelNdx++)
{
const int x = pixelNdx / ETC2_BLOCK_HEIGHT;
const int y = pixelNdx % ETC2_BLOCK_HEIGHT;
const int dstOffset = (y * ETC2_BLOCK_WIDTH + x) * ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8;
const int subBlock = ((flipBit ? y : x) >= 2) ? 1 : 0;
const uint32_t tableNdx = table[subBlock];
const uint32_t modifierNdx = (getBit(src, 16 + pixelNdx) << 1) | getBit(src, pixelNdx);
const int modifier = modifierTable[tableNdx][modifierNdx];
dst[dstOffset + 0] = (uint8_t)deClamp32((int)baseR[subBlock] + modifier, 0, 255);
dst[dstOffset + 1] = (uint8_t)deClamp32((int)baseG[subBlock] + modifier, 0, 255);
dst[dstOffset + 2] = (uint8_t)deClamp32((int)baseB[subBlock] + modifier, 0, 255);
}
}
// if alphaMode is true, do PUNCHTHROUGH and store alpha to alphaDst; otherwise do ordinary ETC2 RGB8.
void decompressETC2Block(uint8_t dst[ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8], uint64_t src,
uint8_t alphaDst[ETC2_UNCOMPRESSED_BLOCK_SIZE_A8], bool alphaMode)
{
enum Etc2Mode
{
MODE_INDIVIDUAL = 0,
MODE_DIFFERENTIAL,
MODE_T,
MODE_H,
MODE_PLANAR,
MODE_LAST
};
const int diffOpaqueBit = (int)getBit(src, 33);
const int8_t selBR = (int8_t)getBits(src, 59, 63); // 5 bits.
const int8_t selBG = (int8_t)getBits(src, 51, 55);
const int8_t selBB = (int8_t)getBits(src, 43, 47);
const int8_t selDR = extendSigned3To8((uint8_t)getBits(src, 56, 58)); // 3 bits.
const int8_t selDG = extendSigned3To8((uint8_t)getBits(src, 48, 50));
const int8_t selDB = extendSigned3To8((uint8_t)getBits(src, 40, 42));
Etc2Mode mode;
if (!alphaMode && diffOpaqueBit == 0)
mode = MODE_INDIVIDUAL;
else if (!de::inRange(selBR + selDR, 0, 31))
mode = MODE_T;
else if (!de::inRange(selBG + selDG, 0, 31))
mode = MODE_H;
else if (!de::inRange(selBB + selDB, 0, 31))
mode = MODE_PLANAR;
else
mode = MODE_DIFFERENTIAL;
if (mode == MODE_INDIVIDUAL || mode == MODE_DIFFERENTIAL)
{
// Individual and differential modes have some steps in common, handle them here.
static const int modifierTable[8][4] = {// 00 01 10 11
{2, 8, -2, -8}, {5, 17, -5, -17}, {9, 29, -9, -29},
{13, 42, -13, -42}, {18, 60, -18, -60}, {24, 80, -24, -80},
{33, 106, -33, -106}, {47, 183, -47, -183}};
const int flipBit = (int)getBit(src, 32);
const uint32_t table[2] = {getBits(src, 37, 39), getBits(src, 34, 36)};
uint8_t baseR[2];
uint8_t baseG[2];
uint8_t baseB[2];
if (mode == MODE_INDIVIDUAL)
{
// Individual mode, initial values.
baseR[0] = extend4To8((uint8_t)getBits(src, 60, 63));
baseR[1] = extend4To8((uint8_t)getBits(src, 56, 59));
baseG[0] = extend4To8((uint8_t)getBits(src, 52, 55));
baseG[1] = extend4To8((uint8_t)getBits(src, 48, 51));
baseB[0] = extend4To8((uint8_t)getBits(src, 44, 47));
baseB[1] = extend4To8((uint8_t)getBits(src, 40, 43));
}
else
{
// Differential mode, initial values.
baseR[0] = extend5To8(selBR);
baseG[0] = extend5To8(selBG);
baseB[0] = extend5To8(selBB);
baseR[1] = extend5To8((uint8_t)(selBR + selDR));
baseG[1] = extend5To8((uint8_t)(selBG + selDG));
baseB[1] = extend5To8((uint8_t)(selBB + selDB));
}
// Write final pixels for individual or differential mode.
for (int pixelNdx = 0; pixelNdx < ETC2_BLOCK_HEIGHT * ETC2_BLOCK_WIDTH; pixelNdx++)
{
const int x = pixelNdx / ETC2_BLOCK_HEIGHT;
const int y = pixelNdx % ETC2_BLOCK_HEIGHT;
const int dstOffset = (y * ETC2_BLOCK_WIDTH + x) * ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8;
const int subBlock = ((flipBit ? y : x) >= 2) ? 1 : 0;
const uint32_t tableNdx = table[subBlock];
const uint32_t modifierNdx = (getBit(src, 16 + pixelNdx) << 1) | getBit(src, pixelNdx);
const int alphaDstOffset =
(y * ETC2_BLOCK_WIDTH + x) * ETC2_UNCOMPRESSED_PIXEL_SIZE_A8; // Only needed for PUNCHTHROUGH version.
// If doing PUNCHTHROUGH version (alphaMode), opaque bit may affect colors.
if (alphaMode && diffOpaqueBit == 0 && modifierNdx == 2)
{
dst[dstOffset + 0] = 0;
dst[dstOffset + 1] = 0;
dst[dstOffset + 2] = 0;
alphaDst[alphaDstOffset] = 0;
}
else
{
int modifier;
// PUNCHTHROUGH version and opaque bit may also affect modifiers.
if (alphaMode && diffOpaqueBit == 0 && (modifierNdx == 0 || modifierNdx == 2))
modifier = 0;
else
modifier = modifierTable[tableNdx][modifierNdx];
dst[dstOffset + 0] = (uint8_t)deClamp32((int)baseR[subBlock] + modifier, 0, 255);
dst[dstOffset + 1] = (uint8_t)deClamp32((int)baseG[subBlock] + modifier, 0, 255);
dst[dstOffset + 2] = (uint8_t)deClamp32((int)baseB[subBlock] + modifier, 0, 255);
if (alphaMode)
alphaDst[alphaDstOffset] = 255;
}
}
}
else if (mode == MODE_T || mode == MODE_H)
{
// T and H modes have some steps in common, handle them here.
static const int distTable[8] = {3, 6, 11, 16, 23, 32, 41, 64};
uint8_t paintR[4];
uint8_t paintG[4];
uint8_t paintB[4];
if (mode == MODE_T)
{
// T mode, calculate paint values.
const uint8_t R1a = (uint8_t)getBits(src, 59, 60);
const uint8_t R1b = (uint8_t)getBits(src, 56, 57);
const uint8_t G1 = (uint8_t)getBits(src, 52, 55);
const uint8_t B1 = (uint8_t)getBits(src, 48, 51);
const uint8_t R2 = (uint8_t)getBits(src, 44, 47);
const uint8_t G2 = (uint8_t)getBits(src, 40, 43);
const uint8_t B2 = (uint8_t)getBits(src, 36, 39);
const uint32_t distNdx = (getBits(src, 34, 35) << 1) | getBit(src, 32);
const int dist = distTable[distNdx];
paintR[0] = extend4To8((uint8_t)((R1a << 2) | R1b));
paintG[0] = extend4To8(G1);
paintB[0] = extend4To8(B1);
paintR[2] = extend4To8(R2);
paintG[2] = extend4To8(G2);
paintB[2] = extend4To8(B2);
paintR[1] = (uint8_t)deClamp32((int)paintR[2] + dist, 0, 255);
paintG[1] = (uint8_t)deClamp32((int)paintG[2] + dist, 0, 255);
paintB[1] = (uint8_t)deClamp32((int)paintB[2] + dist, 0, 255);
paintR[3] = (uint8_t)deClamp32((int)paintR[2] - dist, 0, 255);
paintG[3] = (uint8_t)deClamp32((int)paintG[2] - dist, 0, 255);
paintB[3] = (uint8_t)deClamp32((int)paintB[2] - dist, 0, 255);
}
else
{
// H mode, calculate paint values.
const uint8_t R1 = (uint8_t)getBits(src, 59, 62);
const uint8_t G1a = (uint8_t)getBits(src, 56, 58);
const uint8_t G1b = (uint8_t)getBit(src, 52);
const uint8_t B1a = (uint8_t)getBit(src, 51);
const uint8_t B1b = (uint8_t)getBits(src, 47, 49);
const uint8_t R2 = (uint8_t)getBits(src, 43, 46);
const uint8_t G2 = (uint8_t)getBits(src, 39, 42);
const uint8_t B2 = (uint8_t)getBits(src, 35, 38);
uint8_t baseR[2];
uint8_t baseG[2];
uint8_t baseB[2];
uint32_t baseValue[2];
uint32_t distNdx;
int dist;
baseR[0] = extend4To8(R1);
baseG[0] = extend4To8((uint8_t)((G1a << 1) | G1b));
baseB[0] = extend4To8((uint8_t)((B1a << 3) | B1b));
baseR[1] = extend4To8(R2);
baseG[1] = extend4To8(G2);
baseB[1] = extend4To8(B2);
baseValue[0] = (((uint32_t)baseR[0]) << 16) | (((uint32_t)baseG[0]) << 8) | baseB[0];
baseValue[1] = (((uint32_t)baseR[1]) << 16) | (((uint32_t)baseG[1]) << 8) | baseB[1];
distNdx = (getBit(src, 34) << 2) | (getBit(src, 32) << 1) | (uint32_t)(baseValue[0] >= baseValue[1]);
dist = distTable[distNdx];
paintR[0] = (uint8_t)deClamp32((int)baseR[0] + dist, 0, 255);
paintG[0] = (uint8_t)deClamp32((int)baseG[0] + dist, 0, 255);
paintB[0] = (uint8_t)deClamp32((int)baseB[0] + dist, 0, 255);
paintR[1] = (uint8_t)deClamp32((int)baseR[0] - dist, 0, 255);
paintG[1] = (uint8_t)deClamp32((int)baseG[0] - dist, 0, 255);
paintB[1] = (uint8_t)deClamp32((int)baseB[0] - dist, 0, 255);
paintR[2] = (uint8_t)deClamp32((int)baseR[1] + dist, 0, 255);
paintG[2] = (uint8_t)deClamp32((int)baseG[1] + dist, 0, 255);
paintB[2] = (uint8_t)deClamp32((int)baseB[1] + dist, 0, 255);
paintR[3] = (uint8_t)deClamp32((int)baseR[1] - dist, 0, 255);
paintG[3] = (uint8_t)deClamp32((int)baseG[1] - dist, 0, 255);
paintB[3] = (uint8_t)deClamp32((int)baseB[1] - dist, 0, 255);
}
// Write final pixels for T or H mode.
for (int pixelNdx = 0; pixelNdx < ETC2_BLOCK_HEIGHT * ETC2_BLOCK_WIDTH; pixelNdx++)
{
const int x = pixelNdx / ETC2_BLOCK_HEIGHT;
const int y = pixelNdx % ETC2_BLOCK_HEIGHT;
const int dstOffset = (y * ETC2_BLOCK_WIDTH + x) * ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8;
const uint32_t paintNdx = (getBit(src, 16 + pixelNdx) << 1) | getBit(src, pixelNdx);
const int alphaDstOffset =
(y * ETC2_BLOCK_WIDTH + x) * ETC2_UNCOMPRESSED_PIXEL_SIZE_A8; // Only needed for PUNCHTHROUGH version.
if (alphaMode && diffOpaqueBit == 0 && paintNdx == 2)
{
dst[dstOffset + 0] = 0;
dst[dstOffset + 1] = 0;
dst[dstOffset + 2] = 0;
alphaDst[alphaDstOffset] = 0;
}
else
{
dst[dstOffset + 0] = (uint8_t)deClamp32((int)paintR[paintNdx], 0, 255);
dst[dstOffset + 1] = (uint8_t)deClamp32((int)paintG[paintNdx], 0, 255);
dst[dstOffset + 2] = (uint8_t)deClamp32((int)paintB[paintNdx], 0, 255);
if (alphaMode)
alphaDst[alphaDstOffset] = 255;
}
}
}
else
{
// Planar mode.
const uint8_t GO1 = (uint8_t)getBit(src, 56);
const uint8_t GO2 = (uint8_t)getBits(src, 49, 54);
const uint8_t BO1 = (uint8_t)getBit(src, 48);
const uint8_t BO2 = (uint8_t)getBits(src, 43, 44);
const uint8_t BO3 = (uint8_t)getBits(src, 39, 41);
const uint8_t RH1 = (uint8_t)getBits(src, 34, 38);
const uint8_t RH2 = (uint8_t)getBit(src, 32);
const uint8_t RO = extend6To8((uint8_t)getBits(src, 57, 62));
const uint8_t GO = extend7To8((uint8_t)((GO1 << 6) | GO2));
const uint8_t BO = extend6To8((uint8_t)((BO1 << 5) | (BO2 << 3) | BO3));
const uint8_t RH = extend6To8((uint8_t)((RH1 << 1) | RH2));
const uint8_t GH = extend7To8((uint8_t)getBits(src, 25, 31));
const uint8_t BH = extend6To8((uint8_t)getBits(src, 19, 24));
const uint8_t RV = extend6To8((uint8_t)getBits(src, 13, 18));
const uint8_t GV = extend7To8((uint8_t)getBits(src, 6, 12));
const uint8_t BV = extend6To8((uint8_t)getBits(src, 0, 5));
// Write final pixels for planar mode.
for (int y = 0; y < 4; y++)
{
for (int x = 0; x < 4; x++)
{
const int dstOffset = (y * ETC2_BLOCK_WIDTH + x) * ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8;
const int unclampedR = (x * ((int)RH - (int)RO) + y * ((int)RV - (int)RO) + 4 * (int)RO + 2) >> 2;
const int unclampedG = (x * ((int)GH - (int)GO) + y * ((int)GV - (int)GO) + 4 * (int)GO + 2) >> 2;
const int unclampedB = (x * ((int)BH - (int)BO) + y * ((int)BV - (int)BO) + 4 * (int)BO + 2) >> 2;
const int alphaDstOffset = (y * ETC2_BLOCK_WIDTH + x) *
ETC2_UNCOMPRESSED_PIXEL_SIZE_A8; // Only needed for PUNCHTHROUGH version.
dst[dstOffset + 0] = (uint8_t)deClamp32(unclampedR, 0, 255);
dst[dstOffset + 1] = (uint8_t)deClamp32(unclampedG, 0, 255);
dst[dstOffset + 2] = (uint8_t)deClamp32(unclampedB, 0, 255);
if (alphaMode)
alphaDst[alphaDstOffset] = 255;
}
}
}
}
void decompressEAC8Block(uint8_t dst[ETC2_UNCOMPRESSED_BLOCK_SIZE_A8], uint64_t src)
{
static const int modifierTable[16][8] = {
{-3, -6, -9, -15, 2, 5, 8, 14}, {-3, -7, -10, -13, 2, 6, 9, 12}, {-2, -5, -8, -13, 1, 4, 7, 12},
{-2, -4, -6, -13, 1, 3, 5, 12}, {-3, -6, -8, -12, 2, 5, 7, 11}, {-3, -7, -9, -11, 2, 6, 8, 10},
{-4, -7, -8, -11, 3, 6, 7, 10}, {-3, -5, -8, -11, 2, 4, 7, 10}, {-2, -6, -8, -10, 1, 5, 7, 9},
{-2, -5, -8, -10, 1, 4, 7, 9}, {-2, -4, -8, -10, 1, 3, 7, 9}, {-2, -5, -7, -10, 1, 4, 6, 9},
{-3, -4, -7, -10, 2, 3, 6, 9}, {-1, -2, -3, -10, 0, 1, 2, 9}, {-4, -6, -8, -9, 3, 5, 7, 8},
{-3, -5, -7, -9, 2, 4, 6, 8}};
const uint8_t baseCodeword = (uint8_t)getBits(src, 56, 63);
const uint8_t multiplier = (uint8_t)getBits(src, 52, 55);
const uint32_t tableNdx = getBits(src, 48, 51);
for (int pixelNdx = 0; pixelNdx < ETC2_BLOCK_HEIGHT * ETC2_BLOCK_WIDTH; pixelNdx++)
{
const int x = pixelNdx / ETC2_BLOCK_HEIGHT;
const int y = pixelNdx % ETC2_BLOCK_HEIGHT;
const int dstOffset = (y * ETC2_BLOCK_WIDTH + x) * ETC2_UNCOMPRESSED_PIXEL_SIZE_A8;
const int pixelBitNdx = 45 - 3 * pixelNdx;
const uint32_t modifierNdx =
(getBit(src, pixelBitNdx + 2) << 2) | (getBit(src, pixelBitNdx + 1) << 1) | getBit(src, pixelBitNdx);
const int modifier = modifierTable[tableNdx][modifierNdx];
dst[dstOffset] = (uint8_t)deClamp32((int)baseCodeword + (int)multiplier * modifier, 0, 255);
}
}
void decompressEAC11Block(uint8_t dst[ETC2_UNCOMPRESSED_BLOCK_SIZE_R11], uint64_t src, bool signedMode)
{
static const int modifierTable[16][8] = {
{-3, -6, -9, -15, 2, 5, 8, 14}, {-3, -7, -10, -13, 2, 6, 9, 12}, {-2, -5, -8, -13, 1, 4, 7, 12},
{-2, -4, -6, -13, 1, 3, 5, 12}, {-3, -6, -8, -12, 2, 5, 7, 11}, {-3, -7, -9, -11, 2, 6, 8, 10},
{-4, -7, -8, -11, 3, 6, 7, 10}, {-3, -5, -8, -11, 2, 4, 7, 10}, {-2, -6, -8, -10, 1, 5, 7, 9},
{-2, -5, -8, -10, 1, 4, 7, 9}, {-2, -4, -8, -10, 1, 3, 7, 9}, {-2, -5, -7, -10, 1, 4, 6, 9},
{-3, -4, -7, -10, 2, 3, 6, 9}, {-1, -2, -3, -10, 0, 1, 2, 9}, {-4, -6, -8, -9, 3, 5, 7, 8},
{-3, -5, -7, -9, 2, 4, 6, 8}};
const int32_t multiplier = (int32_t)getBits(src, 52, 55);
const int32_t tableNdx = (int32_t)getBits(src, 48, 51);
int32_t baseCodeword = (int32_t)getBits(src, 56, 63);
if (signedMode)
{
if (baseCodeword > 127)
baseCodeword -= 256;
if (baseCodeword == -128)
baseCodeword = -127;
}
for (int pixelNdx = 0; pixelNdx < ETC2_BLOCK_HEIGHT * ETC2_BLOCK_WIDTH; pixelNdx++)
{
const int x = pixelNdx / ETC2_BLOCK_HEIGHT;
const int y = pixelNdx % ETC2_BLOCK_HEIGHT;
const int dstOffset = (y * ETC2_BLOCK_WIDTH + x) * ETC2_UNCOMPRESSED_PIXEL_SIZE_R11;
const int pixelBitNdx = 45 - 3 * pixelNdx;
const uint32_t modifierNdx =
(getBit(src, pixelBitNdx + 2) << 2) | (getBit(src, pixelBitNdx + 1) << 1) | getBit(src, pixelBitNdx);
const int modifier = modifierTable[tableNdx][modifierNdx];
if (signedMode)
{
int16_t value;
if (multiplier != 0)
value = (int16_t)deClamp32(baseCodeword * 8 + multiplier * modifier * 8, -1023, 1023);
else
value = (int16_t)deClamp32(baseCodeword * 8 + modifier, -1023, 1023);
*((int16_t *)(dst + dstOffset)) = value;
}
else
{
uint16_t value;
if (multiplier != 0)
value = (uint16_t)deClamp32(baseCodeword * 8 + 4 + multiplier * modifier * 8, 0, 2047);
else
value = (uint16_t)deClamp32(baseCodeword * 8 + 4 + modifier, 0, 2047);
*((uint16_t *)(dst + dstOffset)) = value;
}
}
}
} // namespace EtcDecompressInternal
void decompressETC1(const PixelBufferAccess &dst, const uint8_t *src)
{
using namespace EtcDecompressInternal;
uint8_t *const dstPtr = (uint8_t *)dst.getDataPtr();
const uint64_t compressedBlock = get64BitBlock(src, 0);
decompressETC1Block(dstPtr, compressedBlock);
}
void decompressETC2(const PixelBufferAccess &dst, const uint8_t *src)
{
using namespace EtcDecompressInternal;
uint8_t *const dstPtr = (uint8_t *)dst.getDataPtr();
const uint64_t compressedBlock = get64BitBlock(src, 0);
decompressETC2Block(dstPtr, compressedBlock, NULL, false);
}
void decompressETC2_EAC_RGBA8(const PixelBufferAccess &dst, const uint8_t *src)
{
using namespace EtcDecompressInternal;
uint8_t *const dstPtr = (uint8_t *)dst.getDataPtr();
const int dstRowPitch = dst.getRowPitch();
const int dstPixelSize = ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8;
const uint64_t compressedBlockAlpha = get128BitBlockStart(src, 0);
const uint64_t compressedBlockRGB = get128BitBlockEnd(src, 0);
uint8_t uncompressedBlockAlpha[ETC2_UNCOMPRESSED_BLOCK_SIZE_A8];
uint8_t uncompressedBlockRGB[ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8];
// Decompress.
decompressETC2Block(uncompressedBlockRGB, compressedBlockRGB, NULL, false);
decompressEAC8Block(uncompressedBlockAlpha, compressedBlockAlpha);
// Write to dst.
for (int y = 0; y < (int)ETC2_BLOCK_HEIGHT; y++)
{
for (int x = 0; x < (int)ETC2_BLOCK_WIDTH; x++)
{
const uint8_t *const srcPixelRGB =
&uncompressedBlockRGB[(y * ETC2_BLOCK_WIDTH + x) * ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8];
const uint8_t *const srcPixelAlpha =
&uncompressedBlockAlpha[(y * ETC2_BLOCK_WIDTH + x) * ETC2_UNCOMPRESSED_PIXEL_SIZE_A8];
uint8_t *const dstPixel = dstPtr + y * dstRowPitch + x * dstPixelSize;
DE_STATIC_ASSERT(ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8 == 4);
dstPixel[0] = srcPixelRGB[0];
dstPixel[1] = srcPixelRGB[1];
dstPixel[2] = srcPixelRGB[2];
dstPixel[3] = srcPixelAlpha[0];
}
}
}
void decompressETC2_RGB8_PUNCHTHROUGH_ALPHA1(const PixelBufferAccess &dst, const uint8_t *src)
{
using namespace EtcDecompressInternal;
uint8_t *const dstPtr = (uint8_t *)dst.getDataPtr();
const int dstRowPitch = dst.getRowPitch();
const int dstPixelSize = ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8;
const uint64_t compressedBlockRGBA = get64BitBlock(src, 0);
uint8_t uncompressedBlockRGB[ETC2_UNCOMPRESSED_BLOCK_SIZE_RGB8];
uint8_t uncompressedBlockAlpha[ETC2_UNCOMPRESSED_BLOCK_SIZE_A8];
// Decompress.
decompressETC2Block(uncompressedBlockRGB, compressedBlockRGBA, uncompressedBlockAlpha, true);
// Write to dst.
for (int y = 0; y < (int)ETC2_BLOCK_HEIGHT; y++)
{
for (int x = 0; x < (int)ETC2_BLOCK_WIDTH; x++)
{
const uint8_t *const srcPixel =
&uncompressedBlockRGB[(y * ETC2_BLOCK_WIDTH + x) * ETC2_UNCOMPRESSED_PIXEL_SIZE_RGB8];
const uint8_t *const srcPixelAlpha =
&uncompressedBlockAlpha[(y * ETC2_BLOCK_WIDTH + x) * ETC2_UNCOMPRESSED_PIXEL_SIZE_A8];
uint8_t *const dstPixel = dstPtr + y * dstRowPitch + x * dstPixelSize;
DE_STATIC_ASSERT(ETC2_UNCOMPRESSED_PIXEL_SIZE_RGBA8 == 4);
dstPixel[0] = srcPixel[0];
dstPixel[1] = srcPixel[1];
dstPixel[2] = srcPixel[2];
dstPixel[3] = srcPixelAlpha[0];
}
}
}
void decompressEAC_R11(const PixelBufferAccess &dst, const uint8_t *src, bool signedMode)
{
using namespace EtcDecompressInternal;
uint8_t *const dstPtr = (uint8_t *)dst.getDataPtr();
const int dstRowPitch = dst.getRowPitch();
const int dstPixelSize = ETC2_UNCOMPRESSED_PIXEL_SIZE_R11;
const uint64_t compressedBlock = get64BitBlock(src, 0);
uint8_t uncompressedBlock[ETC2_UNCOMPRESSED_BLOCK_SIZE_R11];
// Decompress.
decompressEAC11Block(uncompressedBlock, compressedBlock, signedMode);
// Write to dst.
for (int y = 0; y < (int)ETC2_BLOCK_HEIGHT; y++)
{
for (int x = 0; x < (int)ETC2_BLOCK_WIDTH; x++)
{
DE_STATIC_ASSERT(ETC2_UNCOMPRESSED_PIXEL_SIZE_R11 == 2);
if (signedMode)
{
const int16_t *const srcPixel =
(int16_t *)&uncompressedBlock[(y * ETC2_BLOCK_WIDTH + x) * ETC2_UNCOMPRESSED_PIXEL_SIZE_R11];
int16_t *const dstPixel = (int16_t *)(dstPtr + y * dstRowPitch + x * dstPixelSize);
dstPixel[0] = extend11To16WithSign(srcPixel[0]);
}
else
{
const uint16_t *const srcPixel =
(uint16_t *)&uncompressedBlock[(y * ETC2_BLOCK_WIDTH + x) * ETC2_UNCOMPRESSED_PIXEL_SIZE_R11];
uint16_t *const dstPixel = (uint16_t *)(dstPtr + y * dstRowPitch + x * dstPixelSize);
dstPixel[0] = extend11To16(srcPixel[0]);
}
}
}
}
void decompressEAC_RG11(const PixelBufferAccess &dst, const uint8_t *src, bool signedMode)
{
using namespace EtcDecompressInternal;
uint8_t *const dstPtr = (uint8_t *)dst.getDataPtr();
const int dstRowPitch = dst.getRowPitch();
const int dstPixelSize = ETC2_UNCOMPRESSED_PIXEL_SIZE_RG11;
const uint64_t compressedBlockR = get128BitBlockStart(src, 0);
const uint64_t compressedBlockG = get128BitBlockEnd(src, 0);
uint8_t uncompressedBlockR[ETC2_UNCOMPRESSED_BLOCK_SIZE_R11];
uint8_t uncompressedBlockG[ETC2_UNCOMPRESSED_BLOCK_SIZE_R11];
// Decompress.
decompressEAC11Block(uncompressedBlockR, compressedBlockR, signedMode);
decompressEAC11Block(uncompressedBlockG, compressedBlockG, signedMode);
// Write to dst.
for (int y = 0; y < (int)ETC2_BLOCK_HEIGHT; y++)
{
for (int x = 0; x < (int)ETC2_BLOCK_WIDTH; x++)
{
DE_STATIC_ASSERT(ETC2_UNCOMPRESSED_PIXEL_SIZE_RG11 == 4);
if (signedMode)
{
const int16_t *const srcPixelR =
(int16_t *)&uncompressedBlockR[(y * ETC2_BLOCK_WIDTH + x) * ETC2_UNCOMPRESSED_PIXEL_SIZE_R11];
const int16_t *const srcPixelG =
(int16_t *)&uncompressedBlockG[(y * ETC2_BLOCK_WIDTH + x) * ETC2_UNCOMPRESSED_PIXEL_SIZE_R11];
int16_t *const dstPixel = (int16_t *)(dstPtr + y * dstRowPitch + x * dstPixelSize);
dstPixel[0] = extend11To16WithSign(srcPixelR[0]);
dstPixel[1] = extend11To16WithSign(srcPixelG[0]);
}
else
{
const uint16_t *const srcPixelR =
(uint16_t *)&uncompressedBlockR[(y * ETC2_BLOCK_WIDTH + x) * ETC2_UNCOMPRESSED_PIXEL_SIZE_R11];
const uint16_t *const srcPixelG =
(uint16_t *)&uncompressedBlockG[(y * ETC2_BLOCK_WIDTH + x) * ETC2_UNCOMPRESSED_PIXEL_SIZE_R11];
uint16_t *const dstPixel = (uint16_t *)(dstPtr + y * dstRowPitch + x * dstPixelSize);
dstPixel[0] = extend11To16(srcPixelR[0]);
dstPixel[1] = extend11To16(srcPixelG[0]);
}
}
}
}
namespace BcDecompressInternal
{
enum
{
BC_BLOCK_WIDTH = 4,
BC_BLOCK_HEIGHT = 4
};
static const uint8_t epBits[14] = {10, 7, 11, 11, 11, 9, 8, 8, 8, 6, 10, 11, 12, 16};
static const uint8_t partitions2[64][16] = {
{0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1}, {0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1},
{0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1}, {0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1},
{0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1}, {0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1},
{0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1}, {0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1},
{0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1},
{0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1},
{0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1}, {0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0}, {0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0}, {0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1},
{0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0},
{0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0}, {0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0},
{0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0},
{0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0}, {0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0},
{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}, {0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1},
{0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0}, {0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0},
{0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0}, {0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0},
{0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1}, {0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1},
{0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0}, {0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0},
{0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0}, {0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0},
{0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0}, {0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1},
{0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1}, {0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0},
{0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0},
{0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1}, {0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1},
{0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0}, {0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0},
{0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1}, {0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1},
{0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1}, {0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1},
{0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1}, {0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0}, {0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1}};
static const uint8_t partitions3[64][16] = {
{0, 0, 1, 1, 0, 0, 1, 1, 0, 2, 2, 1, 2, 2, 2, 2}, {0, 0, 0, 1, 0, 0, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1},
{0, 0, 0, 0, 2, 0, 0, 1, 2, 2, 1, 1, 2, 2, 1, 1}, {0, 2, 2, 2, 0, 0, 2, 2, 0, 0, 1, 1, 0, 1, 1, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 1, 1, 2, 2}, {0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 2, 2},
{0, 0, 2, 2, 0, 0, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2}, {0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2},
{0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2}, {0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2},
{0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2}, {0, 1, 2, 2, 0, 1, 2, 2, 0, 1, 2, 2, 0, 1, 2, 2},
{0, 0, 1, 1, 0, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2}, {0, 0, 1, 1, 2, 0, 0, 1, 2, 2, 0, 0, 2, 2, 2, 0},
{0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 2, 1, 1, 2, 2}, {0, 1, 1, 1, 0, 0, 1, 1, 2, 0, 0, 1, 2, 2, 0, 0},
{0, 0, 0, 0, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2}, {0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 1, 1, 1, 1},
{0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 2, 2, 0, 2, 2, 2}, {0, 0, 0, 1, 0, 0, 0, 1, 2, 2, 2, 1, 2, 2, 2, 1},
{0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 2, 2, 0, 1, 2, 2}, {0, 0, 0, 0, 1, 1, 0, 0, 2, 2, 1, 0, 2, 2, 1, 0},
{0, 1, 2, 2, 0, 1, 2, 2, 0, 0, 1, 1, 0, 0, 0, 0}, {0, 0, 1, 2, 0, 0, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2},
{0, 1, 1, 0, 1, 2, 2, 1, 1, 2, 2, 1, 0, 1, 1, 0}, {0, 0, 0, 0, 0, 1, 1, 0, 1, 2, 2, 1, 1, 2, 2, 1},
{0, 0, 2, 2, 1, 1, 0, 2, 1, 1, 0, 2, 0, 0, 2, 2}, {0, 1, 1, 0, 0, 1, 1, 0, 2, 0, 0, 2, 2, 2, 2, 2},
{0, 0, 1, 1, 0, 1, 2, 2, 0, 1, 2, 2, 0, 0, 1, 1}, {0, 0, 0, 0, 2, 0, 0, 0, 2, 2, 1, 1, 2, 2, 2, 1},
{0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 2, 2, 1, 2, 2, 2}, {0, 2, 2, 2, 0, 0, 2, 2, 0, 0, 1, 2, 0, 0, 1, 1},
{0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 2, 2, 0, 2, 2, 2}, {0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0},
{0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0}, {0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0},
{0, 1, 2, 0, 2, 0, 1, 2, 1, 2, 0, 1, 0, 1, 2, 0}, {0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1},
{0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 1, 1}, {0, 1, 0, 1, 0, 1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2},
{0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 1, 2, 1, 2, 1}, {0, 0, 2, 2, 1, 1, 2, 2, 0, 0, 2, 2, 1, 1, 2, 2},
{0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1}, {0, 2, 2, 0, 1, 2, 2, 1, 0, 2, 2, 0, 1, 2, 2, 1},
{0, 1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 1, 0, 1}, {0, 0, 0, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1},
{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 2, 2, 2}, {0, 2, 2, 2, 0, 1, 1, 1, 0, 2, 2, 2, 0, 1, 1, 1},
{0, 0, 0, 2, 1, 1, 1, 2, 0, 0, 0, 2, 1, 1, 1, 2}, {0, 0, 0, 0, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2},
{0, 2, 2, 2, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 2, 2}, {0, 0, 0, 2, 1, 1, 1, 2, 1, 1, 1, 2, 0, 0, 0, 2},
{0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 2, 2, 2, 2}, {0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 2, 2, 1, 1, 2},
{0, 1, 1, 0, 0, 1, 1, 0, 2, 2, 2, 2, 2, 2, 2, 2}, {0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 2},
{0, 0, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 0, 0, 2, 2}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 2},
{0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1}, {0, 2, 2, 2, 1, 2, 2, 2, 0, 2, 2, 2, 1, 2, 2, 2},
{0, 1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}, {0, 1, 1, 1, 2, 0, 1, 1, 2, 2, 0, 1, 2, 2, 2, 0}};
static const uint8_t anchorIndicesSecondSubset2[64] = {15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 2, 8, 2, 2, 8, 8, 15, 2, 8, 2, 2, 8, 8, 2, 2,
15, 15, 6, 8, 2, 8, 15, 15, 2, 8, 2, 2, 2, 15, 15, 6,
6, 2, 6, 8, 15, 15, 2, 2, 15, 15, 15, 15, 15, 2, 2, 15};
static const uint8_t anchorIndicesSecondSubset3[64] = {
3, 3, 15, 15, 8, 3, 15, 15, 8, 8, 6, 6, 6, 5, 3, 3, 3, 3, 8, 15, 3, 3, 6, 10, 5, 8, 8, 6, 8, 5, 15, 15,
8, 15, 3, 5, 6, 10, 8, 15, 15, 3, 15, 5, 15, 15, 15, 15, 3, 15, 5, 5, 5, 8, 5, 10, 5, 10, 8, 13, 15, 12, 3, 3};
static const uint8_t anchorIndicesThirdSubset[64] = {15, 8, 8, 3, 15, 15, 3, 8, 15, 15, 15, 15, 15, 15, 15, 8,
15, 8, 15, 3, 15, 8, 15, 8, 3, 15, 6, 10, 15, 15, 10, 8,
15, 3, 15, 10, 10, 8, 9, 10, 6, 15, 8, 15, 3, 6, 6, 8,
15, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 3, 15, 15, 8};
static const uint16_t weights2[4] = {0, 21, 43, 64};
static const uint16_t weights3[8] = {0, 9, 18, 27, 37, 46, 55, 64};
static const uint16_t weights4[16] = {0, 4, 9, 13, 17, 21, 26, 30, 34, 38, 43, 47, 51, 55, 60, 64};
inline float uint8ToFloat(uint8_t src)
{
return ((float)src / 255.0f);
}
inline float int8ToFloat(int8_t src)
{
return ((float)src / 128.0f);
}
inline uint32_t bgr16torgba32(uint16_t src)
{
const uint32_t src32 = src;
const uint8_t b5 = (src32 & 0x1f);
const uint8_t g6 = (src32 >> 5) & 0x3f;
const uint8_t r5 = (src32 >> 11) & 0x1f;
const uint32_t a8 = 0xff;
const uint32_t b8 = extend5To8(b5);
const uint32_t g8 = extend6To8(g6);
const uint32_t r8 = extend5To8(r5);
return (r8 | (g8 << 8) | (b8 << 16) | (a8 << 24));
}
// Interpolates color = 1/3 * c0 + 2/3 * c1
inline uint32_t interpolateColor(uint32_t c0, uint32_t c1)
{
const uint32_t r0 = c0 & 0xff;
const uint32_t g0 = (c0 >> 8) & 0xff;
const uint32_t b0 = (c0 >> 16) & 0xff;
const uint32_t a0 = (c0 >> 24) & 0xff;
const uint32_t r1 = c1 & 0xff;
const uint32_t g1 = (c1 >> 8) & 0xff;
const uint32_t b1 = (c1 >> 16) & 0xff;
const uint32_t a1 = (c1 >> 24) & 0xff;
const uint32_t r = (r0 + (r1 << 1)) / 3;
const uint32_t g = (g0 + (g1 << 1)) / 3;
const uint32_t b = (b0 + (b1 << 1)) / 3;
const uint32_t a = (a0 + (a1 << 1)) / 3;
return (r | (g << 8) | (b << 16) | (a << 24));
}
// Average of two colors
inline uint32_t averageColor(uint32_t c0, uint32_t c1)
{
const uint32_t r0 = c0 & 0xff;
const uint32_t g0 = (c0 >> 8) & 0xff;
const uint32_t b0 = (c0 >> 16) & 0xff;
const uint32_t a0 = (c0 >> 24) & 0xff;
const uint32_t r1 = c1 & 0xff;
const uint32_t g1 = (c1 >> 8) & 0xff;
const uint32_t b1 = (c1 >> 16) & 0xff;
const uint32_t a1 = (c1 >> 24) & 0xff;
const uint32_t r = (r0 + r1) >> 1;
const uint32_t g = (g0 + g1) >> 1;
const uint32_t b = (b0 + b1) >> 1;
const uint32_t a = (a0 + a1) >> 1;
return (r | (g << 8) | (b << 16) | (a << 24));
}
inline int8_t extractModeBc6(uint8_t src)
{
// Catch illegal modes
switch (src & 0x1f)
{
case 0x13:
case 0x17:
case 0x1b:
case 0x1f:
return -1;
}
switch (src & 0x3)
{
case 0:
return 0;
case 1:
return 1;
case 2:
return (int8_t)(2 + ((src >> 2) & 0x7));
case 3:
return (int8_t)(10 + ((src >> 2) & 0x7));
}
return -1;
}
inline int8_t extractModeBc7(uint8_t src)
{
for (int8_t i = 0; i < 8; i++)
if (src & (1 << i))
return i;
return -1;
}
inline uint64_t get64BitBlockLE(const uint8_t *src, int blockNdx)
{
// Same as get64BitBlock, but little-endian.
uint64_t block = 0;
for (int i = 0; i < 8; i++)
block |= (uint64_t)(src[blockNdx * 8 + i]) << (8ull * i);
return block;
}
inline uint32_t getBits128(uint64_t low, uint64_t high, uint32_t first, uint32_t last)
{
const uint64_t d[2] = {low, high};
const bool reverse = first > last;
uint32_t ret = 0;
if (reverse)
{
const uint32_t tmp = first;
first = last;
last = tmp;
}
const int elementFirst = first / 64;
const int elementLast = last / 64;
if (elementFirst == elementLast)
{
// Bits contained in one of the 64bit elements
const uint32_t shift = first % 64;
const uint32_t len = last - first + 1;
const uint32_t mask = (1 << len) - 1;
ret = (uint32_t)((d[elementFirst] >> shift) & mask);
}
else
{
// Bits contained in both of the 64bit elements
DE_ASSERT(last > 63);
DE_ASSERT(first < 64);
const uint32_t len0 = 64 - first;
const uint32_t mask0 = (1 << len0) - 1;
const uint32_t data0 = (uint32_t)(low >> first) & mask0;
const uint32_t len1 = last - 63;
const uint32_t mask1 = (1 << len1) - 1;
const uint32_t data1 = (uint32_t)(high & mask1);
ret = (uint32_t)((data1 << len0) | data0);
}
if (reverse)
{
const uint32_t len = last - first + 1;
const uint32_t orig = ret;
ret = 0;
for (uint32_t i = 0; i < len; i++)
{
ret |= ((orig >> (len - 1 - i)) & 1) << i;
}
}
return ret;
}
inline int32_t signExtend(int32_t value, int32_t srcBits, int32_t dstBits)
{
uint32_t sign = value & (1 << (srcBits - 1));
if (!sign)
return value;
int32_t dstMask = (int32_t)(((uint64_t)1 << dstBits) - 1);
int32_t extendedBits = 0xffffffff << srcBits;
return (value | extendedBits) & dstMask;
}
inline int32_t unquantize(int32_t x, int mode, bool hasSign)
{
if (hasSign)
{
bool s = false;
if (epBits[mode] >= 16)
return x;
if (x < 0)
{
s = true;
x = -x;
}
if (x == 0)
x = 0;
else if (x >= (((int32_t)1 << (epBits[mode] - 1)) - 1))
x = 0x7fff;
else
x = (((int32_t)x << 15) + 0x4000) >> (epBits[mode] - 1);
if (s)
x = -x;
return x;
}
else
{
if (epBits[mode] >= 15)
return x;
else if (x == 0)
return 0;
else if (x == (((int32_t)1 << epBits[mode]) - 1))
return 0xffff;
else
return ((((int32_t)x << 15) + 0x4000) >> (epBits[mode] - 1));
}
}
inline int32_t interpolate(int32_t a, int32_t b, uint32_t index, uint32_t indexPrecision)
{
const uint16_t *weights[] = {weights2, weights3, weights4};
const uint16_t *weight = weights[indexPrecision - 2];
DE_ASSERT(indexPrecision >= 2 && indexPrecision <= 4);
return (((64 - weight[index]) * a + weight[index] * b + 32) >> 6);
}
inline int16_t finishUnquantize(int32_t x, bool hasSign)
{
if (hasSign)
{
if (x < 0)
x = -(((-x) * 31) >> 5);
else
x = (x * 31) >> 5;
if (x < 0)
x = (-x) | 0x8000;
}
else
{
x = (x * 31) / 64;
}
return (int16_t)x;
}
} // namespace BcDecompressInternal
void decompressBc1(const PixelBufferAccess &dst, const uint8_t *src, bool hasAlpha)
{
using namespace BcDecompressInternal;
uint8_t *const dstPtr = (uint8_t *)dst.getDataPtr();
const uint32_t dstRowPitch = dst.getRowPitch();
const uint32_t dstPixelSize = 4;
const uint16_t color0_16 = ((uint16_t *)src)[0];
const uint16_t color1_16 = ((uint16_t *)src)[1];
const uint32_t color0 = bgr16torgba32(color0_16);
const uint32_t color1 = bgr16torgba32(color1_16);
const uint8_t *const indices8 = &src[4];
const bool alphaMode = color1_16 > color0_16;
const int32_t indices[16] = {
(indices8[0] >> 0) & 0x3, (indices8[0] >> 2) & 0x3, (indices8[0] >> 4) & 0x3, (indices8[0] >> 6) & 0x3,
(indices8[1] >> 0) & 0x3, (indices8[1] >> 2) & 0x3, (indices8[1] >> 4) & 0x3, (indices8[1] >> 6) & 0x3,
(indices8[2] >> 0) & 0x3, (indices8[2] >> 2) & 0x3, (indices8[2] >> 4) & 0x3, (indices8[2] >> 6) & 0x3,
(indices8[3] >> 0) & 0x3, (indices8[3] >> 2) & 0x3, (indices8[3] >> 4) & 0x3, (indices8[3] >> 6) & 0x3};
const uint32_t colors[4] = {color0, color1,
alphaMode ? averageColor(color0, color1) : interpolateColor(color1, color0),
alphaMode ? (hasAlpha ? 0 : 0xff000000) : interpolateColor(color0, color1)};
for (uint32_t y = 0; y < (uint32_t)BC_BLOCK_HEIGHT; y++)
{
for (uint32_t x = 0; x < (uint32_t)BC_BLOCK_WIDTH; x++)
{
uint32_t *const dstPixel = (uint32_t *)(dstPtr + y * dstRowPitch + x * dstPixelSize);
*dstPixel = colors[indices[y * BC_BLOCK_WIDTH + x]];
}
}
}
void decompressBc2(const PixelBufferAccess &dst, const uint8_t *src)
{
using namespace BcDecompressInternal;
uint8_t *const dstPtr = (uint8_t *)dst.getDataPtr();
const uint32_t dstRowPitch = dst.getRowPitch();
const uint32_t dstPixelSize = 4;
const uint16_t color0_16 = ((uint16_t *)src)[4];
const uint16_t color1_16 = ((uint16_t *)src)[5];
const uint32_t color0 = bgr16torgba32(color0_16);
const uint32_t color1 = bgr16torgba32(color1_16);
const uint8_t *const indices8 = &src[12];
const uint8_t *const alphas8 = src;
const int32_t indices[16] = {
(indices8[0] >> 0) & 0x3, (indices8[0] >> 2) & 0x3, (indices8[0] >> 4) & 0x3, (indices8[0] >> 6) & 0x3,
(indices8[1] >> 0) & 0x3, (indices8[1] >> 2) & 0x3, (indices8[1] >> 4) & 0x3, (indices8[1] >> 6) & 0x3,
(indices8[2] >> 0) & 0x3, (indices8[2] >> 2) & 0x3, (indices8[2] >> 4) & 0x3, (indices8[2] >> 6) & 0x3,
(indices8[3] >> 0) & 0x3, (indices8[3] >> 2) & 0x3, (indices8[3] >> 4) & 0x3, (indices8[3] >> 6) & 0x3};
const int32_t alphas[16] = {
extend4To8(((alphas8[0] >> 0) & 0xf)) << 24, extend4To8(((alphas8[0] >> 4) & 0xf)) << 24,
extend4To8(((alphas8[1] >> 0) & 0xf)) << 24, extend4To8(((alphas8[1] >> 4) & 0xf)) << 24,
extend4To8(((alphas8[2] >> 0) & 0xf)) << 24, extend4To8(((alphas8[2] >> 4) & 0xf)) << 24,
extend4To8(((alphas8[3] >> 0) & 0xf)) << 24, extend4To8(((alphas8[3] >> 4) & 0xf)) << 24,
extend4To8(((alphas8[4] >> 0) & 0xf)) << 24, extend4To8(((alphas8[4] >> 4) & 0xf)) << 24,
extend4To8(((alphas8[5] >> 0) & 0xf)) << 24, extend4To8(((alphas8[5] >> 4) & 0xf)) << 24,
extend4To8(((alphas8[6] >> 0) & 0xf)) << 24, extend4To8(((alphas8[6] >> 4) & 0xf)) << 24,
extend4To8(((alphas8[7] >> 0) & 0xf)) << 24, extend4To8(((alphas8[7] >> 4) & 0xf)) << 24};
const uint32_t colors[4] = {color0, color1, interpolateColor(color1, color0), interpolateColor(color0, color1)};
for (uint32_t y = 0; y < (uint32_t)BC_BLOCK_HEIGHT; y++)
{
for (uint32_t x = 0; x < (uint32_t)BC_BLOCK_WIDTH; x++)
{
uint32_t *const dstPixel = (uint32_t *)(dstPtr + y * dstRowPitch + x * dstPixelSize);
*dstPixel = (colors[indices[y * BC_BLOCK_WIDTH + x]] & 0x00ffffff) | alphas[y * BC_BLOCK_WIDTH + x];
}
}
}
void decompressBc3(const PixelBufferAccess &dst, const uint8_t *src)
{
using namespace BcDecompressInternal;
uint8_t *const dstPtr = (uint8_t *)dst.getDataPtr();
const uint32_t dstRowPitch = dst.getRowPitch();
const uint32_t dstPixelSize = 4;
const uint8_t alpha0 = src[0];
const uint8_t alpha1 = src[1];
const uint16_t color0_16 = ((uint16_t *)src)[4];
const uint16_t color1_16 = ((uint16_t *)src)[5];
const uint32_t color0 = bgr16torgba32(color0_16);
const uint32_t color1 = bgr16torgba32(color1_16);
const uint8_t *const indices8 = &src[12];
const uint64_t alphaBits = get64BitBlockLE(src, 0) >> 16;
uint32_t alphas[8];
const int32_t indices[16] = {
(indices8[0] >> 0) & 0x3, (indices8[0] >> 2) & 0x3, (indices8[0] >> 4) & 0x3, (indices8[0] >> 6) & 0x3,
(indices8[1] >> 0) & 0x3, (indices8[1] >> 2) & 0x3, (indices8[1] >> 4) & 0x3, (indices8[1] >> 6) & 0x3,
(indices8[2] >> 0) & 0x3, (indices8[2] >> 2) & 0x3, (indices8[2] >> 4) & 0x3, (indices8[2] >> 6) & 0x3,
(indices8[3] >> 0) & 0x3, (indices8[3] >> 2) & 0x3, (indices8[3] >> 4) & 0x3, (indices8[3] >> 6) & 0x3};
const int32_t alphaIndices[16] = {
(int32_t)((alphaBits >> 0) & 0x7), (int32_t)((alphaBits >> 3) & 0x7), (int32_t)((alphaBits >> 6) & 0x7),
(int32_t)((alphaBits >> 9) & 0x7), (int32_t)((alphaBits >> 12) & 0x7), (int32_t)((alphaBits >> 15) & 0x7),
(int32_t)((alphaBits >> 18) & 0x7), (int32_t)((alphaBits >> 21) & 0x7), (int32_t)((alphaBits >> 24) & 0x7),
(int32_t)((alphaBits >> 27) & 0x7), (int32_t)((alphaBits >> 30) & 0x7), (int32_t)((alphaBits >> 33) & 0x7),
(int32_t)((alphaBits >> 36) & 0x7), (int32_t)((alphaBits >> 39) & 0x7), (int32_t)((alphaBits >> 42) & 0x7),
(int32_t)((alphaBits >> 45) & 0x7)};
const uint32_t colors[4] = {color0, color1, interpolateColor(color1, color0), interpolateColor(color0, color1)};
alphas[0] = alpha0 << 24;
alphas[1] = alpha1 << 24;
if (alpha0 > alpha1)
{
for (uint32_t i = 0; i < 6; i++)
alphas[i + 2] = (((uint32_t)alpha0 * (6 - i) + (uint32_t)alpha1 * (1 + i)) / 7) << 24;
}
else
{
for (uint32_t i = 0; i < 4; i++)
alphas[i + 2] = (((uint32_t)alpha0 * (4 - i) + (uint32_t)alpha1 * (1 + i)) / 5) << 24;
alphas[6] = 0;
alphas[7] = 0xff000000;
}
for (uint32_t y = 0; y < (uint32_t)BC_BLOCK_HEIGHT; y++)
{
for (uint32_t x = 0; x < (uint32_t)BC_BLOCK_WIDTH; x++)
{
uint32_t *const dstPixel = (uint32_t *)(dstPtr + y * dstRowPitch + x * dstPixelSize);
*dstPixel =
(colors[indices[y * BC_BLOCK_WIDTH + x]] & 0x00ffffff) | alphas[alphaIndices[y * BC_BLOCK_WIDTH + x]];
}
}
}
void decompressBc4(const PixelBufferAccess &dst, const uint8_t *src, bool hasSign)
{
using namespace BcDecompressInternal;
uint8_t *const dstPtr = (uint8_t *)dst.getDataPtr();
const uint32_t dstRowPitch = dst.getRowPitch();
const uint32_t dstPixelSize = 4;
const uint8_t red0 = src[0];
const uint8_t red1 = src[1];
const int8_t red0s = ((int8_t *)src)[0];
const int8_t red1s = ((int8_t *)src)[1];
const uint64_t indexBits = get64BitBlockLE(src, 0) >> 16;
float reds[8];
const int32_t indices[16] = {
(int32_t)((indexBits >> 0) & 0x7), (int32_t)((indexBits >> 3) & 0x7), (int32_t)((indexBits >> 6) & 0x7),
(int32_t)((indexBits >> 9) & 0x7), (int32_t)((indexBits >> 12) & 0x7), (int32_t)((indexBits >> 15) & 0x7),
(int32_t)((indexBits >> 18) & 0x7), (int32_t)((indexBits >> 21) & 0x7), (int32_t)((indexBits >> 24) & 0x7),
(int32_t)((indexBits >> 27) & 0x7), (int32_t)((indexBits >> 30) & 0x7), (int32_t)((indexBits >> 33) & 0x7),
(int32_t)((indexBits >> 36) & 0x7), (int32_t)((indexBits >> 39) & 0x7), (int32_t)((indexBits >> 42) & 0x7),
(int32_t)((indexBits >> 45) & 0x7)};
reds[0] = hasSign ? int8ToFloat(red0s) : uint8ToFloat(red0);
reds[1] = hasSign ? int8ToFloat(red1s) : uint8ToFloat(red1);
if (reds[0] > reds[1])
{
for (uint32_t i = 0; i < 6; i++)
reds[i + 2] = (reds[0] * (6.0f - (float)i) + reds[1] * (1.0f + (float)i)) / 7.0f;
}
else
{
for (uint32_t i = 0; i < 4; i++)
reds[i + 2] = (reds[0] * (4.0f - (float)i) + reds[1] * (1.0f + (float)i)) / 5.0f;
reds[6] = hasSign ? -1.0f : 0.0f;
reds[7] = 1.0f;
}
for (uint32_t y = 0; y < (uint32_t)BC_BLOCK_HEIGHT; y++)
{
for (uint32_t x = 0; x < (uint32_t)BC_BLOCK_WIDTH; x++)
{
float *const dstPixel = (float *)(dstPtr + y * dstRowPitch + x * dstPixelSize);
*dstPixel = reds[indices[y * BC_BLOCK_WIDTH + x]];
}
}
}
void decompressBc5(const PixelBufferAccess &dst, const uint8_t *src, bool hasSign)
{
using namespace BcDecompressInternal;
uint8_t *const dstPtr = (uint8_t *)dst.getDataPtr();
const uint32_t dstRowPitch = dst.getRowPitch();
const uint32_t dstPixelSize = 8;
float rg[2][8];
uint32_t indices[2][16];
for (uint32_t c = 0; c < 2; c++)
{
const uint32_t offset = c * 8;
const uint8_t rg0 = src[offset];
const uint8_t rg1 = src[offset + 1];
const int8_t rg0s = ((int8_t *)src)[offset];
const int8_t rg1s = ((int8_t *)src)[offset + 1];
const uint64_t indexBits = get64BitBlockLE(src, c) >> 16;
for (uint32_t i = 0; i < 16; i++)
indices[c][i] = (indexBits >> (i * 3)) & 0x7;
rg[c][0] = hasSign ? int8ToFloat(rg0s) : uint8ToFloat(rg0);
rg[c][1] = hasSign ? int8ToFloat(rg1s) : uint8ToFloat(rg1);
if (rg[c][0] > rg[c][1])
{
for (uint32_t i = 0; i < 6; i++)
rg[c][i + 2] = (rg[c][0] * (6.0f - (float)i) + rg[c][1] * (1.0f + (float)i)) / 7.0f;
}
else
{
for (uint32_t i = 0; i < 4; i++)
rg[c][i + 2] = (rg[c][0] * (4.0f - (float)i) + rg[c][1] * (1.0f + (float)i)) / 5.0f;
rg[c][6] = hasSign ? -1.0f : 0.0f;
rg[c][7] = 1.0f;
}
}
for (uint32_t y = 0; y < (uint32_t)BC_BLOCK_HEIGHT; y++)
{
for (uint32_t x = 0; x < (uint32_t)BC_BLOCK_WIDTH; x++)
{
float *const dstPixel = (float *)(dstPtr + y * dstRowPitch + x * dstPixelSize);
for (uint32_t i = 0; i < 2; i++)
dstPixel[i] = rg[i][indices[i][y * BC_BLOCK_WIDTH + x]];
}
}
}
void decompressBc6H(const PixelBufferAccess &dst, const uint8_t *src, bool hasSign)
{
using namespace BcDecompressInternal;
uint8_t *const dstPtr = (uint8_t *)dst.getDataPtr();
const uint32_t dstRowPitch = dst.getRowPitch();
const uint32_t dstPixelSize = 6;
int32_t mode = extractModeBc6(src[0]);
IVec4 r(0);
IVec4 g(0);
IVec4 b(0);
uint32_t deltaBitsR = 0;
uint32_t deltaBitsG = 0;
uint32_t deltaBitsB = 0;
const uint64_t low = ((uint64_t *)src)[0];
const uint64_t high = ((uint64_t *)src)[1];
const uint32_t d = mode < 10 ? getBits128(low, high, 77, 81) : 0;
const uint32_t numRegions = mode > 9 ? 1 : 2;
const uint32_t numEndpoints = numRegions * 2;
const bool transformed = mode != 9 && mode != 10;
const uint32_t colorIndexBC = mode < 10 ? 3 : 4;
uint64_t colorIndexData = high >> (mode < 10 ? 18 : 1);
const uint32_t anchorIndex[2] = {0, anchorIndicesSecondSubset2[d]};
switch (mode)
{
case 0:
g[2] |= getBits128(low, high, 2, 2) << 4;
b[2] |= getBits128(low, high, 3, 3) << 4;
b[3] |= getBits128(low, high, 4, 4) << 4;
r[0] |= getBits128(low, high, 5, 14);
g[0] |= getBits128(low, high, 15, 24);
b[0] |= getBits128(low, high, 25, 34);
r[1] |= getBits128(low, high, 35, 39);
g[3] |= getBits128(low, high, 40, 40) << 4;
g[2] |= getBits128(low, high, 41, 44);
g[1] |= getBits128(low, high, 45, 49);
b[3] |= getBits128(low, high, 50, 50);
g[3] |= getBits128(low, high, 51, 54);
b[1] |= getBits128(low, high, 55, 59);
b[3] |= getBits128(low, high, 60, 60) << 1;
b[2] |= getBits128(low, high, 61, 64);
r[2] |= getBits128(low, high, 65, 69);
b[3] |= getBits128(low, high, 70, 70) << 2;
r[3] |= getBits128(low, high, 71, 75);
b[3] |= getBits128(low, high, 76, 76) << 3;
deltaBitsR = deltaBitsG = deltaBitsB = 5;
break;
case 1:
g[2] |= getBits128(low, high, 2, 2) << 5;
g[3] |= getBits128(low, high, 3, 3) << 4;
g[3] |= getBits128(low, high, 4, 4) << 5;
r[0] |= getBits128(low, high, 5, 11);
b[3] |= getBits128(low, high, 12, 12);
b[3] |= getBits128(low, high, 13, 13) << 1;
b[2] |= getBits128(low, high, 14, 14) << 4;
g[0] |= getBits128(low, high, 15, 21);
b[2] |= getBits128(low, high, 22, 22) << 5;
b[3] |= getBits128(low, high, 23, 23) << 2;
g[2] |= getBits128(low, high, 24, 24) << 4;
b[0] |= getBits128(low, high, 25, 31);
b[3] |= getBits128(low, high, 32, 32) << 3;
b[3] |= getBits128(low, high, 33, 33) << 5;
b[3] |= getBits128(low, high, 34, 34) << 4;
r[1] |= getBits128(low, high, 35, 40);
g[2] |= getBits128(low, high, 41, 44);
g[1] |= getBits128(low, high, 45, 50);
g[3] |= getBits128(low, high, 51, 54);
b[1] |= getBits128(low, high, 55, 60);
b[2] |= getBits128(low, high, 61, 64);
r[2] |= getBits128(low, high, 65, 70);
r[3] |= getBits128(low, high, 71, 76);
deltaBitsR = deltaBitsG = deltaBitsB = 6;
break;
case 2:
r[0] |= getBits128(low, high, 5, 14);
g[0] |= getBits128(low, high, 15, 24);
b[0] |= getBits128(low, high, 25, 34);
r[1] |= getBits128(low, high, 35, 39);
r[0] |= getBits128(low, high, 40, 40) << 10;
g[2] |= getBits128(low, high, 41, 44);
g[1] |= getBits128(low, high, 45, 48);
g[0] |= getBits128(low, high, 49, 49) << 10;
b[3] |= getBits128(low, high, 50, 50);
g[3] |= getBits128(low, high, 51, 54);
b[1] |= getBits128(low, high, 55, 58);
b[0] |= getBits128(low, high, 59, 59) << 10;
b[3] |= getBits128(low, high, 60, 60) << 1;
b[2] |= getBits128(low, high, 61, 64);
r[2] |= getBits128(low, high, 65, 69);
b[3] |= getBits128(low, high, 70, 70) << 2;
r[3] |= getBits128(low, high, 71, 75);
b[3] |= getBits128(low, high, 76, 76) << 3;
deltaBitsR = 5;
deltaBitsG = deltaBitsB = 4;
break;
case 3:
r[0] |= getBits128(low, high, 5, 14);
g[0] |= getBits128(low, high, 15, 24);
b[0] |= getBits128(low, high, 25, 34);
r[1] |= getBits128(low, high, 35, 38);
r[0] |= getBits128(low, high, 39, 39) << 10;
g[3] |= getBits128(low, high, 40, 40) << 4;
g[2] |= getBits128(low, high, 41, 44);
g[1] |= getBits128(low, high, 45, 49);
g[0] |= getBits128(low, high, 50, 50) << 10;
g[3] |= getBits128(low, high, 51, 54);
b[1] |= getBits128(low, high, 55, 58);
b[0] |= getBits128(low, high, 59, 59) << 10;
b[3] |= getBits128(low, high, 60, 60) << 1;
b[2] |= getBits128(low, high, 61, 64);
r[2] |= getBits128(low, high, 65, 68);
b[3] |= getBits128(low, high, 69, 69);
b[3] |= getBits128(low, high, 70, 70) << 2;
r[3