| /*------------------------------------------------------------------------- |
| * drawElements Quality Program Tester Core |
| * ---------------------------------------- |
| * |
| * Copyright 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| *//*! |
| * \file |
| * \brief ASTC Utilities. |
| *//*--------------------------------------------------------------------*/ |
| |
| #include "tcuAstcUtil.hpp" |
| #include "deFloat16.h" |
| #include "deRandom.hpp" |
| #include "deMeta.hpp" |
| |
| #include <algorithm> |
| |
| namespace tcu |
| { |
| namespace astc |
| { |
| |
| using std::vector; |
| |
| namespace |
| { |
| |
| // Common utilities |
| |
| enum |
| { |
| MAX_BLOCK_WIDTH = 12, |
| MAX_BLOCK_HEIGHT = 12 |
| }; |
| |
| inline uint32_t getBit(uint32_t src, int ndx) |
| { |
| DE_ASSERT(de::inBounds(ndx, 0, 32)); |
| return (src >> ndx) & 1; |
| } |
| |
| inline uint32_t getBits(uint32_t src, int low, int high) |
| { |
| const int numBits = (high - low) + 1; |
| |
| DE_ASSERT(de::inRange(numBits, 1, 32)); |
| |
| if (numBits < 32) |
| return (uint32_t)((src >> low) & ((1u << numBits) - 1)); |
| else |
| return (uint32_t)((src >> low) & 0xFFFFFFFFu); |
| } |
| |
| inline bool isBitSet(uint32_t src, int ndx) |
| { |
| return getBit(src, ndx) != 0; |
| } |
| |
| inline uint32_t reverseBits(uint32_t src, int numBits) |
| { |
| DE_ASSERT(de::inRange(numBits, 0, 32)); |
| uint32_t result = 0; |
| for (int i = 0; i < numBits; i++) |
| result |= ((src >> i) & 1) << (numBits - 1 - i); |
| return result; |
| } |
| |
| inline uint32_t bitReplicationScale(uint32_t src, int numSrcBits, int numDstBits) |
| { |
| DE_ASSERT(numSrcBits <= numDstBits); |
| DE_ASSERT((src & ((1 << numSrcBits) - 1)) == src); |
| uint32_t dst = 0; |
| for (int shift = numDstBits - numSrcBits; shift > -numSrcBits; shift -= numSrcBits) |
| dst |= shift >= 0 ? src << shift : src >> -shift; |
| return dst; |
| } |
| |
| inline int32_t signExtend(int32_t src, int numSrcBits) |
| { |
| DE_ASSERT(de::inRange(numSrcBits, 2, 31)); |
| const bool negative = (src & (1 << (numSrcBits - 1))) != 0; |
| return src | (negative ? ~((1 << numSrcBits) - 1) : 0); |
| } |
| |
| inline bool isFloat16InfOrNan(deFloat16 v) |
| { |
| return getBits(v, 10, 14) == 31; |
| } |
| |
| enum ISEMode |
| { |
| ISEMODE_TRIT = 0, |
| ISEMODE_QUINT, |
| ISEMODE_PLAIN_BIT, |
| |
| ISEMODE_LAST |
| }; |
| |
| struct ISEParams |
| { |
| ISEMode mode; |
| int numBits; |
| |
| ISEParams(ISEMode mode_, int numBits_) : mode(mode_), numBits(numBits_) |
| { |
| } |
| }; |
| |
| inline int computeNumRequiredBits(const ISEParams &iseParams, int numValues) |
| { |
| switch (iseParams.mode) |
| { |
| case ISEMODE_TRIT: |
| return deDivRoundUp32(numValues * 8, 5) + numValues * iseParams.numBits; |
| case ISEMODE_QUINT: |
| return deDivRoundUp32(numValues * 7, 3) + numValues * iseParams.numBits; |
| case ISEMODE_PLAIN_BIT: |
| return numValues * iseParams.numBits; |
| default: |
| DE_ASSERT(false); |
| return -1; |
| } |
| } |
| |
| ISEParams computeMaximumRangeISEParams(int numAvailableBits, int numValuesInSequence) |
| { |
| int curBitsForTritMode = 6; |
| int curBitsForQuintMode = 5; |
| int curBitsForPlainBitMode = 8; |
| |
| while (true) |
| { |
| DE_ASSERT(curBitsForTritMode > 0 || curBitsForQuintMode > 0 || curBitsForPlainBitMode > 0); |
| |
| const int tritRange = curBitsForTritMode > 0 ? (3 << curBitsForTritMode) - 1 : -1; |
| const int quintRange = curBitsForQuintMode > 0 ? (5 << curBitsForQuintMode) - 1 : -1; |
| const int plainBitRange = curBitsForPlainBitMode > 0 ? (1 << curBitsForPlainBitMode) - 1 : -1; |
| const int maxRange = de::max(de::max(tritRange, quintRange), plainBitRange); |
| |
| if (maxRange == tritRange) |
| { |
| const ISEParams params(ISEMODE_TRIT, curBitsForTritMode); |
| if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) |
| return ISEParams(ISEMODE_TRIT, curBitsForTritMode); |
| curBitsForTritMode--; |
| } |
| else if (maxRange == quintRange) |
| { |
| const ISEParams params(ISEMODE_QUINT, curBitsForQuintMode); |
| if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) |
| return ISEParams(ISEMODE_QUINT, curBitsForQuintMode); |
| curBitsForQuintMode--; |
| } |
| else |
| { |
| const ISEParams params(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode); |
| DE_ASSERT(maxRange == plainBitRange); |
| if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) |
| return ISEParams(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode); |
| curBitsForPlainBitMode--; |
| } |
| } |
| } |
| |
| inline int computeNumColorEndpointValues(uint32_t endpointMode) |
| { |
| DE_ASSERT(endpointMode < 16); |
| return (endpointMode / 4 + 1) * 2; |
| } |
| |
| // Decompression utilities |
| |
| enum DecompressResult |
| { |
| DECOMPRESS_RESULT_VALID_BLOCK = 0, //!< Decompressed valid block |
| DECOMPRESS_RESULT_ERROR, //!< Encountered error while decompressing, error color written |
| |
| DECOMPRESS_RESULT_LAST |
| }; |
| |
| // A helper for getting bits from a 128-bit block. |
| class Block128 |
| { |
| private: |
| typedef uint64_t Word; |
| |
| enum |
| { |
| WORD_BYTES = sizeof(Word), |
| WORD_BITS = 8 * WORD_BYTES, |
| NUM_WORDS = 128 / WORD_BITS |
| }; |
| |
| DE_STATIC_ASSERT(128 % WORD_BITS == 0); |
| |
| public: |
| Block128(const uint8_t *src) |
| { |
| for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++) |
| { |
| m_words[wordNdx] = 0; |
| for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++) |
| m_words[wordNdx] |= (Word)src[wordNdx * WORD_BYTES + byteNdx] << (8 * byteNdx); |
| } |
| } |
| |
| uint32_t getBit(int ndx) const |
| { |
| DE_ASSERT(de::inBounds(ndx, 0, 128)); |
| return (m_words[ndx / WORD_BITS] >> (ndx % WORD_BITS)) & 1; |
| } |
| |
| uint32_t getBits(int low, int high) const |
| { |
| DE_ASSERT(de::inBounds(low, 0, 128)); |
| DE_ASSERT(de::inBounds(high, 0, 128)); |
| DE_ASSERT(de::inRange(high - low + 1, 0, 32)); |
| |
| if (high - low + 1 == 0) |
| return 0; |
| |
| const int word0Ndx = low / WORD_BITS; |
| const int word1Ndx = high / WORD_BITS; |
| |
| // \note "foo << bar << 1" done instead of "foo << (bar+1)" to avoid overflow, i.e. shift amount being too big. |
| |
| if (word0Ndx == word1Ndx) |
| return (uint32_t)((m_words[word0Ndx] & ((((Word)1 << high % WORD_BITS << 1) - 1))) >> |
| ((Word)low % WORD_BITS)); |
| else |
| { |
| DE_ASSERT(word1Ndx == word0Ndx + 1); |
| |
| return (uint32_t)(m_words[word0Ndx] >> (low % WORD_BITS)) | |
| (uint32_t)((m_words[word1Ndx] & (((Word)1 << high % WORD_BITS << 1) - 1)) |
| << (high - low - high % WORD_BITS)); |
| } |
| } |
| |
| bool isBitSet(int ndx) const |
| { |
| DE_ASSERT(de::inBounds(ndx, 0, 128)); |
| return getBit(ndx) != 0; |
| } |
| |
| private: |
| Word m_words[NUM_WORDS]; |
| }; |
| |
| // A helper for sequential access into a Block128. |
| class BitAccessStream |
| { |
| public: |
| BitAccessStream(const Block128 &src, int startNdxInSrc, int length, bool forward) |
| : m_src(src) |
| , m_startNdxInSrc(startNdxInSrc) |
| , m_length(length) |
| , m_forward(forward) |
| , m_ndx(0) |
| { |
| } |
| |
| // Get the next num bits. Bits at positions greater than or equal to m_length are zeros. |
| uint32_t getNext(int num) |
| { |
| if (num == 0 || m_ndx >= m_length) |
| return 0; |
| |
| const int end = m_ndx + num; |
| const int numBitsFromSrc = de::max(0, de::min(m_length, end) - m_ndx); |
| const int low = m_ndx; |
| const int high = m_ndx + numBitsFromSrc - 1; |
| |
| m_ndx += num; |
| |
| return m_forward ? m_src.getBits(m_startNdxInSrc + low, m_startNdxInSrc + high) : |
| reverseBits(m_src.getBits(m_startNdxInSrc - high, m_startNdxInSrc - low), numBitsFromSrc); |
| } |
| |
| private: |
| const Block128 &m_src; |
| const int m_startNdxInSrc; |
| const int m_length; |
| const bool m_forward; |
| |
| int m_ndx; |
| }; |
| |
| struct ISEDecodedResult |
| { |
| uint32_t m; |
| uint32_t tq; //!< Trit or quint value, depending on ISE mode. |
| uint32_t v; |
| }; |
| |
| // Data from an ASTC block's "block mode" part (i.e. bits [0,10]). |
| struct ASTCBlockMode |
| { |
| bool isError; |
| // \note Following fields only relevant if !isError. |
| bool isVoidExtent; |
| // \note Following fields only relevant if !isVoidExtent. |
| bool isDualPlane; |
| int weightGridWidth; |
| int weightGridHeight; |
| ISEParams weightISEParams; |
| |
| ASTCBlockMode(void) |
| : isError(true) |
| , isVoidExtent(true) |
| , isDualPlane(true) |
| , weightGridWidth(-1) |
| , weightGridHeight(-1) |
| , weightISEParams(ISEMODE_LAST, -1) |
| { |
| } |
| }; |
| |
| inline int computeNumWeights(const ASTCBlockMode &mode) |
| { |
| return mode.weightGridWidth * mode.weightGridHeight * (mode.isDualPlane ? 2 : 1); |
| } |
| |
| struct ColorEndpointPair |
| { |
| UVec4 e0; |
| UVec4 e1; |
| }; |
| |
| struct TexelWeightPair |
| { |
| uint32_t w[2]; |
| }; |
| |
| ASTCBlockMode getASTCBlockMode(uint32_t blockModeData) |
| { |
| ASTCBlockMode blockMode; |
| blockMode.isError = true; // \note Set to false later, if not error. |
| |
| blockMode.isVoidExtent = getBits(blockModeData, 0, 8) == 0x1fc; |
| |
| if (!blockMode.isVoidExtent) |
| { |
| if ((getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 6, 8) == 7) || |
| getBits(blockModeData, 0, 3) == 0) |
| return blockMode; // Invalid ("reserved"). |
| |
| uint32_t r = (uint32_t)-1; // \note Set in the following branches. |
| |
| if (getBits(blockModeData, 0, 1) == 0) |
| { |
| const uint32_t r0 = getBit(blockModeData, 4); |
| const uint32_t r1 = getBit(blockModeData, 2); |
| const uint32_t r2 = getBit(blockModeData, 3); |
| const uint32_t i78 = getBits(blockModeData, 7, 8); |
| |
| r = (r2 << 2) | (r1 << 1) | (r0 << 0); |
| |
| if (i78 == 3) |
| { |
| const bool i5 = isBitSet(blockModeData, 5); |
| blockMode.weightGridWidth = i5 ? 10 : 6; |
| blockMode.weightGridHeight = i5 ? 6 : 10; |
| } |
| else |
| { |
| const uint32_t a = getBits(blockModeData, 5, 6); |
| switch (i78) |
| { |
| case 0: |
| blockMode.weightGridWidth = 12; |
| blockMode.weightGridHeight = a + 2; |
| break; |
| case 1: |
| blockMode.weightGridWidth = a + 2; |
| blockMode.weightGridHeight = 12; |
| break; |
| case 2: |
| blockMode.weightGridWidth = a + 6; |
| blockMode.weightGridHeight = getBits(blockModeData, 9, 10) + 6; |
| break; |
| default: |
| DE_ASSERT(false); |
| } |
| } |
| } |
| else |
| { |
| const uint32_t r0 = getBit(blockModeData, 4); |
| const uint32_t r1 = getBit(blockModeData, 0); |
| const uint32_t r2 = getBit(blockModeData, 1); |
| const uint32_t i23 = getBits(blockModeData, 2, 3); |
| const uint32_t a = getBits(blockModeData, 5, 6); |
| |
| r = (r2 << 2) | (r1 << 1) | (r0 << 0); |
| |
| if (i23 == 3) |
| { |
| const uint32_t b = getBit(blockModeData, 7); |
| const bool i8 = isBitSet(blockModeData, 8); |
| blockMode.weightGridWidth = i8 ? b + 2 : a + 2; |
| blockMode.weightGridHeight = i8 ? a + 2 : b + 6; |
| } |
| else |
| { |
| const uint32_t b = getBits(blockModeData, 7, 8); |
| |
| switch (i23) |
| { |
| case 0: |
| blockMode.weightGridWidth = b + 4; |
| blockMode.weightGridHeight = a + 2; |
| break; |
| case 1: |
| blockMode.weightGridWidth = b + 8; |
| blockMode.weightGridHeight = a + 2; |
| break; |
| case 2: |
| blockMode.weightGridWidth = a + 2; |
| blockMode.weightGridHeight = b + 8; |
| break; |
| default: |
| DE_ASSERT(false); |
| } |
| } |
| } |
| |
| const bool zeroDH = getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 7, 8) == 2; |
| const bool h = zeroDH ? 0 : isBitSet(blockModeData, 9); |
| blockMode.isDualPlane = zeroDH ? 0 : isBitSet(blockModeData, 10); |
| |
| { |
| ISEMode &m = blockMode.weightISEParams.mode; |
| int &b = blockMode.weightISEParams.numBits; |
| m = ISEMODE_PLAIN_BIT; |
| b = 0; |
| |
| if (h) |
| { |
| switch (r) |
| { |
| case 2: |
| m = ISEMODE_QUINT; |
| b = 1; |
| break; |
| case 3: |
| m = ISEMODE_TRIT; |
| b = 2; |
| break; |
| case 4: |
| b = 4; |
| break; |
| case 5: |
| m = ISEMODE_QUINT; |
| b = 2; |
| break; |
| case 6: |
| m = ISEMODE_TRIT; |
| b = 3; |
| break; |
| case 7: |
| b = 5; |
| break; |
| default: |
| DE_ASSERT(false); |
| } |
| } |
| else |
| { |
| switch (r) |
| { |
| case 2: |
| b = 1; |
| break; |
| case 3: |
| m = ISEMODE_TRIT; |
| break; |
| case 4: |
| b = 2; |
| break; |
| case 5: |
| m = ISEMODE_QUINT; |
| break; |
| case 6: |
| m = ISEMODE_TRIT; |
| b = 1; |
| break; |
| case 7: |
| b = 3; |
| break; |
| default: |
| DE_ASSERT(false); |
| } |
| } |
| } |
| } |
| |
| blockMode.isError = false; |
| return blockMode; |
| } |
| |
| inline void setASTCErrorColorBlock(void *dst, int blockWidth, int blockHeight, bool isSRGB) |
| { |
| if (isSRGB) |
| { |
| uint8_t *const dstU = (uint8_t *)dst; |
| |
| for (int i = 0; i < blockWidth * blockHeight; i++) |
| { |
| dstU[4 * i + 0] = 0xff; |
| dstU[4 * i + 1] = 0; |
| dstU[4 * i + 2] = 0xff; |
| dstU[4 * i + 3] = 0xff; |
| } |
| } |
| else |
| { |
| float *const dstF = (float *)dst; |
| |
| for (int i = 0; i < blockWidth * blockHeight; i++) |
| { |
| dstF[4 * i + 0] = 1.0f; |
| dstF[4 * i + 1] = 0.0f; |
| dstF[4 * i + 2] = 1.0f; |
| dstF[4 * i + 3] = 1.0f; |
| } |
| } |
| } |
| |
| DecompressResult decodeVoidExtentBlock(void *dst, const Block128 &blockData, int blockWidth, int blockHeight, |
| bool isSRGB, bool isLDRMode) |
| { |
| const uint32_t minSExtent = blockData.getBits(12, 24); |
| const uint32_t maxSExtent = blockData.getBits(25, 37); |
| const uint32_t minTExtent = blockData.getBits(38, 50); |
| const uint32_t maxTExtent = blockData.getBits(51, 63); |
| const bool allExtentsAllOnes = |
| minSExtent == 0x1fff && maxSExtent == 0x1fff && minTExtent == 0x1fff && maxTExtent == 0x1fff; |
| const bool isHDRBlock = blockData.isBitSet(9); |
| |
| if ((isLDRMode && isHDRBlock) || (!allExtentsAllOnes && (minSExtent >= maxSExtent || minTExtent >= maxTExtent))) |
| { |
| setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); |
| return DECOMPRESS_RESULT_ERROR; |
| } |
| |
| const uint32_t rgba[4] = {blockData.getBits(64, 79), blockData.getBits(80, 95), blockData.getBits(96, 111), |
| blockData.getBits(112, 127)}; |
| |
| if (isSRGB) |
| { |
| uint8_t *const dstU = (uint8_t *)dst; |
| for (int i = 0; i < blockWidth * blockHeight; i++) |
| for (int c = 0; c < 4; c++) |
| dstU[i * 4 + c] = (uint8_t)((rgba[c] & 0xff00) >> 8); |
| } |
| else |
| { |
| float *const dstF = (float *)dst; |
| |
| if (isHDRBlock) |
| { |
| for (int c = 0; c < 4; c++) |
| { |
| if (isFloat16InfOrNan((deFloat16)rgba[c])) |
| throw InternalError("Infinity or NaN color component in HDR void extent block in ASTC texture " |
| "(behavior undefined by ASTC specification)"); |
| } |
| |
| for (int i = 0; i < blockWidth * blockHeight; i++) |
| for (int c = 0; c < 4; c++) |
| dstF[i * 4 + c] = deFloat16To32((deFloat16)rgba[c]); |
| } |
| else |
| { |
| for (int i = 0; i < blockWidth * blockHeight; i++) |
| for (int c = 0; c < 4; c++) |
| dstF[i * 4 + c] = rgba[c] == 65535 ? 1.0f : (float)rgba[c] / 65536.0f; |
| } |
| } |
| |
| return DECOMPRESS_RESULT_VALID_BLOCK; |
| } |
| |
| void decodeColorEndpointModes(uint32_t *endpointModesDst, const Block128 &blockData, int numPartitions, |
| int extraCemBitsStart) |
| { |
| if (numPartitions == 1) |
| endpointModesDst[0] = blockData.getBits(13, 16); |
| else |
| { |
| const uint32_t highLevelSelector = blockData.getBits(23, 24); |
| |
| if (highLevelSelector == 0) |
| { |
| const uint32_t mode = blockData.getBits(25, 28); |
| for (int i = 0; i < numPartitions; i++) |
| endpointModesDst[i] = mode; |
| } |
| else |
| { |
| for (int partNdx = 0; partNdx < numPartitions; partNdx++) |
| { |
| const uint32_t cemClass = highLevelSelector - (blockData.isBitSet(25 + partNdx) ? 0 : 1); |
| const uint32_t lowBit0Ndx = numPartitions + 2 * partNdx; |
| const uint32_t lowBit1Ndx = numPartitions + 2 * partNdx + 1; |
| const uint32_t lowBit0 = |
| blockData.getBit(lowBit0Ndx < 4 ? 25 + lowBit0Ndx : extraCemBitsStart + lowBit0Ndx - 4); |
| const uint32_t lowBit1 = |
| blockData.getBit(lowBit1Ndx < 4 ? 25 + lowBit1Ndx : extraCemBitsStart + lowBit1Ndx - 4); |
| |
| endpointModesDst[partNdx] = (cemClass << 2) | (lowBit1 << 1) | lowBit0; |
| } |
| } |
| } |
| } |
| |
| int computeNumColorEndpointValues(const uint32_t *endpointModes, int numPartitions) |
| { |
| int result = 0; |
| for (int i = 0; i < numPartitions; i++) |
| result += computeNumColorEndpointValues(endpointModes[i]); |
| return result; |
| } |
| |
| void decodeISETritBlock(ISEDecodedResult *dst, int numValues, BitAccessStream &data, int numBits) |
| { |
| DE_ASSERT(de::inRange(numValues, 1, 5)); |
| |
| uint32_t m[5]; |
| |
| m[0] = data.getNext(numBits); |
| uint32_t T01 = data.getNext(2); |
| m[1] = data.getNext(numBits); |
| uint32_t T23 = data.getNext(2); |
| m[2] = data.getNext(numBits); |
| uint32_t T4 = data.getNext(1); |
| m[3] = data.getNext(numBits); |
| uint32_t T56 = data.getNext(2); |
| m[4] = data.getNext(numBits); |
| uint32_t T7 = data.getNext(1); |
| |
| switch (numValues) |
| { |
| case 1: |
| T23 = 0; |
| // Fallthrough |
| case 2: |
| T4 = 0; |
| // Fallthrough |
| case 3: |
| T56 = 0; |
| // Fallthrough |
| case 4: |
| T7 = 0; |
| // Fallthrough |
| case 5: |
| break; |
| default: |
| DE_ASSERT(false); |
| } |
| |
| const uint32_t T = (T7 << 7) | (T56 << 5) | (T4 << 4) | (T23 << 2) | (T01 << 0); |
| |
| static const uint32_t tritsFromT[256][5] = { |
| {0, 0, 0, 0, 0}, {1, 0, 0, 0, 0}, {2, 0, 0, 0, 0}, {0, 0, 2, 0, 0}, {0, 1, 0, 0, 0}, {1, 1, 0, 0, 0}, |
| {2, 1, 0, 0, 0}, {1, 0, 2, 0, 0}, {0, 2, 0, 0, 0}, {1, 2, 0, 0, 0}, {2, 2, 0, 0, 0}, {2, 0, 2, 0, 0}, |
| {0, 2, 2, 0, 0}, {1, 2, 2, 0, 0}, {2, 2, 2, 0, 0}, {2, 0, 2, 0, 0}, {0, 0, 1, 0, 0}, {1, 0, 1, 0, 0}, |
| {2, 0, 1, 0, 0}, {0, 1, 2, 0, 0}, {0, 1, 1, 0, 0}, {1, 1, 1, 0, 0}, {2, 1, 1, 0, 0}, {1, 1, 2, 0, 0}, |
| {0, 2, 1, 0, 0}, {1, 2, 1, 0, 0}, {2, 2, 1, 0, 0}, {2, 1, 2, 0, 0}, {0, 0, 0, 2, 2}, {1, 0, 0, 2, 2}, |
| {2, 0, 0, 2, 2}, {0, 0, 2, 2, 2}, {0, 0, 0, 1, 0}, {1, 0, 0, 1, 0}, {2, 0, 0, 1, 0}, {0, 0, 2, 1, 0}, |
| {0, 1, 0, 1, 0}, {1, 1, 0, 1, 0}, {2, 1, 0, 1, 0}, {1, 0, 2, 1, 0}, {0, 2, 0, 1, 0}, {1, 2, 0, 1, 0}, |
| {2, 2, 0, 1, 0}, {2, 0, 2, 1, 0}, {0, 2, 2, 1, 0}, {1, 2, 2, 1, 0}, {2, 2, 2, 1, 0}, {2, 0, 2, 1, 0}, |
| {0, 0, 1, 1, 0}, {1, 0, 1, 1, 0}, {2, 0, 1, 1, 0}, {0, 1, 2, 1, 0}, {0, 1, 1, 1, 0}, {1, 1, 1, 1, 0}, |
| {2, 1, 1, 1, 0}, {1, 1, 2, 1, 0}, {0, 2, 1, 1, 0}, {1, 2, 1, 1, 0}, {2, 2, 1, 1, 0}, {2, 1, 2, 1, 0}, |
| {0, 1, 0, 2, 2}, {1, 1, 0, 2, 2}, {2, 1, 0, 2, 2}, {1, 0, 2, 2, 2}, {0, 0, 0, 2, 0}, {1, 0, 0, 2, 0}, |
| {2, 0, 0, 2, 0}, {0, 0, 2, 2, 0}, {0, 1, 0, 2, 0}, {1, 1, 0, 2, 0}, {2, 1, 0, 2, 0}, {1, 0, 2, 2, 0}, |
| {0, 2, 0, 2, 0}, {1, 2, 0, 2, 0}, {2, 2, 0, 2, 0}, {2, 0, 2, 2, 0}, {0, 2, 2, 2, 0}, {1, 2, 2, 2, 0}, |
| {2, 2, 2, 2, 0}, {2, 0, 2, 2, 0}, {0, 0, 1, 2, 0}, {1, 0, 1, 2, 0}, {2, 0, 1, 2, 0}, {0, 1, 2, 2, 0}, |
| {0, 1, 1, 2, 0}, {1, 1, 1, 2, 0}, {2, 1, 1, 2, 0}, {1, 1, 2, 2, 0}, {0, 2, 1, 2, 0}, {1, 2, 1, 2, 0}, |
| {2, 2, 1, 2, 0}, {2, 1, 2, 2, 0}, {0, 2, 0, 2, 2}, {1, 2, 0, 2, 2}, {2, 2, 0, 2, 2}, {2, 0, 2, 2, 2}, |
| {0, 0, 0, 0, 2}, {1, 0, 0, 0, 2}, {2, 0, 0, 0, 2}, {0, 0, 2, 0, 2}, {0, 1, 0, 0, 2}, {1, 1, 0, 0, 2}, |
| {2, 1, 0, 0, 2}, {1, 0, 2, 0, 2}, {0, 2, 0, 0, 2}, {1, 2, 0, 0, 2}, {2, 2, 0, 0, 2}, {2, 0, 2, 0, 2}, |
| {0, 2, 2, 0, 2}, {1, 2, 2, 0, 2}, {2, 2, 2, 0, 2}, {2, 0, 2, 0, 2}, {0, 0, 1, 0, 2}, {1, 0, 1, 0, 2}, |
| {2, 0, 1, 0, 2}, {0, 1, 2, 0, 2}, {0, 1, 1, 0, 2}, {1, 1, 1, 0, 2}, {2, 1, 1, 0, 2}, {1, 1, 2, 0, 2}, |
| {0, 2, 1, 0, 2}, {1, 2, 1, 0, 2}, {2, 2, 1, 0, 2}, {2, 1, 2, 0, 2}, {0, 2, 2, 2, 2}, {1, 2, 2, 2, 2}, |
| {2, 2, 2, 2, 2}, {2, 0, 2, 2, 2}, {0, 0, 0, 0, 1}, {1, 0, 0, 0, 1}, {2, 0, 0, 0, 1}, {0, 0, 2, 0, 1}, |
| {0, 1, 0, 0, 1}, {1, 1, 0, 0, 1}, {2, 1, 0, 0, 1}, {1, 0, 2, 0, 1}, {0, 2, 0, 0, 1}, {1, 2, 0, 0, 1}, |
| {2, 2, 0, 0, 1}, {2, 0, 2, 0, 1}, {0, 2, 2, 0, 1}, {1, 2, 2, 0, 1}, {2, 2, 2, 0, 1}, {2, 0, 2, 0, 1}, |
| {0, 0, 1, 0, 1}, {1, 0, 1, 0, 1}, {2, 0, 1, 0, 1}, {0, 1, 2, 0, 1}, {0, 1, 1, 0, 1}, {1, 1, 1, 0, 1}, |
| {2, 1, 1, 0, 1}, {1, 1, 2, 0, 1}, {0, 2, 1, 0, 1}, {1, 2, 1, 0, 1}, {2, 2, 1, 0, 1}, {2, 1, 2, 0, 1}, |
| {0, 0, 1, 2, 2}, {1, 0, 1, 2, 2}, {2, 0, 1, 2, 2}, {0, 1, 2, 2, 2}, {0, 0, 0, 1, 1}, {1, 0, 0, 1, 1}, |
| {2, 0, 0, 1, 1}, {0, 0, 2, 1, 1}, {0, 1, 0, 1, 1}, {1, 1, 0, 1, 1}, {2, 1, 0, 1, 1}, {1, 0, 2, 1, 1}, |
| {0, 2, 0, 1, 1}, {1, 2, 0, 1, 1}, {2, 2, 0, 1, 1}, {2, 0, 2, 1, 1}, {0, 2, 2, 1, 1}, {1, 2, 2, 1, 1}, |
| {2, 2, 2, 1, 1}, {2, 0, 2, 1, 1}, {0, 0, 1, 1, 1}, {1, 0, 1, 1, 1}, {2, 0, 1, 1, 1}, {0, 1, 2, 1, 1}, |
| {0, 1, 1, 1, 1}, {1, 1, 1, 1, 1}, {2, 1, 1, 1, 1}, {1, 1, 2, 1, 1}, {0, 2, 1, 1, 1}, {1, 2, 1, 1, 1}, |
| {2, 2, 1, 1, 1}, {2, 1, 2, 1, 1}, {0, 1, 1, 2, 2}, {1, 1, 1, 2, 2}, {2, 1, 1, 2, 2}, {1, 1, 2, 2, 2}, |
| {0, 0, 0, 2, 1}, {1, 0, 0, 2, 1}, {2, 0, 0, 2, 1}, {0, 0, 2, 2, 1}, {0, 1, 0, 2, 1}, {1, 1, 0, 2, 1}, |
| {2, 1, 0, 2, 1}, {1, 0, 2, 2, 1}, {0, 2, 0, 2, 1}, {1, 2, 0, 2, 1}, {2, 2, 0, 2, 1}, {2, 0, 2, 2, 1}, |
| {0, 2, 2, 2, 1}, {1, 2, 2, 2, 1}, {2, 2, 2, 2, 1}, {2, 0, 2, 2, 1}, {0, 0, 1, 2, 1}, {1, 0, 1, 2, 1}, |
| {2, 0, 1, 2, 1}, {0, 1, 2, 2, 1}, {0, 1, 1, 2, 1}, {1, 1, 1, 2, 1}, {2, 1, 1, 2, 1}, {1, 1, 2, 2, 1}, |
| {0, 2, 1, 2, 1}, {1, 2, 1, 2, 1}, {2, 2, 1, 2, 1}, {2, 1, 2, 2, 1}, {0, 2, 1, 2, 2}, {1, 2, 1, 2, 2}, |
| {2, 2, 1, 2, 2}, {2, 1, 2, 2, 2}, {0, 0, 0, 1, 2}, {1, 0, 0, 1, 2}, {2, 0, 0, 1, 2}, {0, 0, 2, 1, 2}, |
| {0, 1, 0, 1, 2}, {1, 1, 0, 1, 2}, {2, 1, 0, 1, 2}, {1, 0, 2, 1, 2}, {0, 2, 0, 1, 2}, {1, 2, 0, 1, 2}, |
| {2, 2, 0, 1, 2}, {2, 0, 2, 1, 2}, {0, 2, 2, 1, 2}, {1, 2, 2, 1, 2}, {2, 2, 2, 1, 2}, {2, 0, 2, 1, 2}, |
| {0, 0, 1, 1, 2}, {1, 0, 1, 1, 2}, {2, 0, 1, 1, 2}, {0, 1, 2, 1, 2}, {0, 1, 1, 1, 2}, {1, 1, 1, 1, 2}, |
| {2, 1, 1, 1, 2}, {1, 1, 2, 1, 2}, {0, 2, 1, 1, 2}, {1, 2, 1, 1, 2}, {2, 2, 1, 1, 2}, {2, 1, 2, 1, 2}, |
| {0, 2, 2, 2, 2}, {1, 2, 2, 2, 2}, {2, 2, 2, 2, 2}, {2, 1, 2, 2, 2}}; |
| |
| const uint32_t(&trits)[5] = tritsFromT[T]; |
| |
| for (int i = 0; i < numValues; i++) |
| { |
| dst[i].m = m[i]; |
| dst[i].tq = trits[i]; |
| dst[i].v = (trits[i] << numBits) + m[i]; |
| } |
| } |
| |
| void decodeISEQuintBlock(ISEDecodedResult *dst, int numValues, BitAccessStream &data, int numBits) |
| { |
| DE_ASSERT(de::inRange(numValues, 1, 3)); |
| |
| uint32_t m[3]; |
| |
| m[0] = data.getNext(numBits); |
| uint32_t Q012 = data.getNext(3); |
| m[1] = data.getNext(numBits); |
| uint32_t Q34 = data.getNext(2); |
| m[2] = data.getNext(numBits); |
| uint32_t Q56 = data.getNext(2); |
| |
| switch (numValues) |
| { |
| case 1: |
| Q34 = 0; |
| // Fallthrough |
| case 2: |
| Q56 = 0; |
| // Fallthrough |
| case 3: |
| break; |
| default: |
| DE_ASSERT(false); |
| } |
| |
| const uint32_t Q = (Q56 << 5) | (Q34 << 3) | (Q012 << 0); |
| |
| static const uint32_t quintsFromQ[256][3] = { |
| {0, 0, 0}, {1, 0, 0}, {2, 0, 0}, {3, 0, 0}, {4, 0, 0}, {0, 4, 0}, {4, 4, 0}, {4, 4, 4}, {0, 1, 0}, {1, 1, 0}, |
| {2, 1, 0}, {3, 1, 0}, {4, 1, 0}, {1, 4, 0}, {4, 4, 1}, {4, 4, 4}, {0, 2, 0}, {1, 2, 0}, {2, 2, 0}, {3, 2, 0}, |
| {4, 2, 0}, {2, 4, 0}, {4, 4, 2}, {4, 4, 4}, {0, 3, 0}, {1, 3, 0}, {2, 3, 0}, {3, 3, 0}, {4, 3, 0}, {3, 4, 0}, |
| {4, 4, 3}, {4, 4, 4}, {0, 0, 1}, {1, 0, 1}, {2, 0, 1}, {3, 0, 1}, {4, 0, 1}, {0, 4, 1}, {4, 0, 4}, {0, 4, 4}, |
| {0, 1, 1}, {1, 1, 1}, {2, 1, 1}, {3, 1, 1}, {4, 1, 1}, {1, 4, 1}, {4, 1, 4}, {1, 4, 4}, {0, 2, 1}, {1, 2, 1}, |
| {2, 2, 1}, {3, 2, 1}, {4, 2, 1}, {2, 4, 1}, {4, 2, 4}, {2, 4, 4}, {0, 3, 1}, {1, 3, 1}, {2, 3, 1}, {3, 3, 1}, |
| {4, 3, 1}, {3, 4, 1}, {4, 3, 4}, {3, 4, 4}, {0, 0, 2}, {1, 0, 2}, {2, 0, 2}, {3, 0, 2}, {4, 0, 2}, {0, 4, 2}, |
| {2, 0, 4}, {3, 0, 4}, {0, 1, 2}, {1, 1, 2}, {2, 1, 2}, {3, 1, 2}, {4, 1, 2}, {1, 4, 2}, {2, 1, 4}, {3, 1, 4}, |
| {0, 2, 2}, {1, 2, 2}, {2, 2, 2}, {3, 2, 2}, {4, 2, 2}, {2, 4, 2}, {2, 2, 4}, {3, 2, 4}, {0, 3, 2}, {1, 3, 2}, |
| {2, 3, 2}, {3, 3, 2}, {4, 3, 2}, {3, 4, 2}, {2, 3, 4}, {3, 3, 4}, {0, 0, 3}, {1, 0, 3}, {2, 0, 3}, {3, 0, 3}, |
| {4, 0, 3}, {0, 4, 3}, {0, 0, 4}, {1, 0, 4}, {0, 1, 3}, {1, 1, 3}, {2, 1, 3}, {3, 1, 3}, {4, 1, 3}, {1, 4, 3}, |
| {0, 1, 4}, {1, 1, 4}, {0, 2, 3}, {1, 2, 3}, {2, 2, 3}, {3, 2, 3}, {4, 2, 3}, {2, 4, 3}, {0, 2, 4}, {1, 2, 4}, |
| {0, 3, 3}, {1, 3, 3}, {2, 3, 3}, {3, 3, 3}, {4, 3, 3}, {3, 4, 3}, {0, 3, 4}, {1, 3, 4}}; |
| |
| const uint32_t(&quints)[3] = quintsFromQ[Q]; |
| |
| for (int i = 0; i < numValues; i++) |
| { |
| dst[i].m = m[i]; |
| dst[i].tq = quints[i]; |
| dst[i].v = (quints[i] << numBits) + m[i]; |
| } |
| } |
| |
| inline void decodeISEBitBlock(ISEDecodedResult *dst, BitAccessStream &data, int numBits) |
| { |
| dst[0].m = data.getNext(numBits); |
| dst[0].v = dst[0].m; |
| } |
| |
| void decodeISE(ISEDecodedResult *dst, int numValues, BitAccessStream &data, const ISEParams ¶ms) |
| { |
| if (params.mode == ISEMODE_TRIT) |
| { |
| const int numBlocks = deDivRoundUp32(numValues, 5); |
| for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) |
| { |
| const int numValuesInBlock = blockNdx == numBlocks - 1 ? numValues - 5 * (numBlocks - 1) : 5; |
| decodeISETritBlock(&dst[5 * blockNdx], numValuesInBlock, data, params.numBits); |
| } |
| } |
| else if (params.mode == ISEMODE_QUINT) |
| { |
| const int numBlocks = deDivRoundUp32(numValues, 3); |
| for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) |
| { |
| const int numValuesInBlock = blockNdx == numBlocks - 1 ? numValues - 3 * (numBlocks - 1) : 3; |
| decodeISEQuintBlock(&dst[3 * blockNdx], numValuesInBlock, data, params.numBits); |
| } |
| } |
| else |
| { |
| DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT); |
| for (int i = 0; i < numValues; i++) |
| decodeISEBitBlock(&dst[i], data, params.numBits); |
| } |
| } |
| |
| void unquantizeColorEndpoints(uint32_t *dst, const ISEDecodedResult *iseResults, int numEndpoints, |
| const ISEParams &iseParams) |
| { |
| if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT) |
| { |
| const int rangeCase = iseParams.numBits * 2 - (iseParams.mode == ISEMODE_TRIT ? 2 : 1); |
| DE_ASSERT(de::inRange(rangeCase, 0, 10)); |
| static const uint32_t Ca[11] = {204, 113, 93, 54, 44, 26, 22, 13, 11, 6, 5}; |
| const uint32_t C = Ca[rangeCase]; |
| |
| for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++) |
| { |
| const uint32_t a = getBit(iseResults[endpointNdx].m, 0); |
| const uint32_t b = getBit(iseResults[endpointNdx].m, 1); |
| const uint32_t c = getBit(iseResults[endpointNdx].m, 2); |
| const uint32_t d = getBit(iseResults[endpointNdx].m, 3); |
| const uint32_t e = getBit(iseResults[endpointNdx].m, 4); |
| const uint32_t f = getBit(iseResults[endpointNdx].m, 5); |
| |
| const uint32_t A = a == 0 ? 0 : (1 << 9) - 1; |
| const uint32_t B = rangeCase == 0 ? 0 : |
| rangeCase == 1 ? 0 : |
| rangeCase == 2 ? (b << 8) | (b << 4) | (b << 2) | (b << 1) : |
| rangeCase == 3 ? (b << 8) | (b << 3) | (b << 2) : |
| rangeCase == 4 ? (c << 8) | (b << 7) | (c << 3) | (b << 2) | (c << 1) | (b << 0) : |
| rangeCase == 5 ? (c << 8) | (b << 7) | (c << 2) | (b << 1) | (c << 0) : |
| rangeCase == 6 ? (d << 8) | (c << 7) | (b << 6) | (d << 2) | (c << 1) | (b << 0) : |
| rangeCase == 7 ? (d << 8) | (c << 7) | (b << 6) | (d << 1) | (c << 0) : |
| rangeCase == 8 ? (e << 8) | (d << 7) | (c << 6) | (b << 5) | (e << 1) | (d << 0) : |
| rangeCase == 9 ? (e << 8) | (d << 7) | (c << 6) | (b << 5) | (e << 0) : |
| rangeCase == 10 ? (f << 8) | (e << 7) | (d << 6) | (c << 5) | (b << 4) | (f << 0) : |
| (uint32_t)-1; |
| DE_ASSERT(B != (uint32_t)-1); |
| |
| dst[endpointNdx] = (((iseResults[endpointNdx].tq * C + B) ^ A) >> 2) | (A & 0x80); |
| } |
| } |
| else |
| { |
| DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT); |
| |
| for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++) |
| dst[endpointNdx] = bitReplicationScale(iseResults[endpointNdx].v, iseParams.numBits, 8); |
| } |
| } |
| |
| inline void bitTransferSigned(int32_t &a, int32_t &b) |
| { |
| b >>= 1; |
| b |= a & 0x80; |
| a >>= 1; |
| a &= 0x3f; |
| if (isBitSet(a, 5)) |
| a -= 0x40; |
| } |
| |
| inline UVec4 clampedRGBA(const IVec4 &rgba) |
| { |
| return UVec4(de::clamp(rgba.x(), 0, 0xff), de::clamp(rgba.y(), 0, 0xff), de::clamp(rgba.z(), 0, 0xff), |
| de::clamp(rgba.w(), 0, 0xff)); |
| } |
| |
| inline IVec4 blueContract(int r, int g, int b, int a) |
| { |
| return IVec4((r + b) >> 1, (g + b) >> 1, b, a); |
| } |
| |
| inline bool isColorEndpointModeHDR(uint32_t mode) |
| { |
| return mode == 2 || mode == 3 || mode == 7 || mode == 11 || mode == 14 || mode == 15; |
| } |
| |
| void decodeHDREndpointMode7(UVec4 &e0, UVec4 &e1, uint32_t v0, uint32_t v1, uint32_t v2, uint32_t v3) |
| { |
| const uint32_t m10 = getBit(v1, 7) | (getBit(v2, 7) << 1); |
| const uint32_t m23 = getBits(v0, 6, 7); |
| const uint32_t majComp = m10 != 3 ? m10 : m23 != 3 ? m23 : 0; |
| const uint32_t mode = m10 != 3 ? m23 : m23 != 3 ? 4 : 5; |
| |
| int32_t red = (int32_t)getBits(v0, 0, 5); |
| int32_t green = (int32_t)getBits(v1, 0, 4); |
| int32_t blue = (int32_t)getBits(v2, 0, 4); |
| int32_t scale = (int32_t)getBits(v3, 0, 4); |
| |
| { |
| #define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT) |
| #define ASSIGN_X_BITS(V0, S0, V1, S1, V2, S2, V3, S3, V4, S4, V5, S5, V6, S6) \ |
| do \ |
| { \ |
| SHOR(V0, S0, x0); \ |
| SHOR(V1, S1, x1); \ |
| SHOR(V2, S2, x2); \ |
| SHOR(V3, S3, x3); \ |
| SHOR(V4, S4, x4); \ |
| SHOR(V5, S5, x5); \ |
| SHOR(V6, S6, x6); \ |
| } while (false) |
| |
| const uint32_t x0 = getBit(v1, 6); |
| const uint32_t x1 = getBit(v1, 5); |
| const uint32_t x2 = getBit(v2, 6); |
| const uint32_t x3 = getBit(v2, 5); |
| const uint32_t x4 = getBit(v3, 7); |
| const uint32_t x5 = getBit(v3, 6); |
| const uint32_t x6 = getBit(v3, 5); |
| |
| int32_t &R = red; |
| int32_t &G = green; |
| int32_t &B = blue; |
| int32_t &S = scale; |
| |
| switch (mode) |
| { |
| case 0: |
| ASSIGN_X_BITS(R, 9, R, 8, R, 7, R, 10, R, 6, S, 6, S, 5); |
| break; |
| case 1: |
| ASSIGN_X_BITS(R, 8, G, 5, R, 7, B, 5, R, 6, R, 10, R, 9); |
| break; |
| case 2: |
| ASSIGN_X_BITS(R, 9, R, 8, R, 7, R, 6, S, 7, S, 6, S, 5); |
| break; |
| case 3: |
| ASSIGN_X_BITS(R, 8, G, 5, R, 7, B, 5, R, 6, S, 6, S, 5); |
| break; |
| case 4: |
| ASSIGN_X_BITS(G, 6, G, 5, B, 6, B, 5, R, 6, R, 7, S, 5); |
| break; |
| case 5: |
| ASSIGN_X_BITS(G, 6, G, 5, B, 6, B, 5, R, 6, S, 6, S, 5); |
| break; |
| default: |
| DE_ASSERT(false); |
| } |
| |
| #undef ASSIGN_X_BITS |
| #undef SHOR |
| } |
| |
| static const int shiftAmounts[] = {1, 1, 2, 3, 4, 5}; |
| DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(shiftAmounts)); |
| |
| red <<= shiftAmounts[mode]; |
| green <<= shiftAmounts[mode]; |
| blue <<= shiftAmounts[mode]; |
| scale <<= shiftAmounts[mode]; |
| |
| if (mode != 5) |
| { |
| green = red - green; |
| blue = red - blue; |
| } |
| |
| if (majComp == 1) |
| std::swap(red, green); |
| else if (majComp == 2) |
| std::swap(red, blue); |
| |
| e0 = UVec4(de::clamp(red - scale, 0, 0xfff), de::clamp(green - scale, 0, 0xfff), de::clamp(blue - scale, 0, 0xfff), |
| 0x780); |
| |
| e1 = UVec4(de::clamp(red, 0, 0xfff), de::clamp(green, 0, 0xfff), de::clamp(blue, 0, 0xfff), 0x780); |
| } |
| |
| void decodeHDREndpointMode11(UVec4 &e0, UVec4 &e1, uint32_t v0, uint32_t v1, uint32_t v2, uint32_t v3, uint32_t v4, |
| uint32_t v5) |
| { |
| const uint32_t major = (getBit(v5, 7) << 1) | getBit(v4, 7); |
| |
| if (major == 3) |
| { |
| e0 = UVec4(v0 << 4, v2 << 4, getBits(v4, 0, 6) << 5, 0x780); |
| e1 = UVec4(v1 << 4, v3 << 4, getBits(v5, 0, 6) << 5, 0x780); |
| } |
| else |
| { |
| const uint32_t mode = (getBit(v3, 7) << 2) | (getBit(v2, 7) << 1) | getBit(v1, 7); |
| |
| int32_t a = (int32_t)((getBit(v1, 6) << 8) | v0); |
| int32_t c = (int32_t)(getBits(v1, 0, 5)); |
| int32_t b0 = (int32_t)(getBits(v2, 0, 5)); |
| int32_t b1 = (int32_t)(getBits(v3, 0, 5)); |
| int32_t d0 = (int32_t)(getBits(v4, 0, 4)); |
| int32_t d1 = (int32_t)(getBits(v5, 0, 4)); |
| |
| { |
| #define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT) |
| #define ASSIGN_X_BITS(V0, S0, V1, S1, V2, S2, V3, S3, V4, S4, V5, S5) \ |
| do \ |
| { \ |
| SHOR(V0, S0, x0); \ |
| SHOR(V1, S1, x1); \ |
| SHOR(V2, S2, x2); \ |
| SHOR(V3, S3, x3); \ |
| SHOR(V4, S4, x4); \ |
| SHOR(V5, S5, x5); \ |
| } while (false) |
| |
| const uint32_t x0 = getBit(v2, 6); |
| const uint32_t x1 = getBit(v3, 6); |
| const uint32_t x2 = getBit(v4, 6); |
| const uint32_t x3 = getBit(v5, 6); |
| const uint32_t x4 = getBit(v4, 5); |
| const uint32_t x5 = getBit(v5, 5); |
| |
| switch (mode) |
| { |
| case 0: |
| ASSIGN_X_BITS(b0, 6, b1, 6, d0, 6, d1, 6, d0, 5, d1, 5); |
| break; |
| case 1: |
| ASSIGN_X_BITS(b0, 6, b1, 6, b0, 7, b1, 7, d0, 5, d1, 5); |
| break; |
| case 2: |
| ASSIGN_X_BITS(a, 9, c, 6, d0, 6, d1, 6, d0, 5, d1, 5); |
| break; |
| case 3: |
| ASSIGN_X_BITS(b0, 6, b1, 6, a, 9, c, 6, d0, 5, d1, 5); |
| break; |
| case 4: |
| ASSIGN_X_BITS(b0, 6, b1, 6, b0, 7, b1, 7, a, 9, a, 10); |
| break; |
| case 5: |
| ASSIGN_X_BITS(a, 9, a, 10, c, 7, c, 6, d0, 5, d1, 5); |
| break; |
| case 6: |
| ASSIGN_X_BITS(b0, 6, b1, 6, a, 11, c, 6, a, 9, a, 10); |
| break; |
| case 7: |
| ASSIGN_X_BITS(a, 9, a, 10, a, 11, c, 6, d0, 5, d1, 5); |
| break; |
| default: |
| DE_ASSERT(false); |
| } |
| |
| #undef ASSIGN_X_BITS |
| #undef SHOR |
| } |
| |
| static const int numDBits[] = {7, 6, 7, 6, 5, 6, 5, 6}; |
| DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(numDBits)); |
| |
| d0 = signExtend(d0, numDBits[mode]); |
| d1 = signExtend(d1, numDBits[mode]); |
| |
| const int shiftAmount = (mode >> 1) ^ 3; |
| a <<= shiftAmount; |
| c <<= shiftAmount; |
| b0 <<= shiftAmount; |
| b1 <<= shiftAmount; |
| d0 <<= shiftAmount; |
| d1 <<= shiftAmount; |
| |
| e0 = UVec4(de::clamp(a - c, 0, 0xfff), de::clamp(a - b0 - c - d0, 0, 0xfff), |
| de::clamp(a - b1 - c - d1, 0, 0xfff), 0x780); |
| |
| e1 = UVec4(de::clamp(a, 0, 0xfff), de::clamp(a - b0, 0, 0xfff), de::clamp(a - b1, 0, 0xfff), 0x780); |
| |
| if (major == 1) |
| { |
| std::swap(e0.x(), e0.y()); |
| std::swap(e1.x(), e1.y()); |
| } |
| else if (major == 2) |
| { |
| std::swap(e0.x(), e0.z()); |
| std::swap(e1.x(), e1.z()); |
| } |
| } |
| } |
| |
| void decodeHDREndpointMode15(UVec4 &e0, UVec4 &e1, uint32_t v0, uint32_t v1, uint32_t v2, uint32_t v3, uint32_t v4, |
| uint32_t v5, uint32_t v6In, uint32_t v7In) |
| { |
| decodeHDREndpointMode11(e0, e1, v0, v1, v2, v3, v4, v5); |
| |
| const uint32_t mode = (getBit(v7In, 7) << 1) | getBit(v6In, 7); |
| int32_t v6 = (int32_t)getBits(v6In, 0, 6); |
| int32_t v7 = (int32_t)getBits(v7In, 0, 6); |
| |
| if (mode == 3) |
| { |
| e0.w() = v6 << 5; |
| e1.w() = v7 << 5; |
| } |
| else |
| { |
| v6 |= (v7 << (mode + 1)) & 0x780; |
| v7 &= (0x3f >> mode); |
| v7 ^= 0x20 >> mode; |
| v7 -= 0x20 >> mode; |
| v6 <<= 4 - mode; |
| v7 <<= 4 - mode; |
| |
| v7 += v6; |
| v7 = de::clamp(v7, 0, 0xfff); |
| e0.w() = v6; |
| e1.w() = v7; |
| } |
| } |
| |
| void decodeColorEndpoints(ColorEndpointPair *dst, const uint32_t *unquantizedEndpoints, const uint32_t *endpointModes, |
| int numPartitions) |
| { |
| int unquantizedNdx = 0; |
| |
| for (int partitionNdx = 0; partitionNdx < numPartitions; partitionNdx++) |
| { |
| const uint32_t endpointMode = endpointModes[partitionNdx]; |
| const uint32_t *v = &unquantizedEndpoints[unquantizedNdx]; |
| UVec4 &e0 = dst[partitionNdx].e0; |
| UVec4 &e1 = dst[partitionNdx].e1; |
| |
| unquantizedNdx += computeNumColorEndpointValues(endpointMode); |
| |
| switch (endpointMode) |
| { |
| case 0: |
| e0 = UVec4(v[0], v[0], v[0], 0xff); |
| e1 = UVec4(v[1], v[1], v[1], 0xff); |
| break; |
| |
| case 1: |
| { |
| const uint32_t L0 = (v[0] >> 2) | (getBits(v[1], 6, 7) << 6); |
| const uint32_t L1 = de::min(0xffu, L0 + getBits(v[1], 0, 5)); |
| e0 = UVec4(L0, L0, L0, 0xff); |
| e1 = UVec4(L1, L1, L1, 0xff); |
| break; |
| } |
| |
| case 2: |
| { |
| const uint32_t v1Gr = v[1] >= v[0]; |
| const uint32_t y0 = v1Gr ? v[0] << 4 : (v[1] << 4) + 8; |
| const uint32_t y1 = v1Gr ? v[1] << 4 : (v[0] << 4) - 8; |
| |
| e0 = UVec4(y0, y0, y0, 0x780); |
| e1 = UVec4(y1, y1, y1, 0x780); |
| break; |
| } |
| |
| case 3: |
| { |
| const bool m = isBitSet(v[0], 7); |
| const uint32_t y0 = m ? (getBits(v[1], 5, 7) << 9) | (getBits(v[0], 0, 6) << 2) : |
| (getBits(v[1], 4, 7) << 8) | (getBits(v[0], 0, 6) << 1); |
| const uint32_t d = m ? getBits(v[1], 0, 4) << 2 : getBits(v[1], 0, 3) << 1; |
| const uint32_t y1 = de::min(0xfffu, y0 + d); |
| |
| e0 = UVec4(y0, y0, y0, 0x780); |
| e1 = UVec4(y1, y1, y1, 0x780); |
| break; |
| } |
| |
| case 4: |
| e0 = UVec4(v[0], v[0], v[0], v[2]); |
| e1 = UVec4(v[1], v[1], v[1], v[3]); |
| break; |
| |
| case 5: |
| { |
| int32_t v0 = (int32_t)v[0]; |
| int32_t v1 = (int32_t)v[1]; |
| int32_t v2 = (int32_t)v[2]; |
| int32_t v3 = (int32_t)v[3]; |
| bitTransferSigned(v1, v0); |
| bitTransferSigned(v3, v2); |
| |
| e0 = clampedRGBA(IVec4(v0, v0, v0, v2)); |
| e1 = clampedRGBA(IVec4(v0 + v1, v0 + v1, v0 + v1, v2 + v3)); |
| break; |
| } |
| |
| case 6: |
| e0 = UVec4((v[0] * v[3]) >> 8, (v[1] * v[3]) >> 8, (v[2] * v[3]) >> 8, 0xff); |
| e1 = UVec4(v[0], v[1], v[2], 0xff); |
| break; |
| |
| case 7: |
| decodeHDREndpointMode7(e0, e1, v[0], v[1], v[2], v[3]); |
| break; |
| |
| case 8: |
| if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) |
| { |
| e0 = UVec4(v[0], v[2], v[4], 0xff); |
| e1 = UVec4(v[1], v[3], v[5], 0xff); |
| } |
| else |
| { |
| e0 = blueContract(v[1], v[3], v[5], 0xff).asUint(); |
| e1 = blueContract(v[0], v[2], v[4], 0xff).asUint(); |
| } |
| break; |
| |
| case 9: |
| { |
| int32_t v0 = (int32_t)v[0]; |
| int32_t v1 = (int32_t)v[1]; |
| int32_t v2 = (int32_t)v[2]; |
| int32_t v3 = (int32_t)v[3]; |
| int32_t v4 = (int32_t)v[4]; |
| int32_t v5 = (int32_t)v[5]; |
| bitTransferSigned(v1, v0); |
| bitTransferSigned(v3, v2); |
| bitTransferSigned(v5, v4); |
| |
| if (v1 + v3 + v5 >= 0) |
| { |
| e0 = clampedRGBA(IVec4(v0, v2, v4, 0xff)); |
| e1 = clampedRGBA(IVec4(v0 + v1, v2 + v3, v4 + v5, 0xff)); |
| } |
| else |
| { |
| e0 = clampedRGBA(blueContract(v0 + v1, v2 + v3, v4 + v5, 0xff)); |
| e1 = clampedRGBA(blueContract(v0, v2, v4, 0xff)); |
| } |
| break; |
| } |
| |
| case 10: |
| e0 = UVec4((v[0] * v[3]) >> 8, (v[1] * v[3]) >> 8, (v[2] * v[3]) >> 8, v[4]); |
| e1 = UVec4(v[0], v[1], v[2], v[5]); |
| break; |
| |
| case 11: |
| decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]); |
| break; |
| |
| case 12: |
| if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) |
| { |
| e0 = UVec4(v[0], v[2], v[4], v[6]); |
| e1 = UVec4(v[1], v[3], v[5], v[7]); |
| } |
| else |
| { |
| e0 = clampedRGBA(blueContract(v[1], v[3], v[5], v[7])); |
| e1 = clampedRGBA(blueContract(v[0], v[2], v[4], v[6])); |
| } |
| break; |
| |
| case 13: |
| { |
| int32_t v0 = (int32_t)v[0]; |
| int32_t v1 = (int32_t)v[1]; |
| int32_t v2 = (int32_t)v[2]; |
| int32_t v3 = (int32_t)v[3]; |
| int32_t v4 = (int32_t)v[4]; |
| int32_t v5 = (int32_t)v[5]; |
| int32_t v6 = (int32_t)v[6]; |
| int32_t v7 = (int32_t)v[7]; |
| bitTransferSigned(v1, v0); |
| bitTransferSigned(v3, v2); |
| bitTransferSigned(v5, v4); |
| bitTransferSigned(v7, v6); |
| |
| if (v1 + v3 + v5 >= 0) |
| { |
| e0 = clampedRGBA(IVec4(v0, v2, v4, v6)); |
| e1 = clampedRGBA(IVec4(v0 + v1, v2 + v3, v4 + v5, v6 + v7)); |
| } |
| else |
| { |
| e0 = clampedRGBA(blueContract(v0 + v1, v2 + v3, v4 + v5, v6 + v7)); |
| e1 = clampedRGBA(blueContract(v0, v2, v4, v6)); |
| } |
| |
| break; |
| } |
| |
| case 14: |
| decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]); |
| e0.w() = v[6]; |
| e1.w() = v[7]; |
| break; |
| |
| case 15: |
| decodeHDREndpointMode15(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]); |
| break; |
| |
| default: |
| DE_ASSERT(false); |
| } |
| } |
| } |
| |
| void computeColorEndpoints(ColorEndpointPair *dst, const Block128 &blockData, const uint32_t *endpointModes, |
| int numPartitions, int numColorEndpointValues, const ISEParams &iseParams, |
| int numBitsAvailable) |
| { |
| const int colorEndpointDataStart = numPartitions == 1 ? 17 : 29; |
| ISEDecodedResult colorEndpointData[18]; |
| |
| { |
| BitAccessStream dataStream(blockData, colorEndpointDataStart, numBitsAvailable, true); |
| decodeISE(&colorEndpointData[0], numColorEndpointValues, dataStream, iseParams); |
| } |
| |
| { |
| uint32_t unquantizedEndpoints[18]; |
| unquantizeColorEndpoints(&unquantizedEndpoints[0], &colorEndpointData[0], numColorEndpointValues, iseParams); |
| decodeColorEndpoints(dst, &unquantizedEndpoints[0], &endpointModes[0], numPartitions); |
| } |
| } |
| |
| void unquantizeWeights(uint32_t dst[64], const ISEDecodedResult *weightGrid, const ASTCBlockMode &blockMode) |
| { |
| const int numWeights = computeNumWeights(blockMode); |
| const ISEParams &iseParams = blockMode.weightISEParams; |
| |
| if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT) |
| { |
| const int rangeCase = iseParams.numBits * 2 + (iseParams.mode == ISEMODE_QUINT ? 1 : 0); |
| |
| if (rangeCase == 0 || rangeCase == 1) |
| { |
| static const uint32_t map0[3] = {0, 32, 63}; |
| static const uint32_t map1[5] = {0, 16, 32, 47, 63}; |
| const uint32_t *const map = rangeCase == 0 ? &map0[0] : &map1[0]; |
| for (int i = 0; i < numWeights; i++) |
| { |
| DE_ASSERT(weightGrid[i].v < (rangeCase == 0 ? 3u : 5u)); |
| dst[i] = map[weightGrid[i].v]; |
| } |
| } |
| else |
| { |
| DE_ASSERT(rangeCase <= 6); |
| static const uint32_t Ca[5] = {50, 28, 23, 13, 11}; |
| const uint32_t C = Ca[rangeCase - 2]; |
| |
| for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) |
| { |
| const uint32_t a = getBit(weightGrid[weightNdx].m, 0); |
| const uint32_t b = getBit(weightGrid[weightNdx].m, 1); |
| const uint32_t c = getBit(weightGrid[weightNdx].m, 2); |
| |
| const uint32_t A = a == 0 ? 0 : (1 << 7) - 1; |
| const uint32_t B = rangeCase == 2 ? 0 : |
| rangeCase == 3 ? 0 : |
| rangeCase == 4 ? (b << 6) | (b << 2) | (b << 0) : |
| rangeCase == 5 ? (b << 6) | (b << 1) : |
| rangeCase == 6 ? (c << 6) | (b << 5) | (c << 1) | (b << 0) : |
| (uint32_t)-1; |
| |
| dst[weightNdx] = (((weightGrid[weightNdx].tq * C + B) ^ A) >> 2) | (A & 0x20); |
| } |
| } |
| } |
| else |
| { |
| DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT); |
| |
| for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) |
| dst[weightNdx] = bitReplicationScale(weightGrid[weightNdx].v, iseParams.numBits, 6); |
| } |
| |
| for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) |
| dst[weightNdx] += dst[weightNdx] > 32 ? 1 : 0; |
| |
| // Initialize nonexistent weights to poison values |
| for (int weightNdx = numWeights; weightNdx < 64; weightNdx++) |
| dst[weightNdx] = ~0u; |
| } |
| |
| void interpolateWeights(TexelWeightPair *dst, const uint32_t (&unquantizedWeights)[64], int blockWidth, int blockHeight, |
| const ASTCBlockMode &blockMode) |
| { |
| const int numWeightsPerTexel = blockMode.isDualPlane ? 2 : 1; |
| const uint32_t scaleX = (1024 + blockWidth / 2) / (blockWidth - 1); |
| const uint32_t scaleY = (1024 + blockHeight / 2) / (blockHeight - 1); |
| |
| DE_ASSERT(blockMode.weightGridWidth * blockMode.weightGridHeight * numWeightsPerTexel <= |
| DE_LENGTH_OF_ARRAY(unquantizedWeights)); |
| |
| for (int texelY = 0; texelY < blockHeight; texelY++) |
| { |
| for (int texelX = 0; texelX < blockWidth; texelX++) |
| { |
| const uint32_t gX = (scaleX * texelX * (blockMode.weightGridWidth - 1) + 32) >> 6; |
| const uint32_t gY = (scaleY * texelY * (blockMode.weightGridHeight - 1) + 32) >> 6; |
| const uint32_t jX = gX >> 4; |
| const uint32_t jY = gY >> 4; |
| const uint32_t fX = gX & 0xf; |
| const uint32_t fY = gY & 0xf; |
| |
| const uint32_t w11 = (fX * fY + 8) >> 4; |
| const uint32_t w10 = fY - w11; |
| const uint32_t w01 = fX - w11; |
| const uint32_t w00 = 16 - fX - fY + w11; |
| |
| const uint32_t i00 = jY * blockMode.weightGridWidth + jX; |
| const uint32_t i01 = i00 + 1; |
| const uint32_t i10 = i00 + blockMode.weightGridWidth; |
| const uint32_t i11 = i00 + blockMode.weightGridWidth + 1; |
| |
| // These addresses can be out of bounds, but respective weights will be 0 then. |
| DE_ASSERT(deInBounds32(i00, 0, blockMode.weightGridWidth * blockMode.weightGridHeight) || w00 == 0); |
| DE_ASSERT(deInBounds32(i01, 0, blockMode.weightGridWidth * blockMode.weightGridHeight) || w01 == 0); |
| DE_ASSERT(deInBounds32(i10, 0, blockMode.weightGridWidth * blockMode.weightGridHeight) || w10 == 0); |
| DE_ASSERT(deInBounds32(i11, 0, blockMode.weightGridWidth * blockMode.weightGridHeight) || w11 == 0); |
| |
| for (int texelWeightNdx = 0; texelWeightNdx < numWeightsPerTexel; texelWeightNdx++) |
| { |
| // & 0x3f clamps address to bounds of unquantizedWeights |
| const uint32_t p00 = unquantizedWeights[(i00 * numWeightsPerTexel + texelWeightNdx) & 0x3f]; |
| const uint32_t p01 = unquantizedWeights[(i01 * numWeightsPerTexel + texelWeightNdx) & 0x3f]; |
| const uint32_t p10 = unquantizedWeights[(i10 * numWeightsPerTexel + texelWeightNdx) & 0x3f]; |
| const uint32_t p11 = unquantizedWeights[(i11 * numWeightsPerTexel + texelWeightNdx) & 0x3f]; |
| |
| dst[texelY * blockWidth + texelX].w[texelWeightNdx] = |
| (p00 * w00 + p01 * w01 + p10 * w10 + p11 * w11 + 8) >> 4; |
| } |
| } |
| } |
| } |
| |
| void computeTexelWeights(TexelWeightPair *dst, const Block128 &blockData, int blockWidth, int blockHeight, |
| const ASTCBlockMode &blockMode) |
| { |
| ISEDecodedResult weightGrid[64]; |
| |
| { |
| BitAccessStream dataStream( |
| blockData, 127, computeNumRequiredBits(blockMode.weightISEParams, computeNumWeights(blockMode)), false); |
| decodeISE(&weightGrid[0], computeNumWeights(blockMode), dataStream, blockMode.weightISEParams); |
| } |
| |
| { |
| uint32_t unquantizedWeights[64]; |
| unquantizeWeights(&unquantizedWeights[0], &weightGrid[0], blockMode); |
| interpolateWeights(dst, unquantizedWeights, blockWidth, blockHeight, blockMode); |
| } |
| } |
| |
| inline uint32_t hash52(uint32_t v) |
| { |
| uint32_t p = v; |
| p ^= p >> 15; |
| p -= p << 17; |
| p += p << 7; |
| p += p << 4; |
| p ^= p >> 5; |
| p += p << 16; |
| p ^= p >> 7; |
| p ^= p >> 3; |
| p ^= p << 6; |
| p ^= p >> 17; |
| return p; |
| } |
| |
| int computeTexelPartition(uint32_t seedIn, uint32_t xIn, uint32_t yIn, uint32_t zIn, int numPartitions, bool smallBlock) |
| { |
| DE_ASSERT(zIn == 0); |
| const uint32_t x = smallBlock ? xIn << 1 : xIn; |
| const uint32_t y = smallBlock ? yIn << 1 : yIn; |
| const uint32_t z = smallBlock ? zIn << 1 : zIn; |
| const uint32_t seed = seedIn + 1024 * (numPartitions - 1); |
| const uint32_t rnum = hash52(seed); |
| uint8_t seed1 = (uint8_t)(rnum & 0xf); |
| uint8_t seed2 = (uint8_t)((rnum >> 4) & 0xf); |
| uint8_t seed3 = (uint8_t)((rnum >> 8) & 0xf); |
| uint8_t seed4 = (uint8_t)((rnum >> 12) & 0xf); |
| uint8_t seed5 = (uint8_t)((rnum >> 16) & 0xf); |
| uint8_t seed6 = (uint8_t)((rnum >> 20) & 0xf); |
| uint8_t seed7 = (uint8_t)((rnum >> 24) & 0xf); |
| uint8_t seed8 = (uint8_t)((rnum >> 28) & 0xf); |
| uint8_t seed9 = (uint8_t)((rnum >> 18) & 0xf); |
| uint8_t seed10 = (uint8_t)((rnum >> 22) & 0xf); |
| uint8_t seed11 = (uint8_t)((rnum >> 26) & 0xf); |
| uint8_t seed12 = (uint8_t)(((rnum >> 30) | (rnum << 2)) & 0xf); |
| |
| seed1 = (uint8_t)(seed1 * seed1); |
| seed2 = (uint8_t)(seed2 * seed2); |
| seed3 = (uint8_t)(seed3 * seed3); |
| seed4 = (uint8_t)(seed4 * seed4); |
| seed5 = (uint8_t)(seed5 * seed5); |
| seed6 = (uint8_t)(seed6 * seed6); |
| seed7 = (uint8_t)(seed7 * seed7); |
| seed8 = (uint8_t)(seed8 * seed8); |
| seed9 = (uint8_t)(seed9 * seed9); |
| seed10 = (uint8_t)(seed10 * seed10); |
| seed11 = (uint8_t)(seed11 * seed11); |
| seed12 = (uint8_t)(seed12 * seed12); |
| |
| const int shA = (seed & 2) != 0 ? 4 : 5; |
| const int shB = numPartitions == 3 ? 6 : 5; |
| const int sh1 = (seed & 1) != 0 ? shA : shB; |
| const int sh2 = (seed & 1) != 0 ? shB : shA; |
| const int sh3 = (seed & 0x10) != 0 ? sh1 : sh2; |
| |
| seed1 = (uint8_t)(seed1 >> sh1); |
| seed2 = (uint8_t)(seed2 >> sh2); |
| seed3 = (uint8_t)(seed3 >> sh1); |
| seed4 = (uint8_t)(seed4 >> sh2); |
| seed5 = (uint8_t)(seed5 >> sh1); |
| seed6 = (uint8_t)(seed6 >> sh2); |
| seed7 = (uint8_t)(seed7 >> sh1); |
| seed8 = (uint8_t)(seed8 >> sh2); |
| seed9 = (uint8_t)(seed9 >> sh3); |
| seed10 = (uint8_t)(seed10 >> sh3); |
| seed11 = (uint8_t)(seed11 >> sh3); |
| seed12 = (uint8_t)(seed12 >> sh3); |
| |
| const int a = 0x3f & (seed1 * x + seed2 * y + seed11 * z + (rnum >> 14)); |
| const int b = 0x3f & (seed3 * x + seed4 * y + seed12 * z + (rnum >> 10)); |
| const int c = numPartitions >= 3 ? 0x3f & (seed5 * x + seed6 * y + seed9 * z + (rnum >> 6)) : 0; |
| const int d = numPartitions >= 4 ? 0x3f & (seed7 * x + seed8 * y + seed10 * z + (rnum >> 2)) : 0; |
| |
| return a >= b && a >= c && a >= d ? 0 : b >= c && b >= d ? 1 : c >= d ? 2 : 3; |
| } |
| |
| DecompressResult setTexelColors(void *dst, ColorEndpointPair *colorEndpoints, TexelWeightPair *texelWeights, int ccs, |
| uint32_t partitionIndexSeed, int numPartitions, int blockWidth, int blockHeight, |
| bool isSRGB, bool isLDRMode, const uint32_t *colorEndpointModes) |
| { |
| const bool smallBlock = blockWidth * blockHeight < 31; |
| DecompressResult result = DECOMPRESS_RESULT_VALID_BLOCK; |
| bool isHDREndpoint[4]; |
| |
| for (int i = 0; i < numPartitions; i++) |
| isHDREndpoint[i] = isColorEndpointModeHDR(colorEndpointModes[i]); |
| |
| for (int texelY = 0; texelY < blockHeight; texelY++) |
| for (int texelX = 0; texelX < blockWidth; texelX++) |
| { |
| const int texelNdx = texelY * blockWidth + texelX; |
| const int colorEndpointNdx = numPartitions == 1 ? 0 : |
| computeTexelPartition(partitionIndexSeed, texelX, texelY, |
| 0, numPartitions, smallBlock); |
| DE_ASSERT(colorEndpointNdx < numPartitions); |
| const UVec4 &e0 = colorEndpoints[colorEndpointNdx].e0; |
| const UVec4 &e1 = colorEndpoints[colorEndpointNdx].e1; |
| const TexelWeightPair &weight = texelWeights[texelNdx]; |
| |
| if (isLDRMode && isHDREndpoint[colorEndpointNdx]) |
| { |
| if (isSRGB) |
| { |
| ((uint8_t *)dst)[texelNdx * 4 + 0] = 0xff; |
| ((uint8_t *)dst)[texelNdx * 4 + 1] = 0; |
| ((uint8_t *)dst)[texelNdx * 4 + 2] = 0xff; |
| ((uint8_t *)dst)[texelNdx * 4 + 3] = 0xff; |
| } |
| else |
| { |
| ((float *)dst)[texelNdx * 4 + 0] = 1.0f; |
| ((float *)dst)[texelNdx * 4 + 1] = 0; |
| ((float *)dst)[texelNdx * 4 + 2] = 1.0f; |
| ((float *)dst)[texelNdx * 4 + 3] = 1.0f; |
| } |
| |
| result = DECOMPRESS_RESULT_ERROR; |
| } |
| else |
| { |
| for (int channelNdx = 0; channelNdx < 4; channelNdx++) |
| { |
| if (!isHDREndpoint[colorEndpointNdx] || |
| (channelNdx == 3 && colorEndpointModes[colorEndpointNdx] == |
| 14)) // \note Alpha for mode 14 is treated the same as LDR. |
| { |
| const uint32_t c0 = (e0[channelNdx] << 8) | (isSRGB ? 0x80 : e0[channelNdx]); |
| const uint32_t c1 = (e1[channelNdx] << 8) | (isSRGB ? 0x80 : e1[channelNdx]); |
| const uint32_t w = weight.w[ccs == channelNdx ? 1 : 0]; |
| const uint32_t c = (c0 * (64 - w) + c1 * w + 32) / 64; |
| |
| if (isSRGB) |
| ((uint8_t *)dst)[texelNdx * 4 + channelNdx] = (uint8_t)((c & 0xff00) >> 8); |
| else |
| ((float *)dst)[texelNdx * 4 + channelNdx] = c == 65535 ? 1.0f : (float)c / 65536.0f; |
| } |
| else |
| { |
| DE_STATIC_ASSERT((de::meta::TypesSame<deFloat16, uint16_t>::Value)); |
| const uint32_t c0 = e0[channelNdx] << 4; |
| const uint32_t c1 = e1[channelNdx] << 4; |
| const uint32_t w = weight.w[ccs == channelNdx ? 1 : 0]; |
| const uint32_t c = (c0 * (64 - w) + c1 * w + 32) / 64; |
| const uint32_t e = getBits(c, 11, 15); |
| const uint32_t m = getBits(c, 0, 10); |
| const uint32_t mt = m < 512 ? 3 * m : m >= 1536 ? 5 * m - 2048 : 4 * m - 512; |
| const deFloat16 cf = (deFloat16)((e << 10) + (mt >> 3)); |
| |
| ((float *)dst)[texelNdx * 4 + channelNdx] = deFloat16To32(isFloat16InfOrNan(cf) ? 0x7bff : cf); |
| } |
| } |
| } |
| } |
| |
| return result; |
| } |
| |
| DecompressResult decompressBlock(void *dst, const Block128 &blockData, int blockWidth, int blockHeight, bool isSRGB, |
| bool isLDR) |
| { |
| DE_ASSERT(isLDR || !isSRGB); |
| |
| // Decode block mode. |
| |
| const ASTCBlockMode blockMode = getASTCBlockMode(blockData.getBits(0, 10)); |
| |
| // Check for block mode errors. |
| |
| if (blockMode.isError) |
| { |
| setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); |
| return DECOMPRESS_RESULT_ERROR; |
| } |
| |
| // Separate path for void-extent. |
| |
| if (blockMode.isVoidExtent) |
| return decodeVoidExtentBlock(dst, blockData, blockWidth, blockHeight, isSRGB, isLDR); |
| |
| // Compute weight grid values. |
| |
| const int numWeights = computeNumWeights(blockMode); |
| const int numWeightDataBits = computeNumRequiredBits(blockMode.weightISEParams, numWeights); |
| const int numPartitions = (int)blockData.getBits(11, 12) + 1; |
| |
| // Check for errors in weight grid, partition and dual-plane parameters. |
| |
| if (numWeights > 64 || numWeightDataBits > 96 || numWeightDataBits < 24 || blockMode.weightGridWidth > blockWidth || |
| blockMode.weightGridHeight > blockHeight || (numPartitions == 4 && blockMode.isDualPlane)) |
| { |
| setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); |
| return DECOMPRESS_RESULT_ERROR; |
| } |
| |
| // Compute number of bits available for color endpoint data. |
| |
| const bool isSingleUniqueCem = numPartitions == 1 || blockData.getBits(23, 24) == 0; |
| const int numConfigDataBits = (numPartitions == 1 ? 17 : |
| isSingleUniqueCem ? 29 : |
| 25 + 3 * numPartitions) + |
| (blockMode.isDualPlane ? 2 : 0); |
| const int numBitsForColorEndpoints = 128 - numWeightDataBits - numConfigDataBits; |
| const int extraCemBitsStart = 127 - numWeightDataBits - |
| (isSingleUniqueCem ? -1 : |
| numPartitions == 4 ? 7 : |
| numPartitions == 3 ? 4 : |
| numPartitions == 2 ? 1 : |
| 0); |
| // Decode color endpoint modes. |
| |
| uint32_t colorEndpointModes[4]; |
| decodeColorEndpointModes(&colorEndpointModes[0], blockData, numPartitions, extraCemBitsStart); |
| |
| const int numColorEndpointValues = computeNumColorEndpointValues(colorEndpointModes, numPartitions); |
| |
| // Check for errors in color endpoint value count. |
| |
| if (numColorEndpointValues > 18 || numBitsForColorEndpoints < deDivRoundUp32(13 * numColorEndpointValues, 5)) |
| { |
| setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); |
| return DECOMPRESS_RESULT_ERROR; |
| } |
| |
| // Compute color endpoints. |
| |
| ColorEndpointPair colorEndpoints[4]; |
| computeColorEndpoints(&colorEndpoints[0], blockData, &colorEndpointModes[0], numPartitions, numColorEndpointValues, |
| computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues), |
| numBitsForColorEndpoints); |
| |
| // Compute texel weights. |
| |
| TexelWeightPair texelWeights[MAX_BLOCK_WIDTH * MAX_BLOCK_HEIGHT]; |
| computeTexelWeights(&texelWeights[0], blockData, blockWidth, blockHeight, blockMode); |
| |
| // Set texel colors. |
| |
| const int ccs = blockMode.isDualPlane ? (int)blockData.getBits(extraCemBitsStart - 2, extraCemBitsStart - 1) : -1; |
| const uint32_t partitionIndexSeed = numPartitions > 1 ? blockData.getBits(13, 22) : (uint32_t)-1; |
| |
| return setTexelColors(dst, &colorEndpoints[0], &texelWeights[0], ccs, partitionIndexSeed, numPartitions, blockWidth, |
| blockHeight, isSRGB, isLDR, &colorEndpointModes[0]); |
| } |
| |
| void decompress(const PixelBufferAccess &dst, const uint8_t *data, bool isSRGB, bool isLDR) |
| { |
| DE_ASSERT(isLDR || !isSRGB); |
| |
| const int blockWidth = dst.getWidth(); |
| const int blockHeight = dst.getHeight(); |
| |
| union |
| { |
| uint8_t sRGB[MAX_BLOCK_WIDTH * MAX_BLOCK_HEIGHT * 4]; |
| float linear[MAX_BLOCK_WIDTH * MAX_BLOCK_HEIGHT * 4]; |
| } decompressedBuffer; |
| |
| const Block128 blockData(data); |
| decompressBlock(isSRGB ? (void *)&decompressedBuffer.sRGB[0] : (void *)&decompressedBuffer.linear[0], blockData, |
| dst.getWidth(), dst.getHeight(), isSRGB, isLDR); |
| |
| if (isSRGB) |
| { |
| for (int i = 0; i < blockHeight; i++) |
| for (int j = 0; j < blockWidth; j++) |
| { |
| dst.setPixel(IVec4(decompressedBuffer.sRGB[(i * blockWidth + j) * 4 + 0], |
| decompressedBuffer.sRGB[(i * blockWidth + j) * 4 + 1], |
| decompressedBuffer.sRGB[(i * blockWidth + j) * 4 + 2], |
| decompressedBuffer.sRGB[(i * blockWidth + j) * 4 + 3]), |
| j, i); |
| } |
| } |
| else |
| { |
| for (int i = 0; i < blockHeight; i++) |
| for (int j = 0; j < blockWidth; j++) |
| { |
| dst.setPixel(Vec4(decompressedBuffer.linear[(i * blockWidth + j) * 4 + 0], |
| decompressedBuffer.linear[(i * blockWidth + j) * 4 + 1], |
| decompressedBuffer.linear[(i * blockWidth + j) * 4 + 2], |
| decompressedBuffer.linear[(i * blockWidth + j) * 4 + 3]), |
| j, i); |
| } |
| } |
| } |
| |
| // Helper class for setting bits in a 128-bit block. |
| class AssignBlock128 |
| { |
| private: |
| typedef uint64_t Word; |
| |
| enum |
| { |
| WORD_BYTES = sizeof(Word), |
| WORD_BITS = 8 * WORD_BYTES, |
| NUM_WORDS = 128 / WORD_BITS |
| }; |
| |
| DE_STATIC_ASSERT(128 % WORD_BITS == 0); |
| |
| public: |
| AssignBlock128(void) |
| { |
| for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++) |
| m_words[wordNdx] = 0; |
| } |
| |
| void setBit(int ndx, uint32_t val) |
| { |
| DE_ASSERT(de::inBounds(ndx, 0, 128)); |
| DE_ASSERT((val & 1) == val); |
| const int wordNdx = ndx / WORD_BITS; |
| const int bitNdx = ndx % WORD_BITS; |
| m_words[wordNdx] = (m_words[wordNdx] & ~((Word)1 << bitNdx)) | ((Word)val << bitNdx); |
| } |
| |
| void setBits(int low, int high, uint32_t bits) |
| { |
| DE_ASSERT(de::inBounds(low, 0, 128)); |
| DE_ASSERT(de::inBounds(high, 0, 128)); |
| DE_ASSERT(de::inRange(high - low + 1, 0, 32)); |
| DE_ASSERT((bits & (((Word)1 << (high - low + 1)) - 1)) == bits); |
| |
| if (high - low + 1 == 0) |
| return; |
| |
| const int word0Ndx = low / WORD_BITS; |
| const int word1Ndx = high / WORD_BITS; |
| const int lowNdxInW0 = low % WORD_BITS; |
| |
| if (word0Ndx == word1Ndx) |
| m_words[word0Ndx] = |
| (m_words[word0Ndx] & ~((((Word)1 << (high - low + 1)) - 1) << lowNdxInW0)) | ((Word)bits << lowNdxInW0); |
| else |
| { |
| DE_ASSERT(word1Ndx == word0Ndx + 1); |
| |
| const int highNdxInW1 = high % WORD_BITS; |
| const int numBitsToSetInW0 = WORD_BITS - lowNdxInW0; |
| const Word bitsLowMask = ((Word)1 << numBitsToSetInW0) - 1; |
| |
| m_words[word0Ndx] = |
| (m_words[word0Ndx] & (((Word)1 << lowNdxInW0) - 1)) | (((Word)bits & bitsLowMask) << lowNdxInW0); |
| m_words[word1Ndx] = (m_words[word1Ndx] & ~(((Word)1 << (highNdxInW1 + 1)) - 1)) | |
| (((Word)bits & ~bitsLowMask) >> numBitsToSetInW0); |
| } |
| } |
| |
| void assignToMemory(uint8_t *dst) const |
| { |
| for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++) |
| { |
| for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++) |
| dst[wordNdx * WORD_BYTES + byteNdx] = (uint8_t)((m_words[wordNdx] >> (8 * byteNdx)) & 0xff); |
| } |
| } |
| |
| void pushBytesToVector(vector<uint8_t> &dst) const |
| { |
| const int assignStartIndex = (int)dst.size(); |
| dst.resize(dst.size() + BLOCK_SIZE_BYTES); |
| assignToMemory(&dst[assignStartIndex]); |
| } |
| |
| private: |
| Word m_words[NUM_WORDS]; |
| }; |
| |
| // A helper for sequential access into a AssignBlock128. |
| class BitAssignAccessStream |
| { |
| public: |
| BitAssignAccessStream(AssignBlock128 &dst, int startNdxInSrc, int length, bool forward) |
| : m_dst(dst) |
| , m_startNdxInSrc(startNdxInSrc) |
| , m_length(length) |
| , m_forward(forward) |
| , m_ndx(0) |
| { |
| } |
| |
| // Set the next num bits. Bits at positions greater than or equal to m_length are not touched. |
| void setNext(int num, uint32_t bits) |
| { |
| DE_ASSERT((bits & (((uint64_t)1 << num) - 1)) == bits); |
| |
| if (num == 0 || m_ndx >= m_length) |
| return; |
| |
| const int end = m_ndx + num; |
| const int numBitsToDst = de::max(0, de::min(m_length, end) - m_ndx); |
| const int low = m_ndx; |
| const int high = m_ndx + numBitsToDst - 1; |
| const uint32_t actualBits = getBits(bits, 0, numBitsToDst - 1); |
| |
| m_ndx += num; |
| |
| return m_forward ? |
| m_dst.setBits(m_startNdxInSrc + low, m_startNdxInSrc + high, actualBits) : |
| m_dst.setBits(m_startNdxInSrc - high, m_startNdxInSrc - low, reverseBits(actualBits, numBitsToDst)); |
| } |
| |
| private: |
| AssignBlock128 &m_dst; |
| const int m_startNdxInSrc; |
| const int m_length; |
| const bool m_forward; |
| |
| int m_ndx; |
| }; |
| |
| struct VoidExtentParams |
| { |
| DE_STATIC_ASSERT((de::meta::TypesSame<deFloat16, uint16_t>::Value)); |
| bool isHDR; |
| uint16_t r; |
| uint16_t g; |
| uint16_t b; |
| uint16_t a; |
| // \note Currently extent coordinates are all set to all-ones. |
| |
| VoidExtentParams(bool isHDR_, uint16_t r_, uint16_t g_, uint16_t b_, uint16_t a_) |
| : isHDR(isHDR_) |
| , r(r_) |
| , g(g_) |
| , b(b_) |
| , a(a_) |
| { |
| } |
| }; |
| |
| static AssignBlock128 generateVoidExtentBlock(const VoidExtentParams ¶ms) |
| { |
| AssignBlock128 block; |
| |
| block.setBits(0, 8, 0x1fc); // \note Marks void-extent block. |
| block.setBit(9, params.isHDR); |
| block.setBits(10, 11, 3); // \note Spec shows that these bits are both set, although they serve no purpose. |
| |
| // Extent coordinates - currently all-ones. |
| block.setBits(12, 24, 0x1fff); |
| block.setBits(25, 37, 0x1fff); |
| block.setBits(38, 50, 0x1fff); |
| block.setBits(51, 63, 0x1fff); |
| |
| DE_ASSERT(!params.isHDR || (!isFloat16InfOrNan(params.r) && !isFloat16InfOrNan(params.g) && |
| !isFloat16InfOrNan(params.b) && !isFloat16InfOrNan(params.a))); |
| |
| block.setBits(64, 79, params.r); |
| block.setBits(80, 95, params.g); |
| block.setBits(96, 111, params.b); |
| block.setBits(112, 127, params.a); |
| |
| return block; |
| } |
| |
| // An input array of ISE inputs for an entire ASTC block. Can be given as either single values in the |
| // range [0, maximumValueOfISERange] or as explicit block value specifications. The latter is needed |
| // so we can test all possible values of T and Q in a block, since multiple T or Q values may map |
| // to the same set of decoded values. |
| struct ISEInput |
| { |
| struct Block |
| { |
| uint32_t tOrQValue; //!< The 8-bit T or 7-bit Q in a trit or quint ISE block. |
| uint32_t bitValues[5]; |
| }; |
| |
| bool isGivenInBlockForm; |
| union |
| { |
| //!< \note 64 comes from the maximum number of weight values in an ASTC block. |
| uint32_t plain[64]; |
| Block block[64]; |
| } value; |
| |
| ISEInput(void) : isGivenInBlockForm(false) |
| { |
| } |
| }; |
| |
| static inline uint32_t computeISERangeMax(const ISEParams &iseParams) |
| { |
| switch (iseParams.mode) |
| { |
| case ISEMODE_TRIT: |
| return (1u << iseParams.numBits) * 3 - 1; |
| case ISEMODE_QUINT: |
| return (1u << iseParams.numBits) * 5 - 1; |
| case ISEMODE_PLAIN_BIT: |
| return (1u << iseParams.numBits) - 1; |
| default: |
| DE_ASSERT(false); |
| return -1; |
| } |
| } |
| |
| struct NormalBlockParams |
| { |
| int weightGridWidth; |
| int weightGridHeight; |
| ISEParams weightISEParams; |
| bool isDualPlane; |
| uint32_t ccs; //! \note Irrelevant if !isDualPlane. |
| int numPartitions; |
| uint32_t colorEndpointModes[4]; |
| // \note Below members are irrelevant if numPartitions == 1. |
| bool isMultiPartSingleCemMode; //! \note If true, the single CEM is at colorEndpointModes[0]. |
| uint32_t partitionSeed; |
| |
| NormalBlockParams(void) |
| : weightGridWidth(-1) |
| , weightGridHeight(-1) |
| , weightISEParams(ISEMODE_LAST, -1) |
| , isDualPlane(true) |
| , ccs((uint32_t)-1) |
| , numPartitions(-1) |
| , isMultiPartSingleCemMode(false) |
| , partitionSeed((uint32_t)-1) |
| { |
| colorEndpointModes[0] = 0; |
| colorEndpointModes[1] = 0; |
| colorEndpointModes[2] = 0; |
| colorEndpointModes[3] = 0; |
| } |
| }; |
| |
| struct NormalBlockISEInputs |
| { |
| ISEInput weight; |
| ISEInput endpoint; |
| |
| NormalBlockISEInputs(void) : weight(), endpoint() |
| { |
| } |
| }; |
| |
| static inline int computeNumWeights(const NormalBlockParams ¶ms) |
| { |
| return params.weightGridWidth * params.weightGridHeight * (params.isDualPlane ? 2 : 1); |
| } |
| |
| static inline int computeNumBitsForColorEndpoints(const NormalBlockParams ¶ms) |
| { |
| const int numWeightBits = computeNumRequiredBits(params.weightISEParams, computeNumWeights(params)); |
| const int numConfigDataBits = (params.numPartitions == 1 ? 17 : |
| params.isMultiPartSingleCemMode ? 29 : |
| 25 + 3 * params.numPartitions) + |
| (params.isDualPlane ? 2 : 0); |
| |
| return 128 - numWeightBits - numConfigDataBits; |
| } |
| |
| static inline int computeNumColorEndpointValues(const uint32_t *endpointModes, int numPartitions, |
| bool isMultiPartSingleCemMode) |
| { |
| if (isMultiPartSingleCemMode) |
| return numPartitions * computeNumColorEndpointValues(endpointModes[0]); |
| else |
| { |
| int result = 0; |
| for (int i = 0; i < numPartitions; i++) |
| result += computeNumColorEndpointValues(endpointModes[i]); |
| return result; |
| } |
| } |
| |
| static inline bool isValidBlockParams(const NormalBlockParams ¶ms, int blockWidth, int blockHeight) |
| { |
| const int numWeights = computeNumWeights(params); |
| const int numWeightBits = computeNumRequiredBits(params.weightISEParams, numWeights); |
| const int numColorEndpointValues = computeNumColorEndpointValues( |
| ¶ms.colorEndpointModes[0], params.numPartitions, params.isMultiPartSingleCemMode); |
| const int numBitsForColorEndpoints = computeNumBitsForColorEndpoints(params); |
| |
| return numWeights <= 64 && de::inRange(numWeightBits, 24, 96) && params.weightGridWidth <= blockWidth && |
| params.weightGridHeight <= blockHeight && !(params.numPartitions == 4 && params.isDualPlane) && |
| numColorEndpointValues <= 18 && numBitsForColorEndpoints >= deDivRoundUp32(13 * numColorEndpointValues, 5); |
| } |
| |
| // Write bits 0 to 10 of an ASTC block. |
| static void writeBlockMode(AssignBlock128 &dst, const NormalBlockParams &blockParams) |
| { |
| const uint32_t d = blockParams.isDualPlane != 0; |
| // r and h initialized in switch below. |
| uint32_t r; |
| uint32_t h; |
| // a, b and blockModeLayoutNdx initialized in block mode layout index detecting loop below. |
| uint32_t a = (uint32_t)-1; |
| uint32_t b = (uint32_t)-1; |
| int blockModeLayoutNdx; |
| |
| // Find the values of r and h (ISE range). |
| switch (computeISERangeMax(blockParams.weightISEParams)) |
| { |
| case 1: |
| r = 2; |
| h = 0; |
| break; |
| case 2: |
| r = 3; |
| h = 0; |
| break; |
| case 3: |
| r = 4; |
| h = 0; |
| break; |
| case 4: |
| r = 5; |
| h = 0; |
| break; |
| case 5: |
| r = 6; |
| h = 0; |
| break; |
| case 7: |
| r = 7; |
| h = 0; |
| break; |
| |
| case 9: |
| r = 2; |
| h = 1; |
| break; |
| case 11: |
| r = 3; |
| h = 1; |
| break; |
| case 15: |
| r = 4; |
| h = 1; |
| break; |
| case 19: |
| r = 5; |
| h = 1; |
| break; |
| case 23: |
| r = 6; |
| h = 1; |
| break; |
| case 31: |
| r = 7; |
| h = 1; |
| break; |
| |
| default: |
| DE_ASSERT(false); |
| r = (uint32_t)-1; |
| h = (uint32_t)-1; |
| } |
| |
| // Find block mode layout index, i.e. appropriate row in the "2d block mode layout" table in ASTC spec. |
| |
| { |
| enum BlockModeLayoutABVariable |
| { |
| Z = 0, |
| A = 1, |
| B = 2 |
| }; |
| |
| static const struct BlockModeLayout |
| { |
| int aNumBits; |
| int bNumBits; |
| BlockModeLayoutABVariable gridWidthVariableTerm; |
| int gridWidthConstantTerm; |
| BlockModeLayoutABVariable gridHeightVariableTerm; |
| int gridHeightConstantTerm; |
| } blockModeLayouts[] = {{2, 2, B, 4, A, 2}, {2, 2, B, 8, A, 2}, {2, 2, A, 2, B, 8}, {2, 1, A, 2, B, 6}, |
| {2, 1, B, 2, A, 2}, {2, 0, Z, 12, A, 2}, {2, 0, A, 2, Z, 12}, {0, 0, Z, 6, Z, 10}, |
| {0, 0, Z, 10, Z, 6}, {2, 2, A, 6, B, 6}}; |
| |
| for (blockModeLayoutNdx = 0; blockModeLayoutNdx < DE_LENGTH_OF_ARRAY(blockModeLayouts); blockModeLayoutNdx++) |
| { |
|
|