blob: 9611fabef808be61e69c1c7d8daeef0a6dfe5635 [file] [log] [blame]
/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.0 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief ASTC decompression tests
*
* \todo Parts of the block-generation code are same as in decompression
* code in tcuCompressedTexture.cpp ; could put them to some shared
* ASTC utility file.
*
* \todo Tests for void extents with nontrivial extent coordinates.
*
* \todo Better checking of the error color. Currently legitimate error
* pixels are just ignored in image comparison; however, spec says
* that error color is either magenta or all-NaNs. Can NaNs cause
* troubles, or can we assume that NaNs are well-supported in shader
* if the implementation chooses NaNs as error color?
*//*--------------------------------------------------------------------*/
#include "es3fASTCDecompressionCases.hpp"
#include "gluTexture.hpp"
#include "gluPixelTransfer.hpp"
#include "gluStrUtil.hpp"
#include "gluTextureUtil.hpp"
#include "glsTextureTestUtil.hpp"
#include "tcuCompressedTexture.hpp"
#include "tcuTestLog.hpp"
#include "tcuTextureUtil.hpp"
#include "tcuSurface.hpp"
#include "tcuVectorUtil.hpp"
#include "tcuImageCompare.hpp"
#include "deStringUtil.hpp"
#include "deRandom.hpp"
#include "deFloat16.h"
#include "deString.h"
#include "deMemory.h"
#include "glwFunctions.hpp"
#include "glwEnums.hpp"
#include <vector>
#include <string>
#include <algorithm>
using tcu::TestLog;
using tcu::CompressedTexture;
using tcu::CompressedTexFormat;
using tcu::IVec2;
using tcu::IVec3;
using tcu::IVec4;
using tcu::Vec2;
using tcu::Vec4;
using tcu::Sampler;
using tcu::Surface;
using std::vector;
using std::string;
namespace deqp
{
using gls::TextureTestUtil::TextureRenderer;
using gls::TextureTestUtil::RandomViewport;
using gls::TextureTestUtil::ReferenceParams;
namespace gles3
{
namespace Functional
{
namespace ASTCDecompressionCaseInternal
{
static const int ASTC_BLOCK_SIZE_BYTES = 128/8;
static inline int divRoundUp (int a, int b)
{
return a/b + ((a%b) ? 1 : 0);
}
namespace ASTCBlockGeneratorInternal
{
static inline deUint32 reverseBits (deUint32 src, int numBits)
{
DE_ASSERT(de::inRange(numBits, 0, 32));
deUint32 result = 0;
for (int i = 0; i < numBits; i++)
result |= ((src >> i) & 1) << (numBits-1-i);
return result;
}
static inline deUint32 getBit (deUint32 src, int ndx)
{
DE_ASSERT(de::inBounds(ndx, 0, 32));
return (src >> ndx) & 1;
}
static inline deUint32 getBits (deUint32 src, int low, int high)
{
const int numBits = (high-low) + 1;
if (numBits == 0)
return 0;
DE_ASSERT(de::inRange(numBits, 1, 32));
return (src >> low) & ((1u<<numBits)-1);
}
#if defined(DE_DEBUG)
static inline bool isFloat16InfOrNan (deFloat16 v)
{
return getBits(v, 10, 14) == 31;
}
#endif
template <typename T, typename Y>
struct isSameType { enum { V = 0 }; };
template <typename T>
struct isSameType<T, T> { enum { V = 1 }; };
// Helper class for setting bits in a 128-bit block.
class AssignBlock128
{
private:
typedef deUint64 Word;
enum
{
WORD_BYTES = sizeof(Word),
WORD_BITS = 8*WORD_BYTES,
NUM_WORDS = 128 / WORD_BITS
};
DE_STATIC_ASSERT(128 % WORD_BITS == 0);
public:
AssignBlock128 (void)
{
for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
m_words[wordNdx] = 0;
}
void setBit (int ndx, deUint32 val)
{
DE_ASSERT(de::inBounds(ndx, 0, 128));
DE_ASSERT((val & 1) == val);
const int wordNdx = ndx / WORD_BITS;
const int bitNdx = ndx % WORD_BITS;
m_words[wordNdx] = (m_words[wordNdx] & ~((Word)1 << bitNdx)) | ((Word)val << bitNdx);
}
void setBits (int low, int high, deUint32 bits)
{
DE_ASSERT(de::inBounds(low, 0, 128));
DE_ASSERT(de::inBounds(high, 0, 128));
DE_ASSERT(de::inRange(high-low+1, 0, 32));
DE_ASSERT((bits & (((Word)1 << (high-low+1)) - 1)) == bits);
if (high-low+1 == 0)
return;
const int word0Ndx = low / WORD_BITS;
const int word1Ndx = high / WORD_BITS;
const int lowNdxInW0 = low % WORD_BITS;
if (word0Ndx == word1Ndx)
m_words[word0Ndx] = (m_words[word0Ndx] & ~((((Word)1 << (high-low+1)) - 1) << lowNdxInW0)) | ((Word)bits << lowNdxInW0);
else
{
DE_ASSERT(word1Ndx == word0Ndx + 1);
const int highNdxInW1 = high % WORD_BITS;
const int numBitsToSetInW0 = WORD_BITS - lowNdxInW0;
const Word bitsLowMask = ((Word)1 << numBitsToSetInW0) - 1;
m_words[word0Ndx] = (m_words[word0Ndx] & (((Word)1 << lowNdxInW0) - 1)) | (((Word)bits & bitsLowMask) << lowNdxInW0);
m_words[word1Ndx] = (m_words[word1Ndx] & ~(((Word)1 << (highNdxInW1+1)) - 1)) | (((Word)bits & ~bitsLowMask) >> numBitsToSetInW0);
}
}
void assignToMemory (deUint8* dst) const
{
for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
{
for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++)
dst[wordNdx*WORD_BYTES + byteNdx] = (deUint8)((m_words[wordNdx] >> (8*byteNdx)) & 0xff);
}
}
void pushBytesToVector (vector<deUint8>& dst) const
{
const int assignStartIndex = (int)dst.size();
dst.resize(dst.size() + ASTC_BLOCK_SIZE_BYTES);
assignToMemory(&dst[assignStartIndex]);
}
private:
Word m_words[NUM_WORDS];
};
// A helper for sequential access into a AssignBlock128.
class BitAssignAccessStream
{
public:
BitAssignAccessStream (AssignBlock128& dst, int startNdxInSrc, int length, bool forward)
: m_dst (dst)
, m_startNdxInSrc (startNdxInSrc)
, m_length (length)
, m_forward (forward)
, m_ndx (0)
{
}
// Set the next num bits. Bits at positions greater than or equal to m_length are not touched.
void setNext (int num, deUint32 bits)
{
DE_ASSERT((bits & (((deUint64)1 << num) - 1)) == bits);
if (num == 0 || m_ndx >= m_length)
return;
const int end = m_ndx + num;
const int numBitsToDst = de::max(0, de::min(m_length, end) - m_ndx);
const int low = m_ndx;
const int high = m_ndx + numBitsToDst - 1;
const deUint32 actualBits = getBits(bits, 0, numBitsToDst-1);
m_ndx += num;
return m_forward ? m_dst.setBits(m_startNdxInSrc + low, m_startNdxInSrc + high, actualBits)
: m_dst.setBits(m_startNdxInSrc - high, m_startNdxInSrc - low, reverseBits(actualBits, numBitsToDst));
}
private:
AssignBlock128& m_dst;
const int m_startNdxInSrc;
const int m_length;
const bool m_forward;
int m_ndx;
};
struct VoidExtentParams
{
DE_STATIC_ASSERT((isSameType<deFloat16, deUint16>::V));
bool isHDR;
deUint16 r;
deUint16 g;
deUint16 b;
deUint16 a;
// \note Currently extent coordinates are all set to all-ones.
VoidExtentParams (bool isHDR_, deUint16 r_, deUint16 g_, deUint16 b_, deUint16 a_) : isHDR(isHDR_), r(r_), g(g_), b(b_), a(a_) {}
};
static AssignBlock128 generateVoidExtentBlock (const VoidExtentParams& params)
{
AssignBlock128 block;
block.setBits(0, 8, 0x1fc); // \note Marks void-extent block.
block.setBit(9, params.isHDR);
block.setBits(10, 11, 3); // \note Spec shows that these bits are both set, although they serve no purpose.
// Extent coordinates - currently all-ones.
block.setBits(12, 24, 0x1fff);
block.setBits(25, 37, 0x1fff);
block.setBits(38, 50, 0x1fff);
block.setBits(51, 63, 0x1fff);
DE_ASSERT(!params.isHDR || (!isFloat16InfOrNan(params.r) &&
!isFloat16InfOrNan(params.g) &&
!isFloat16InfOrNan(params.b) &&
!isFloat16InfOrNan(params.a)));
block.setBits(64, 79, params.r);
block.setBits(80, 95, params.g);
block.setBits(96, 111, params.b);
block.setBits(112, 127, params.a);
return block;
}
enum ISEMode
{
ISEMODE_TRIT = 0,
ISEMODE_QUINT,
ISEMODE_PLAIN_BIT,
ISEMODE_LAST
};
struct ISEParams
{
ISEMode mode;
int numBits;
ISEParams (ISEMode mode_, int numBits_) : mode(mode_), numBits(numBits_) {}
};
// An input array of ISE inputs for an entire ASTC block. Can be given as either single values in the
// range [0, maximumValueOfISERange] or as explicit block value specifications. The latter is needed
// so we can test all possible values of T and Q in a block, since multiple T or Q values may map
// to the same set of decoded values.
struct ISEInput
{
struct Block
{
deUint32 tOrQValue; //!< The 8-bit T or 7-bit Q in a trit or quint ISE block.
deUint32 bitValues[5];
};
bool isGivenInBlockForm;
union
{
//!< \note 64 comes from the maximum number of weight values in an ASTC block.
deUint32 plain[64];
Block block[64];
} value;
ISEInput (void)
: isGivenInBlockForm (false)
{
}
};
static inline int computeNumRequiredBits (const ISEParams& iseParams, int numValues)
{
switch (iseParams.mode)
{
case ISEMODE_TRIT: return divRoundUp(numValues*8, 5) + numValues*iseParams.numBits;
case ISEMODE_QUINT: return divRoundUp(numValues*7, 3) + numValues*iseParams.numBits;
case ISEMODE_PLAIN_BIT: return numValues*iseParams.numBits;
default:
DE_ASSERT(false);
return -1;
}
}
static inline deUint32 computeISERangeMax (const ISEParams& iseParams)
{
switch (iseParams.mode)
{
case ISEMODE_TRIT: return (1u << iseParams.numBits) * 3 - 1;
case ISEMODE_QUINT: return (1u << iseParams.numBits) * 5 - 1;
case ISEMODE_PLAIN_BIT: return (1u << iseParams.numBits) - 1;
default:
DE_ASSERT(false);
return -1;
}
}
struct NormalBlockParams
{
int weightGridWidth;
int weightGridHeight;
ISEParams weightISEParams;
bool isDualPlane;
deUint32 ccs; //! \note Irrelevant if !isDualPlane.
int numPartitions;
deUint32 colorEndpointModes[4];
// \note Below members are irrelevant if numPartitions == 1.
bool isMultiPartSingleCemMode; //! \note If true, the single CEM is at colorEndpointModes[0].
deUint32 partitionSeed;
NormalBlockParams (void)
: weightGridWidth (-1)
, weightGridHeight (-1)
, weightISEParams (ISEMODE_LAST, -1)
, isDualPlane (true)
, ccs ((deUint32)-1)
, numPartitions (-1)
, isMultiPartSingleCemMode (false)
, partitionSeed ((deUint32)-1)
{
colorEndpointModes[0] = 0;
colorEndpointModes[1] = 0;
colorEndpointModes[2] = 0;
colorEndpointModes[3] = 0;
}
};
struct NormalBlockISEInputs
{
ISEInput weight;
ISEInput endpoint;
NormalBlockISEInputs (void)
: weight ()
, endpoint ()
{
}
};
static inline int computeNumWeights (const NormalBlockParams& params)
{
return params.weightGridWidth * params.weightGridHeight * (params.isDualPlane ? 2 : 1);
}
static inline int computeNumBitsForColorEndpoints (const NormalBlockParams& params)
{
const int numWeightBits = computeNumRequiredBits(params.weightISEParams, computeNumWeights(params));
const int numConfigDataBits = (params.numPartitions == 1 ? 17 : params.isMultiPartSingleCemMode ? 29 : 25 + 3*params.numPartitions) +
(params.isDualPlane ? 2 : 0);
return 128 - numWeightBits - numConfigDataBits;
}
static inline int computeNumColorEndpointValues (deUint32 endpointMode)
{
DE_ASSERT(endpointMode < 16);
return (endpointMode/4 + 1) * 2;
}
static inline int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions, bool isMultiPartSingleCemMode)
{
if (isMultiPartSingleCemMode)
return numPartitions * computeNumColorEndpointValues(endpointModes[0]);
else
{
int result = 0;
for (int i = 0; i < numPartitions; i++)
result += computeNumColorEndpointValues(endpointModes[i]);
return result;
}
}
static inline bool isValidBlockParams (const NormalBlockParams& params, int blockWidth, int blockHeight)
{
const int numWeights = computeNumWeights(params);
const int numWeightBits = computeNumRequiredBits(params.weightISEParams, numWeights);
const int numColorEndpointValues = computeNumColorEndpointValues(&params.colorEndpointModes[0], params.numPartitions, params.isMultiPartSingleCemMode);
const int numBitsForColorEndpoints = computeNumBitsForColorEndpoints(params);
return numWeights <= 64 &&
de::inRange(numWeightBits, 24, 96) &&
params.weightGridWidth <= blockWidth &&
params.weightGridHeight <= blockHeight &&
!(params.numPartitions == 4 && params.isDualPlane) &&
numColorEndpointValues <= 18 &&
numBitsForColorEndpoints >= divRoundUp(13*numColorEndpointValues, 5);
}
// Write bits 0 to 10 of an ASTC block.
static void writeBlockMode (AssignBlock128& dst, const NormalBlockParams& blockParams)
{
const deUint32 d = blockParams.isDualPlane != 0;
// r and h initialized in switch below.
deUint32 r;
deUint32 h;
// a, b and blockModeLayoutNdx initialized in block mode layout index detecting loop below.
deUint32 a = (deUint32)-1;
deUint32 b = (deUint32)-1;
int blockModeLayoutNdx;
// Find the values of r and h (ISE range).
switch (computeISERangeMax(blockParams.weightISEParams))
{
case 1: r = 2; h = 0; break;
case 2: r = 3; h = 0; break;
case 3: r = 4; h = 0; break;
case 4: r = 5; h = 0; break;
case 5: r = 6; h = 0; break;
case 7: r = 7; h = 0; break;
case 9: r = 2; h = 1; break;
case 11: r = 3; h = 1; break;
case 15: r = 4; h = 1; break;
case 19: r = 5; h = 1; break;
case 23: r = 6; h = 1; break;
case 31: r = 7; h = 1; break;
default:
DE_ASSERT(false);
r = (deUint32)-1;
h = (deUint32)-1;
}
// Find block mode layout index, i.e. appropriate row in the "2d block mode layout" table in ASTC spec.
{
enum BlockModeLayoutABVariable { Z=0, A=1, B=2 };
static const struct BlockModeLayout
{
int aNumBits;
int bNumBits;
BlockModeLayoutABVariable gridWidthVariableTerm;
int gridWidthConstantTerm;
BlockModeLayoutABVariable gridHeightVariableTerm;
int gridHeightConstantTerm;
} blockModeLayouts[] =
{
{ 2, 2, B, 4, A, 2},
{ 2, 2, B, 8, A, 2},
{ 2, 2, A, 2, B, 8},
{ 2, 1, A, 2, B, 6},
{ 2, 1, B, 2, A, 2},
{ 2, 0, Z, 12, A, 2},
{ 2, 0, A, 2, Z, 12},
{ 0, 0, Z, 6, Z, 10},
{ 0, 0, Z, 10, Z, 6},
{ 2, 2, A, 6, B, 6}
};
for (blockModeLayoutNdx = 0; blockModeLayoutNdx < DE_LENGTH_OF_ARRAY(blockModeLayouts); blockModeLayoutNdx++)
{
const BlockModeLayout& layout = blockModeLayouts[blockModeLayoutNdx];
const int aMax = (1 << layout.aNumBits) - 1;
const int bMax = (1 << layout.bNumBits) - 1;
const int variableOffsetsMax[3] = { 0, aMax, bMax };
const int widthMin = layout.gridWidthConstantTerm;
const int heightMin = layout.gridHeightConstantTerm;
const int widthMax = widthMin + variableOffsetsMax[layout.gridWidthVariableTerm];
const int heightMax = heightMin + variableOffsetsMax[layout.gridHeightVariableTerm];
DE_ASSERT(layout.gridWidthVariableTerm != layout.gridHeightVariableTerm || layout.gridWidthVariableTerm == Z);
if (de::inRange(blockParams.weightGridWidth, widthMin, widthMax) &&
de::inRange(blockParams.weightGridHeight, heightMin, heightMax))
{
deUint32 dummy = 0;
deUint32& widthVariable = layout.gridWidthVariableTerm == A ? a : layout.gridWidthVariableTerm == B ? b : dummy;
deUint32& heightVariable = layout.gridHeightVariableTerm == A ? a : layout.gridHeightVariableTerm == B ? b : dummy;
widthVariable = blockParams.weightGridWidth - layout.gridWidthConstantTerm;
heightVariable = blockParams.weightGridHeight - layout.gridHeightConstantTerm;
break;
}
}
}
// Set block mode bits.
const deUint32 a0 = getBit(a, 0);
const deUint32 a1 = getBit(a, 1);
const deUint32 b0 = getBit(b, 0);
const deUint32 b1 = getBit(b, 1);
const deUint32 r0 = getBit(r, 0);
const deUint32 r1 = getBit(r, 1);
const deUint32 r2 = getBit(r, 2);
#define SB(NDX, VAL) dst.setBit((NDX), (VAL))
#define ASSIGN_BITS(B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0) do { SB(10,(B10)); SB(9,(B9)); SB(8,(B8)); SB(7,(B7)); SB(6,(B6)); SB(5,(B5)); SB(4,(B4)); SB(3,(B3)); SB(2,(B2)); SB(1,(B1)); SB(0,(B0)); } while (false)
switch (blockModeLayoutNdx)
{
case 0: ASSIGN_BITS(d, h, b1, b0, a1, a0, r0, 0, 0, r2, r1); break;
case 1: ASSIGN_BITS(d, h, b1, b0, a1, a0, r0, 0, 1, r2, r1); break;
case 2: ASSIGN_BITS(d, h, b1, b0, a1, a0, r0, 1, 0, r2, r1); break;
case 3: ASSIGN_BITS(d, h, 0, b, a1, a0, r0, 1, 1, r2, r1); break;
case 4: ASSIGN_BITS(d, h, 1, b, a1, a0, r0, 1, 1, r2, r1); break;
case 5: ASSIGN_BITS(d, h, 0, 0, a1, a0, r0, r2, r1, 0, 0); break;
case 6: ASSIGN_BITS(d, h, 0, 1, a1, a0, r0, r2, r1, 0, 0); break;
case 7: ASSIGN_BITS(d, h, 1, 1, 0, 0, r0, r2, r1, 0, 0); break;
case 8: ASSIGN_BITS(d, h, 1, 1, 0, 1, r0, r2, r1, 0, 0); break;
case 9: ASSIGN_BITS(b1, b0, 1, 0, a1, a0, r0, r2, r1, 0, 0); DE_ASSERT(d == 0 && h == 0); break;
default:
DE_ASSERT(false);
}
#undef ASSIGN_BITS
#undef SB
}
// Write color endpoint mode data of an ASTC block.
static void writeColorEndpointModes (AssignBlock128& dst, const deUint32* colorEndpointModes, bool isMultiPartSingleCemMode, int numPartitions, int extraCemBitsStart)
{
if (numPartitions == 1)
dst.setBits(13, 16, colorEndpointModes[0]);
else
{
if (isMultiPartSingleCemMode)
{
dst.setBits(23, 24, 0);
dst.setBits(25, 28, colorEndpointModes[0]);
}
else
{
DE_ASSERT(numPartitions > 0);
const deUint32 minCem = *std::min_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]);
const deUint32 maxCem = *std::max_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]);
const deUint32 minCemClass = minCem/4;
const deUint32 maxCemClass = maxCem/4;
DE_ASSERT(maxCemClass - minCemClass <= 1);
DE_UNREF(minCemClass); // \note For non-debug builds.
const deUint32 highLevelSelector = de::max(1u, maxCemClass);
dst.setBits(23, 24, highLevelSelector);
for (int partNdx = 0; partNdx < numPartitions; partNdx++)
{
const deUint32 c = colorEndpointModes[partNdx] / 4 == highLevelSelector ? 1 : 0;
const deUint32 m = colorEndpointModes[partNdx] % 4;
const deUint32 lowMBit0Ndx = numPartitions + 2*partNdx;
const deUint32 lowMBit1Ndx = numPartitions + 2*partNdx + 1;
dst.setBit(25 + partNdx, c);
dst.setBit(lowMBit0Ndx < 4 ? 25+lowMBit0Ndx : extraCemBitsStart+lowMBit0Ndx-4, getBit(m, 0));
dst.setBit(lowMBit1Ndx < 4 ? 25+lowMBit1Ndx : extraCemBitsStart+lowMBit1Ndx-4, getBit(m, 1));
}
}
}
}
static ISEParams computeMaximumRangeISEParams (int numAvailableBits, int numValuesInSequence)
{
int curBitsForTritMode = 6;
int curBitsForQuintMode = 5;
int curBitsForPlainBitMode = 8;
while (true)
{
DE_ASSERT(curBitsForTritMode > 0 || curBitsForQuintMode > 0 || curBitsForPlainBitMode > 0);
const int tritRange = curBitsForTritMode > 0 ? (3 << curBitsForTritMode) - 1 : -1;
const int quintRange = curBitsForQuintMode > 0 ? (5 << curBitsForQuintMode) - 1 : -1;
const int plainBitRange = curBitsForPlainBitMode > 0 ? (1 << curBitsForPlainBitMode) - 1 : -1;
const int maxRange = de::max(de::max(tritRange, quintRange), plainBitRange);
if (maxRange == tritRange)
{
const ISEParams params(ISEMODE_TRIT, curBitsForTritMode);
if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
return ISEParams(ISEMODE_TRIT, curBitsForTritMode);
curBitsForTritMode--;
}
else if (maxRange == quintRange)
{
const ISEParams params(ISEMODE_QUINT, curBitsForQuintMode);
if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
return ISEParams(ISEMODE_QUINT, curBitsForQuintMode);
curBitsForQuintMode--;
}
else
{
const ISEParams params(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
DE_ASSERT(maxRange == plainBitRange);
if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
return ISEParams(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
curBitsForPlainBitMode--;
}
}
}
static void encodeISETritBlock (BitAssignAccessStream& dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block& blockInput, const deUint32* nonBlockInput, int numValues)
{
// tritBlockTValue[t0][t1][t2][t3][t4] is a value of T (not necessarily the only one) that will yield the given trits when decoded.
static const deUint32 tritBlockTValue[3][3][3][3][3] =
{
{
{{{0, 128, 96}, {32, 160, 224}, {64, 192, 28}}, {{16, 144, 112}, {48, 176, 240}, {80, 208, 156}}, {{3, 131, 99}, {35, 163, 227}, {67, 195, 31}}},
{{{4, 132, 100}, {36, 164, 228}, {68, 196, 60}}, {{20, 148, 116}, {52, 180, 244}, {84, 212, 188}}, {{19, 147, 115}, {51, 179, 243}, {83, 211, 159}}},
{{{8, 136, 104}, {40, 168, 232}, {72, 200, 92}}, {{24, 152, 120}, {56, 184, 248}, {88, 216, 220}}, {{12, 140, 108}, {44, 172, 236}, {76, 204, 124}}}
},
{
{{{1, 129, 97}, {33, 161, 225}, {65, 193, 29}}, {{17, 145, 113}, {49, 177, 241}, {81, 209, 157}}, {{7, 135, 103}, {39, 167, 231}, {71, 199, 63}}},
{{{5, 133, 101}, {37, 165, 229}, {69, 197, 61}}, {{21, 149, 117}, {53, 181, 245}, {85, 213, 189}}, {{23, 151, 119}, {55, 183, 247}, {87, 215, 191}}},
{{{9, 137, 105}, {41, 169, 233}, {73, 201, 93}}, {{25, 153, 121}, {57, 185, 249}, {89, 217, 221}}, {{13, 141, 109}, {45, 173, 237}, {77, 205, 125}}}
},
{
{{{2, 130, 98}, {34, 162, 226}, {66, 194, 30}}, {{18, 146, 114}, {50, 178, 242}, {82, 210, 158}}, {{11, 139, 107}, {43, 171, 235}, {75, 203, 95}}},
{{{6, 134, 102}, {38, 166, 230}, {70, 198, 62}}, {{22, 150, 118}, {54, 182, 246}, {86, 214, 190}}, {{27, 155, 123}, {59, 187, 251}, {91, 219, 223}}},
{{{10, 138, 106}, {42, 170, 234}, {74, 202, 94}}, {{26, 154, 122}, {58, 186, 250}, {90, 218, 222}}, {{14, 142, 110}, {46, 174, 238}, {78, 206, 126}}}
}
};
DE_ASSERT(de::inRange(numValues, 1, 5));
deUint32 tritParts[5];
deUint32 bitParts[5];
for (int i = 0; i < 5; i++)
{
if (i < numValues)
{
if (fromExplicitInputBlock)
{
bitParts[i] = blockInput.bitValues[i];
tritParts[i] = -1; // \note Won't be used, but silences warning.
}
else
{
bitParts[i] = getBits(nonBlockInput[i], 0, numBits-1);
tritParts[i] = nonBlockInput[i] >> numBits;
}
}
else
{
bitParts[i] = 0;
tritParts[i] = 0;
}
}
const deUint32 T = fromExplicitInputBlock ? blockInput.tOrQValue : tritBlockTValue[tritParts[0]]
[tritParts[1]]
[tritParts[2]]
[tritParts[3]]
[tritParts[4]];
dst.setNext(numBits, bitParts[0]);
dst.setNext(2, getBits(T, 0, 1));
dst.setNext(numBits, bitParts[1]);
dst.setNext(2, getBits(T, 2, 3));
dst.setNext(numBits, bitParts[2]);
dst.setNext(1, getBit(T, 4));
dst.setNext(numBits, bitParts[3]);
dst.setNext(2, getBits(T, 5, 6));
dst.setNext(numBits, bitParts[4]);
dst.setNext(1, getBit(T, 7));
}
static void encodeISEQuintBlock (BitAssignAccessStream& dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block& blockInput, const deUint32* nonBlockInput, int numValues)
{
// quintBlockQValue[q0][q1][q2] is a value of Q (not necessarily the only one) that will yield the given quints when decoded.
static const deUint32 quintBlockQValue[5][5][5] =
{
{{0, 32, 64, 96, 102}, {8, 40, 72, 104, 110}, {16, 48, 80, 112, 118}, {24, 56, 88, 120, 126}, {5, 37, 69, 101, 39}},
{{1, 33, 65, 97, 103}, {9, 41, 73, 105, 111}, {17, 49, 81, 113, 119}, {25, 57, 89, 121, 127}, {13, 45, 77, 109, 47}},
{{2, 34, 66, 98, 70}, {10, 42, 74, 106, 78}, {18, 50, 82, 114, 86}, {26, 58, 90, 122, 94}, {21, 53, 85, 117, 55}},
{{3, 35, 67, 99, 71}, {11, 43, 75, 107, 79}, {19, 51, 83, 115, 87}, {27, 59, 91, 123, 95}, {29, 61, 93, 125, 63}},
{{4, 36, 68, 100, 38}, {12, 44, 76, 108, 46}, {20, 52, 84, 116, 54}, {28, 60, 92, 124, 62}, {6, 14, 22, 30, 7}}
};
DE_ASSERT(de::inRange(numValues, 1, 3));
deUint32 quintParts[3];
deUint32 bitParts[3];
for (int i = 0; i < 3; i++)
{
if (i < numValues)
{
if (fromExplicitInputBlock)
{
bitParts[i] = blockInput.bitValues[i];
quintParts[i] = -1; // \note Won't be used, but silences warning.
}
else
{
bitParts[i] = getBits(nonBlockInput[i], 0, numBits-1);
quintParts[i] = nonBlockInput[i] >> numBits;
}
}
else
{
bitParts[i] = 0;
quintParts[i] = 0;
}
}
const deUint32 Q = fromExplicitInputBlock ? blockInput.tOrQValue : quintBlockQValue[quintParts[0]]
[quintParts[1]]
[quintParts[2]];
dst.setNext(numBits, bitParts[0]);
dst.setNext(3, getBits(Q, 0, 2));
dst.setNext(numBits, bitParts[1]);
dst.setNext(2, getBits(Q, 3, 4));
dst.setNext(numBits, bitParts[2]);
dst.setNext(2, getBits(Q, 5, 6));
}
static void encodeISEBitBlock (BitAssignAccessStream& dst, int numBits, deUint32 value)
{
DE_ASSERT(de::inRange(value, 0u, (1u<<numBits)-1));
dst.setNext(numBits, value);
}
static void encodeISE (BitAssignAccessStream& dst, const ISEParams& params, const ISEInput& input, int numValues)
{
if (params.mode == ISEMODE_TRIT)
{
const int numBlocks = divRoundUp(numValues, 5);
for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
{
const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5;
encodeISETritBlock(dst, params.numBits, input.isGivenInBlockForm,
input.isGivenInBlockForm ? input.value.block[blockNdx] : ISEInput::Block(),
input.isGivenInBlockForm ? DE_NULL : &input.value.plain[5*blockNdx],
numValuesInBlock);
}
}
else if (params.mode == ISEMODE_QUINT)
{
const int numBlocks = divRoundUp(numValues, 3);
for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
{
const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3;
encodeISEQuintBlock(dst, params.numBits, input.isGivenInBlockForm,
input.isGivenInBlockForm ? input.value.block[blockNdx] : ISEInput::Block(),
input.isGivenInBlockForm ? DE_NULL : &input.value.plain[3*blockNdx],
numValuesInBlock);
}
}
else
{
DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT);
for (int i = 0; i < numValues; i++)
encodeISEBitBlock(dst, params.numBits, input.isGivenInBlockForm ? input.value.block[i].bitValues[0] : input.value.plain[i]);
}
}
static void writeWeightData (AssignBlock128& dst, const ISEParams& iseParams, const ISEInput& input, int numWeights)
{
const int numWeightBits = computeNumRequiredBits(iseParams, numWeights);
BitAssignAccessStream access (dst, 127, numWeightBits, false);
encodeISE(access, iseParams, input, numWeights);
}
static void writeColorEndpointData (AssignBlock128& dst, const ISEParams& iseParams, const ISEInput& input, int numEndpoints, int numBitsForColorEndpoints, int colorEndpointDataStartNdx)
{
BitAssignAccessStream access(dst, colorEndpointDataStartNdx, numBitsForColorEndpoints, true);
encodeISE(access, iseParams, input, numEndpoints);
}
static AssignBlock128 generateNormalBlock (const NormalBlockParams& blockParams, int blockWidth, int blockHeight, const NormalBlockISEInputs& iseInputs)
{
DE_ASSERT(isValidBlockParams(blockParams, blockWidth, blockHeight));
DE_UNREF(blockWidth); // \note For non-debug builds.
DE_UNREF(blockHeight); // \note For non-debug builds.
AssignBlock128 block;
const int numWeights = computeNumWeights(blockParams);
const int numWeightBits = computeNumRequiredBits(blockParams.weightISEParams, numWeights);
writeBlockMode(block, blockParams);
block.setBits(11, 12, blockParams.numPartitions - 1);
if (blockParams.numPartitions > 1)
block.setBits(13, 22, blockParams.partitionSeed);
{
const int extraCemBitsStart = 127 - numWeightBits - (blockParams.numPartitions == 1 || blockParams.isMultiPartSingleCemMode ? -1
: blockParams.numPartitions == 4 ? 7
: blockParams.numPartitions == 3 ? 4
: blockParams.numPartitions == 2 ? 1
: 0);
writeColorEndpointModes(block, &blockParams.colorEndpointModes[0], blockParams.isMultiPartSingleCemMode, blockParams.numPartitions, extraCemBitsStart);
if (blockParams.isDualPlane)
block.setBits(extraCemBitsStart-2, extraCemBitsStart-1, blockParams.ccs);
}
writeWeightData(block, blockParams.weightISEParams, iseInputs.weight, numWeights);
{
const int numColorEndpointValues = computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
const int numBitsForColorEndpoints = computeNumBitsForColorEndpoints(blockParams);
const int colorEndpointDataStartNdx = blockParams.numPartitions == 1 ? 17 : 29;
const ISEParams& colorEndpointISEParams = computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues);
writeColorEndpointData(block, colorEndpointISEParams, iseInputs.endpoint, numColorEndpointValues, numBitsForColorEndpoints, colorEndpointDataStartNdx);
}
return block;
}
// Generate default ISE inputs for weight and endpoint data - gradient-ish values.
static NormalBlockISEInputs generateDefaultISEInputs (const NormalBlockParams& blockParams)
{
NormalBlockISEInputs result;
{
result.weight.isGivenInBlockForm = false;
const int numWeights = computeNumWeights(blockParams);
const int weightRangeMax = computeISERangeMax(blockParams.weightISEParams);
if (blockParams.isDualPlane)
{
for (int i = 0; i < numWeights; i += 2)
result.weight.value.plain[i] = (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
for (int i = 1; i < numWeights; i += 2)
result.weight.value.plain[i] = weightRangeMax - (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
}
else
{
for (int i = 0; i < numWeights; i++)
result.weight.value.plain[i] = (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
}
}
{
result.endpoint.isGivenInBlockForm = false;
const int numColorEndpointValues = computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
const int numBitsForColorEndpoints = computeNumBitsForColorEndpoints(blockParams);
const ISEParams& colorEndpointISEParams = computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues);
const int colorEndpointRangeMax = computeISERangeMax(colorEndpointISEParams);
for (int i = 0; i < numColorEndpointValues; i++)
result.endpoint.value.plain[i] = (i*colorEndpointRangeMax + (numColorEndpointValues-1)/2) / (numColorEndpointValues-1);
}
return result;
}
} // ASTCBlockGeneratorInternal
static Vec4 getBlockTestTypeColorScale (ASTCBlockTestType testType)
{
switch (testType)
{
case ASTCBLOCKTESTTYPE_VOID_EXTENT_HDR: return Vec4(0.5f/65504.0f);
case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_NO_15: return Vec4(1.0f/65504.0f, 1.0f/65504.0f, 1.0f/65504.0f, 1.0f);
case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_15: return Vec4(1.0f/65504.0f);
default: return Vec4(1.0f);
}
}
static Vec4 getBlockTestTypeColorBias (ASTCBlockTestType testType)
{
switch (testType)
{
case ASTCBLOCKTESTTYPE_VOID_EXTENT_HDR: return Vec4(0.5f);
default: return Vec4(0.0f);
}
}
// Generate block data for a given ASTCBlockTestType and format.
static void generateBlockCaseTestData (vector<deUint8>& dst, CompressedTexFormat format, ASTCBlockTestType testType)
{
using namespace ASTCBlockGeneratorInternal;
static const ISEParams weightISEParamsCandidates[] =
{
ISEParams(ISEMODE_PLAIN_BIT, 1),
ISEParams(ISEMODE_TRIT, 0),
ISEParams(ISEMODE_PLAIN_BIT, 2),
ISEParams(ISEMODE_QUINT, 0),
ISEParams(ISEMODE_TRIT, 1),
ISEParams(ISEMODE_PLAIN_BIT, 3),
ISEParams(ISEMODE_QUINT, 1),
ISEParams(ISEMODE_TRIT, 2),
ISEParams(ISEMODE_PLAIN_BIT, 4),
ISEParams(ISEMODE_QUINT, 2),
ISEParams(ISEMODE_TRIT, 3),
ISEParams(ISEMODE_PLAIN_BIT, 5)
};
DE_ASSERT(tcu::isAstcFormat(format));
DE_ASSERT(!(tcu::isAstcSRGBFormat(format) && isBlockTestTypeHDROnly(testType)));
const IVec3 blockSize = getBlockPixelSize(format);
DE_ASSERT(blockSize.z() == 1);
switch (testType)
{
case ASTCBLOCKTESTTYPE_VOID_EXTENT_LDR:
// Generate a gradient-like set of LDR void-extent blocks.
{
const int numBlocks = 1<<13;
const deUint32 numValues = 1<<16;
dst.reserve(numBlocks*ASTC_BLOCK_SIZE_BYTES);
for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
{
const deUint32 baseValue = blockNdx*(numValues-1) / (numBlocks-1);
const deUint16 r = (deUint16)((baseValue + numValues*0/4) % numValues);
const deUint16 g = (deUint16)((baseValue + numValues*1/4) % numValues);
const deUint16 b = (deUint16)((baseValue + numValues*2/4) % numValues);
const deUint16 a = (deUint16)((baseValue + numValues*3/4) % numValues);
AssignBlock128 block;
generateVoidExtentBlock(VoidExtentParams(false, r, g, b, a)).pushBytesToVector(dst);
}
break;
}
case ASTCBLOCKTESTTYPE_VOID_EXTENT_HDR:
// Generate a gradient-like set of HDR void-extent blocks, with values ranging from the largest finite negative to largest finite positive of fp16.
{
const float minValue = -65504.0f;
const float maxValue = +65504.0f;
const int numBlocks = 1<<13;
dst.reserve(numBlocks*ASTC_BLOCK_SIZE_BYTES);
for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
{
const int rNdx = (blockNdx + numBlocks*0/4) % numBlocks;
const int gNdx = (blockNdx + numBlocks*1/4) % numBlocks;
const int bNdx = (blockNdx + numBlocks*2/4) % numBlocks;
const int aNdx = (blockNdx + numBlocks*3/4) % numBlocks;
const deFloat16 r = deFloat32To16(minValue + (float)rNdx * (maxValue - minValue) / (float)(numBlocks-1));
const deFloat16 g = deFloat32To16(minValue + (float)gNdx * (maxValue - minValue) / (float)(numBlocks-1));
const deFloat16 b = deFloat32To16(minValue + (float)bNdx * (maxValue - minValue) / (float)(numBlocks-1));
const deFloat16 a = deFloat32To16(minValue + (float)aNdx * (maxValue - minValue) / (float)(numBlocks-1));
generateVoidExtentBlock(VoidExtentParams(true, r, g, b, a)).pushBytesToVector(dst);
}
break;
}
case ASTCBLOCKTESTTYPE_WEIGHT_GRID:
// Generate different combinations of plane count, weight ISE params, and grid size.
{
for (int isDualPlane = 0; isDualPlane <= 1; isDualPlane++)
for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(weightISEParamsCandidates); iseParamsNdx++)
for (int weightGridWidth = 2; weightGridWidth <= 12; weightGridWidth++)
for (int weightGridHeight = 2; weightGridHeight <= 12; weightGridHeight++)
{
NormalBlockParams blockParams;
NormalBlockISEInputs iseInputs;
blockParams.weightGridWidth = weightGridWidth;
blockParams.weightGridHeight = weightGridHeight;
blockParams.isDualPlane = isDualPlane != 0;
blockParams.weightISEParams = weightISEParamsCandidates[iseParamsNdx];
blockParams.ccs = 0;
blockParams.numPartitions = 1;
blockParams.colorEndpointModes[0] = 0;
if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
}
break;
}
case ASTCBLOCKTESTTYPE_WEIGHT_ISE:
// For each weight ISE param set, generate blocks that cover:
// - each single value of the ISE's range, at each position inside an ISE block
// - for trit and quint ISEs, each single T or Q value of an ISE block
{
for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(weightISEParamsCandidates); iseParamsNdx++)
{
const ISEParams& iseParams = weightISEParamsCandidates[iseParamsNdx];
NormalBlockParams blockParams;
blockParams.weightGridWidth = 4;
blockParams.weightGridHeight = 4;
blockParams.weightISEParams = iseParams;
blockParams.numPartitions = 1;
blockParams.isDualPlane = blockParams.weightGridWidth * blockParams.weightGridHeight < 24 ? true : false;
blockParams.ccs = 0;
blockParams.colorEndpointModes[0] = 0;
while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
{
blockParams.weightGridWidth--;
blockParams.weightGridHeight--;
}
const int numValuesInISEBlock = iseParams.mode == ISEMODE_TRIT ? 5 : iseParams.mode == ISEMODE_QUINT ? 3 : 1;
const int numWeights = computeNumWeights(blockParams);
{
const int numWeightValues = (int)computeISERangeMax(iseParams) + 1;
const int numBlocks = divRoundUp(numWeightValues, numWeights);
NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
iseInputs.weight.isGivenInBlockForm = false;
for (int offset = 0; offset < numValuesInISEBlock; offset++)
for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
{
for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
iseInputs.weight.value.plain[weightNdx] = (blockNdx*numWeights + weightNdx + offset) % numWeightValues;
generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
}
}
if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
{
NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
iseInputs.weight.isGivenInBlockForm = true;
const int numTQValues = 1 << (iseParams.mode == ISEMODE_TRIT ? 8 : 7);
const int numISEBlocksPerBlock = divRoundUp(numWeights, numValuesInISEBlock);
const int numBlocks = divRoundUp(numTQValues, numISEBlocksPerBlock);
for (int offset = 0; offset < numValuesInISEBlock; offset++)
for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
{
for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++)
{
for (int i = 0; i < numValuesInISEBlock; i++)
iseInputs.weight.value.block[iseBlockNdx].bitValues[i] = 0;
iseInputs.weight.value.block[iseBlockNdx].tOrQValue = (blockNdx*numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues;
}
generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
}
}
}
break;
}
case ASTCBLOCKTESTTYPE_CEMS:
// For each plane count & partition count combination, generate all color endpoint mode combinations.
{
for (int isDualPlane = 0; isDualPlane <= 1; isDualPlane++)
for (int numPartitions = 1; numPartitions <= (isDualPlane != 0 ? 3 : 4); numPartitions++)
{
// Multi-partition, single-CEM mode.
if (numPartitions > 1)
{
for (deUint32 singleCem = 0; singleCem < 16; singleCem++)
{
NormalBlockParams blockParams;
blockParams.weightGridWidth = 4;
blockParams.weightGridHeight = 4;
blockParams.isDualPlane = isDualPlane != 0;
blockParams.ccs = 0;
blockParams.numPartitions = numPartitions;
blockParams.isMultiPartSingleCemMode = true;
blockParams.colorEndpointModes[0] = singleCem;
blockParams.partitionSeed = 634;
for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(weightISEParamsCandidates); iseParamsNdx++)
{
blockParams.weightISEParams = weightISEParamsCandidates[iseParamsNdx];
if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
{
generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
break;
}
}
}
}
// Separate-CEM mode.
for (deUint32 cem0 = 0; cem0 < 16; cem0++)
for (deUint32 cem1 = 0; cem1 < (numPartitions >= 2 ? 16u : 1u); cem1++)
for (deUint32 cem2 = 0; cem2 < (numPartitions >= 3 ? 16u : 1u); cem2++)
for (deUint32 cem3 = 0; cem3 < (numPartitions >= 4 ? 16u : 1u); cem3++)
{
NormalBlockParams blockParams;
blockParams.weightGridWidth = 4;
blockParams.weightGridHeight = 4;
blockParams.isDualPlane = isDualPlane != 0;
blockParams.ccs = 0;
blockParams.numPartitions = numPartitions;
blockParams.isMultiPartSingleCemMode = false;
blockParams.colorEndpointModes[0] = cem0;
blockParams.colorEndpointModes[1] = cem1;
blockParams.colorEndpointModes[2] = cem2;
blockParams.colorEndpointModes[3] = cem3;
blockParams.partitionSeed = 634;
{
const deUint32 minCem = *std::min_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]);
const deUint32 maxCem = *std::max_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]);
const deUint32 minCemClass = minCem/4;
const deUint32 maxCemClass = maxCem/4;
if (maxCemClass - minCemClass > 1)
continue;
}
for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(weightISEParamsCandidates); iseParamsNdx++)
{
blockParams.weightISEParams = weightISEParamsCandidates[iseParamsNdx];
if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
{
generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
break;
}
}
}
}
break;
}
case ASTCBLOCKTESTTYPE_PARTITION_SEED:
// Test all partition seeds ("partition pattern indices").
{
for (int numPartitions = 2; numPartitions <= 4; numPartitions++)
for (deUint32 partitionSeed = 0; partitionSeed < 1<<10; partitionSeed++)
{
NormalBlockParams blockParams;
blockParams.weightGridWidth = 4;
blockParams.weightGridHeight = 4;
blockParams.weightISEParams = ISEParams(ISEMODE_PLAIN_BIT, 2);
blockParams.isDualPlane = false;
blockParams.numPartitions = numPartitions;
blockParams.isMultiPartSingleCemMode = true;
blockParams.colorEndpointModes[0] = 0;
blockParams.partitionSeed = partitionSeed;
generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
}
break;
}
// \note Fall-through.
case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_LDR:
case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_NO_15:
case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_15:
// For each endpoint mode, for each pair of components in the endpoint value, test 10x10 combinations of values for that pair.
// \note Separate modes for HDR and mode 15 due to different color scales and biases.
{
for (deUint32 cem = 0; cem < 16; cem++)
{
const bool isHDRCem = cem == 2 ||
cem == 3 ||
cem == 7 ||
cem == 11 ||
cem == 14 ||
cem == 15;
if ((testType == ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_LDR && isHDRCem) ||
(testType == ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_NO_15 && (!isHDRCem || cem == 15)) ||
(testType == ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_15 && cem != 15))
continue;
NormalBlockParams blockParams;
blockParams.weightGridWidth = 3;
blockParams.weightGridHeight = 4;
blockParams.weightISEParams = ISEParams(ISEMODE_PLAIN_BIT, 2);
blockParams.isDualPlane = false;
blockParams.numPartitions = 1;
blockParams.colorEndpointModes[0] = cem;
{
const int numBitsForEndpoints = computeNumBitsForColorEndpoints(blockParams);
const int numEndpointParts = computeNumColorEndpointValues(cem);
const ISEParams endpointISE = computeMaximumRangeISEParams(numBitsForEndpoints, numEndpointParts);
const int endpointISERangeMax = computeISERangeMax(endpointISE);
for (int endpointPartNdx0 = 0; endpointPartNdx0 < numEndpointParts; endpointPartNdx0++)
for (int endpointPartNdx1 = endpointPartNdx0+1; endpointPartNdx1 < numEndpointParts; endpointPartNdx1++)
{
NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
const int numEndpointValues = de::min(10, endpointISERangeMax+1);
for (int endpointValueNdx0 = 0; endpointValueNdx0 < numEndpointValues; endpointValueNdx0++)
for (int endpointValueNdx1 = 0; endpointValueNdx1 < numEndpointValues; endpointValueNdx1++)
{
const int endpointValue0 = endpointValueNdx0 * endpointISERangeMax / (numEndpointValues-1);
const int endpointValue1 = endpointValueNdx1 * endpointISERangeMax / (numEndpointValues-1);
iseInputs.endpoint.value.plain[endpointPartNdx0] = endpointValue0;
iseInputs.endpoint.value.plain[endpointPartNdx1] = endpointValue1;
generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
}
}
}
}
break;
}
case ASTCBLOCKTESTTYPE_ENDPOINT_ISE:
// Similar to ASTCBLOCKTESTTYPE_WEIGHT_ISE, see above.
{
static const deUint32 endpointRangeMaximums[] = { 5, 9, 11, 19, 23, 39, 47, 79, 95, 159, 191 };
for (int endpointRangeNdx = 0; endpointRangeNdx < DE_LENGTH_OF_ARRAY(endpointRangeMaximums); endpointRangeNdx++)
{
bool validCaseGenerated = false;
for (int numPartitions = 1; !validCaseGenerated && numPartitions <= 4; numPartitions++)
for (int isDual = 0; !validCaseGenerated && isDual <= 1; isDual++)
for (int weightISEParamsNdx = 0; !validCaseGenerated && weightISEParamsNdx < DE_LENGTH_OF_ARRAY(weightISEParamsCandidates); weightISEParamsNdx++)
for (int weightGridWidth = 2; !validCaseGenerated && weightGridWidth <= 12; weightGridWidth++)
for (int weightGridHeight = 2; !validCaseGenerated && weightGridHeight <= 12; weightGridHeight++)
{
NormalBlockParams blockParams;
blockParams.weightGridWidth = weightGridWidth;
blockParams.weightGridHeight = weightGridHeight;
blockParams.weightISEParams = weightISEParamsCandidates[weightISEParamsNdx];
blockParams.isDualPlane = isDual != 0;
blockParams.ccs = 0;
blockParams.numPartitions = numPartitions;
blockParams.isMultiPartSingleCemMode = true;
blockParams.colorEndpointModes[0] = 12;
blockParams.partitionSeed = 634;
if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
{
const ISEParams endpointISEParams = computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams),
computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, true));
if (computeISERangeMax(endpointISEParams) == endpointRangeMaximums[endpointRangeNdx])
{
validCaseGenerated = true;
const int numColorEndpoints = computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, blockParams.isMultiPartSingleCemMode);
const int numValuesInISEBlock = endpointISEParams.mode == ISEMODE_TRIT ? 5 : endpointISEParams.mode == ISEMODE_QUINT ? 3 : 1;
{
const int numColorEndpointValues = (int)computeISERangeMax(endpointISEParams) + 1;
const int numBlocks = divRoundUp(numColorEndpointValues, numColorEndpoints);
NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
iseInputs.endpoint.isGivenInBlockForm = false;
for (int offset = 0; offset < numValuesInISEBlock; offset++)
for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
{
for (int endpointNdx = 0; endpointNdx < numColorEndpoints; endpointNdx++)
iseInputs.endpoint.value.plain[endpointNdx] = (blockNdx*numColorEndpoints + endpointNdx + offset) % numColorEndpointValues;
generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
}
}
if (endpointISEParams.mode == ISEMODE_TRIT || endpointISEParams.mode == ISEMODE_QUINT)
{
NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
iseInputs.endpoint.isGivenInBlockForm = true;
const int numTQValues = 1 << (endpointISEParams.mode == ISEMODE_TRIT ? 8 : 7);
const int numISEBlocksPerBlock = divRoundUp(numColorEndpoints, numValuesInISEBlock);
const int numBlocks = divRoundUp(numTQValues, numISEBlocksPerBlock);
for (int offset = 0; offset < numValuesInISEBlock; offset++)
for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
{
for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++)
{
for (int i = 0; i < numValuesInISEBlock; i++)
iseInputs.endpoint.value.block[iseBlockNdx].bitValues[i] = 0;
iseInputs.endpoint.value.block[iseBlockNdx].tOrQValue = (blockNdx*numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues;
}
generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
}
}
}
}
}
DE_ASSERT(validCaseGenerated);
}
break;
}
case ASTCBLOCKTESTTYPE_CCS:
// For all partition counts, test all values of the CCS (color component selector).
{
for (int numPartitions = 1; numPartitions <= 3; numPartitions++)
for (deUint32 ccs = 0; ccs < 4; ccs++)
{
NormalBlockParams blockParams;
blockParams.weightGridWidth = 3;
blockParams.weightGridHeight = 3;
blockParams.weightISEParams = ISEParams(ISEMODE_PLAIN_BIT, 2);
blockParams.isDualPlane = true;
blockParams.ccs = ccs;
blockParams.numPartitions = numPartitions;
blockParams.isMultiPartSingleCemMode = true;
blockParams.colorEndpointModes[0] = 8;
blockParams.partitionSeed = 634;
generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
}
break;
}
case ASTCBLOCKTESTTYPE_RANDOM:
// Generate a number of random (but valid) blocks.
{
const int numBlocks = 16384;
de::Random rnd (1);
int numBlocksGenerated = 0;
dst.reserve(numBlocks*ASTC_BLOCK_SIZE_BYTES);
for (numBlocksGenerated = 0; numBlocksGenerated < numBlocks; numBlocksGenerated++)
{
if (rnd.getFloat() < 0.1f)
{
// Void extent block.
const bool isVoidExtentHDR = rnd.getBool();
const deUint16 r = isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : rnd.getInt(0, 0xffff);
const deUint16 g = isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : rnd.getInt(0, 0xffff);
const deUint16 b = isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : rnd.getInt(0, 0xffff);
const deUint16 a = isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : rnd.getInt(0, 0xffff);
generateVoidExtentBlock(VoidExtentParams(isVoidExtentHDR, r, g, b, a)).pushBytesToVector(dst);
}
else
{
// Not void extent block.
// Generate block params.
NormalBlockParams blockParams;
do
{
blockParams.weightGridWidth = rnd.getInt(2, blockSize.x());
blockParams.weightGridHeight = rnd.getInt(2, blockSize.y());
blockParams.weightISEParams = weightISEParamsCandidates[rnd.getInt(0, DE_LENGTH_OF_ARRAY(weightISEParamsCandidates)-1)];
blockParams.numPartitions = rnd.getInt(1, 4);
blockParams.isMultiPartSingleCemMode = rnd.getFloat() < 0.25f;
blockParams.isDualPlane = blockParams.numPartitions != 4 && rnd.getBool();
blockParams.ccs = rnd.getInt(0, 3);
blockParams.partitionSeed = rnd.getInt(0, 1023);
blockParams.colorEndpointModes[0] = rnd.getInt(0, 15);
{
const int cemDiff = blockParams.isMultiPartSingleCemMode ? 0
: blockParams.colorEndpointModes[0] == 0 ? 1
: blockParams.colorEndpointModes[0] == 15 ? -1
: rnd.getBool() ? 1 : -1;
for (int i = 1; i < blockParams.numPartitions; i++)
blockParams.colorEndpointModes[i] = blockParams.colorEndpointModes[0] + (cemDiff == -1 ? rnd.getInt(-1, 0) : cemDiff == 1 ? rnd.getInt(0, 1) : 0);
}
} while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y()));
// Generate ISE inputs for both weight and endpoint data.
NormalBlockISEInputs iseInputs;
for (int weightOrEndpoints = 0; weightOrEndpoints <= 1; weightOrEndpoints++)
{
const bool setWeights = weightOrEndpoints == 0;
const int numValues = setWeights ? computeNumWeights(blockParams) :
computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
const ISEParams iseParams = setWeights ? blockParams.weightISEParams : computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams), numValues);
ISEInput& iseInput = setWeights ? iseInputs.weight : iseInputs.endpoint;
iseInput.isGivenInBlockForm = rnd.getBool();
if (iseInput.isGivenInBlockForm)
{
const int numValuesPerISEBlock = iseParams.mode == ISEMODE_TRIT ? 5
: iseParams.mode == ISEMODE_QUINT ? 3
: 1;
const int iseBitMax = (1 << iseParams.numBits) - 1;
const int numISEBlocks = divRoundUp(numValues, numValuesPerISEBlock);
for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocks; iseBlockNdx++)
{
iseInput.value.block[iseBlockNdx].tOrQValue = rnd.getInt(0, 255);
for (int i = 0; i < numValuesPerISEBlock; i++)
iseInput.value.block[iseBlockNdx].bitValues[i] = rnd.getInt(0, iseBitMax);
}
}
else
{
const int rangeMax = computeISERangeMax(iseParams);
for (int valueNdx = 0; valueNdx < numValues; valueNdx++)
iseInput.value.plain[valueNdx] = rnd.getInt(0, rangeMax);
}
}
generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
}
}
break;
}
default:
DE_ASSERT(false);
}
}
// Get a string describing the data of an ASTC block. Currently contains just hex and bin dumps of the block.
static string astcBlockDataStr (const deUint8* data)
{
string result;
result += " Hexadecimal (big endian: upper left hex digit is block bits 127 to 124):";
{
static const char* const hexDigits = "0123456789ABCDEF";
for (int i = ASTC_BLOCK_SIZE_BYTES-1; i >= 0; i--)
{
if ((i+1) % 2 == 0)
result += "\n ";
else
result += " ";
result += hexDigits[(data[i] & 0xf0) >> 4];
result += " ";
result += hexDigits[(data[i] & 0x0f) >> 0];
}
}
result += "\n\n Binary (big endian: upper left bit is block bit 127):";
for (int i = ASTC_BLOCK_SIZE_BYTES-1; i >= 0; i--)
{
if ((i+1) % 2 == 0)
result += "\n ";
else
result += " ";
for (int j = 8-1; j >= 0; j--)
{
if (j == 3)
result += " ";
result += (data[i] >> j) & 1 ? "1" : "0";
}
}
result += "\n";
return result;
}
// Compare reference and result block images, reporting also the position of the first non-matching block.
static bool compareBlockImages (const Surface& reference,
const Surface& result,
const tcu::RGBA& thresholdRGBA,
const IVec2& blockSize,
int numNonDummyBlocks,
IVec2& firstFailedBlockCoordDst,
Surface& errorMaskDst,
IVec4& maxDiffDst)
{
TCU_CHECK_INTERNAL(reference.getWidth() == result.getWidth() && reference.getHeight() == result.getHeight());
const int width = result.getWidth();
const int height = result.getHeight();
const IVec4 threshold = thresholdRGBA.toIVec();
const int numXBlocks = width / blockSize.x();
DE_ASSERT(width % blockSize.x() == 0 && height % blockSize.y() == 0);
errorMaskDst.setSize(width, height);
firstFailedBlockCoordDst = IVec2(-1, -1);
maxDiffDst = IVec4(0);
for (int y = 0; y < height; y++)
for (int x = 0; x < width; x++)
{
const IVec2 blockCoord = IVec2(x, y) / blockSize;
if (blockCoord.y()*numXBlocks + blockCoord.x() < numNonDummyBlocks)
{
const IVec4 refPix = reference.getPixel(x, y).toIVec();
if (refPix == IVec4(255, 0, 255, 255))
{
// ASTC error color - allow anything in result.
errorMaskDst.setPixel(x, y, tcu::RGBA(255, 0, 255, 255));
continue;
}
const IVec4 resPix = result.getPixel(x, y).toIVec();
const IVec4 diff = tcu::abs(refPix - resPix);
const bool isOk = tcu::boolAll(tcu::lessThanEqual(diff, threshold));
maxDiffDst = tcu::max(maxDiffDst, diff);
errorMaskDst.setPixel(x, y, isOk ? tcu::RGBA::green : tcu::RGBA::red);
if (!isOk && firstFailedBlockCoordDst.x() == -1)
firstFailedBlockCoordDst = blockCoord;
}
}
return boolAll(lessThanEqual(maxDiffDst, threshold));
}
enum ASTCSupportLevel
{
// \note Ordered from smallest subset to full, for convenient comparison.
ASTCSUPPORTLEVEL_NONE = 0,
ASTCSUPPORTLEVEL_LDR,
ASTCSUPPORTLEVEL_HDR,
ASTCSUPPORTLEVEL_FULL
};
static inline ASTCSupportLevel getASTCSupportLevel (const glu::ContextInfo& contextInfo)
{
const vector<string>& extensions = contextInfo.getExtensions();
ASTCSupportLevel maxLevel = ASTCSUPPORTLEVEL_NONE;
for (int extNdx = 0; extNdx < (int)extensions.size(); extNdx++)
{
const string& ext = extensions[extNdx];
maxLevel = de::max(maxLevel, ext == "GL_KHR_texture_compression_astc_ldr" ? ASTCSUPPORTLEVEL_LDR
: ext == "GL_KHR_texture_compression_astc_hdr" ? ASTCSUPPORTLEVEL_HDR
: ext == "GL_OES_texture_compression_astc" ? ASTCSUPPORTLEVEL_FULL
: ASTCSUPPORTLEVEL_NONE);
}
return maxLevel;
}
// Class handling the common rendering stuff of ASTC cases.
class ASTCRenderer2D
{
public:
ASTCRenderer2D (Context& context,
CompressedTexFormat format,
deUint32 randomSeed);
~ASTCRenderer2D (void);
void initialize (int minRenderWidth, int minRenderHeight, const Vec4& colorScale, const Vec4& colorBias);
void clear (void);
void render (Surface& referenceDst,
Surface& resultDst,
const glu::Texture2D& texture,
const tcu::TextureFormat& uncompressedFormat);
CompressedTexFormat getFormat (void) const { return m_format; }
IVec2 getBlockSize (void) const { return m_blockSize; }
ASTCSupportLevel getASTCSupport (void) const { DE_ASSERT(m_initialized); return m_astcSupport; }
private:
Context& m_context;
TextureRenderer m_renderer;
const CompressedTexFormat m_format;
const IVec2 m_blockSize;
ASTCSupportLevel m_astcSupport;
Vec4 m_colorScale;
Vec4 m_colorBias;
de::Random m_rnd;
bool m_initialized;
};
} // ASTCDecompressionCaseInternal
using namespace ASTCDecompressionCaseInternal;
ASTCRenderer2D::ASTCRenderer2D (Context& context,
CompressedTexFormat format,
deUint32 randomSeed)
: m_context (context)
, m_renderer (context.getRenderContext(), context.getTestContext().getLog(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP)
, m_format (format)
, m_blockSize (tcu::getBlockPixelSize(format).xy())
, m_astcSupport (ASTCSUPPORTLEVEL_NONE)
, m_colorScale (-1.0f)
, m_colorBias (-1.0f)
, m_rnd (randomSeed)
, m_initialized (false)
{
DE_ASSERT(tcu::getBlockPixelSize(format).z() == 1);
}
ASTCRenderer2D::~ASTCRenderer2D (void)
{
clear();
}
void ASTCRenderer2D::initialize (int minRenderWidth, int minRenderHeight, const Vec4& colorScale, const Vec4& colorBias)
{
DE_ASSERT(!m_initialized);
const tcu::RenderTarget& renderTarget = m_context.getRenderTarget();
TestLog& log = m_context.getTestContext().getLog();
m_astcSupport = getASTCSupportLevel(m_context.getContextInfo());
m_colorScale = colorScale;
m_colorBias = colorBias;
switch (m_astcSupport)
{
case ASTCSUPPORTLEVEL_NONE: log << TestLog::Message << "No ASTC support detected" << TestLog::EndMessage; throw tcu::NotSupportedError("ASTC not supported");
case ASTCSUPPORTLEVEL_LDR: log << TestLog::Message << "LDR ASTC support detected" << TestLog::EndMessage; break;
case ASTCSUPPORTLEVEL_HDR: log << TestLog::Message << "HDR ASTC support detected" << TestLog::EndMessage; break;
case ASTCSUPPORTLEVEL_FULL: log << TestLog::Message << "Full ASTC support detected" << TestLog::EndMessage; break;
default:
DE_ASSERT(false);
}
if (renderTarget.getWidth() < minRenderWidth || renderTarget.getHeight() < minRenderHeight)
throw tcu::NotSupportedError("Render target must be at least " + de::toString(minRenderWidth) + "x" + de::toString(minRenderHeight));
log << TestLog::Message << "Using color scale and bias: result = raw * " << colorScale << " + " << colorBias << TestLog::EndMessage;
m_initialized = true;
}
void ASTCRenderer2D::clear (void)
{
m_renderer.clear();
}
void ASTCRenderer2D::render (Surface& referenceDst, Surface& resultDst, const glu::Texture2D& texture, const tcu::TextureFormat& uncompressedFormat)
{
DE_ASSERT(m_initialized);
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const glu::RenderContext& renderCtx = m_context.getRenderContext();
const int textureWidth = texture.getRefTexture().getWidth();
const int textureHeight = texture.getRefTexture().getHeight();
const RandomViewport viewport (renderCtx.getRenderTarget(), textureWidth, textureHeight, m_rnd.getUint32());
ReferenceParams renderParams (gls::TextureTestUtil::TEXTURETYPE_2D);
vector<float> texCoord;
gls::TextureTestUtil::computeQuadTexCoord2D(texCoord, Vec2(0.0f, 0.0f), Vec2(1.0f, 1.0f));
renderParams.samplerType = gls::TextureTestUtil::getSamplerType(uncompressedFormat);
renderParams.sampler = Sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::NEAREST, Sampler::NEAREST);
renderParams.colorScale = m_colorScale;
renderParams.colorBias = m_colorBias;
// Setup base viewport.
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
// Bind to unit 0.
gl.activeTexture(GL_TEXTURE0);
gl.bindTexture(GL_TEXTURE_2D, texture.getGLTexture());
// Setup nearest neighbor filtering and clamp-to-edge.
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state");
// Issue GL draws.
m_renderer.renderQuad(0, &texCoord[0], renderParams);
gl.flush();
// Compute reference.
sampleTexture(gls::TextureTestUtil::SurfaceAccess(referenceDst, renderCtx.getRenderTarget().getPixelFormat()), texture.getRefTexture(), &texCoord[0], renderParams);
// Read GL-rendered image.
glu::readPixels(renderCtx, viewport.x, viewport.y, resultDst.getAccess());
}
ASTCBlockCase2D::ASTCBlockCase2D (Context& context,
const char* name,
const char* description,
ASTCBlockTestType testType,
CompressedTexFormat format)
: TestCase (context, name, description)
, m_testType (testType)
, m_format (format)
, m_numBlocksTested (0)
, m_currentIteration (0)
, m_renderer (new ASTCRenderer2D(context, format, deStringHash(getName())))
{
DE_ASSERT(!(tcu::isAstcSRGBFormat(m_format) && isBlockTestTypeHDROnly(m_testType))); // \note There is no HDR sRGB mode, so these would be redundant.
}
ASTCBlockCase2D::~ASTCBlockCase2D (void)
{
ASTCBlockCase2D::deinit();
}
void ASTCBlockCase2D::init (void)
{
m_renderer->initialize(64, 64, getBlockTestTypeColorScale(m_testType), getBlockTestTypeColorBias(m_testType));
generateBlockCaseTestData(m_blockData, m_format, m_testType);
DE_ASSERT(!m_blockData.empty());
DE_ASSERT(m_blockData.size() % ASTC_BLOCK_SIZE_BYTES == 0);
m_testCtx.getLog() << TestLog::Message << "Total " << m_blockData.size() / ASTC_BLOCK_SIZE_BYTES << " blocks to test" << TestLog::EndMessage
<< TestLog::Message << "Note: Legitimate ASTC error pixels will be ignored when comparing to reference" << TestLog::EndMessage;
}
void ASTCBlockCase2D::deinit (void)
{
m_renderer->clear();
m_blockData.clear();
}
ASTCBlockCase2D::IterateResult ASTCBlockCase2D::iterate (void)
{
TestLog& log = m_testCtx.getLog();
if (m_renderer->getASTCSupport() == ASTCSUPPORTLEVEL_LDR && isBlockTestTypeHDROnly(m_testType))
{
log << TestLog::Message << "Passing the case immediately, since only LDR support was detected and test only contains HDR blocks" << TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
return STOP;
}
const IVec2 blockSize = m_renderer->getBlockSize();
const int totalNumBlocks = (int)m_blockData.size() / ASTC_BLOCK_SIZE_BYTES;
const int numXBlocksPerImage = de::min(m_context.getRenderTarget().getWidth(), 512) / blockSize.x();
const int numYBlocksPerImage = de::min(m_context.getRenderTarget().getHeight(), 512) / blockSize.y();
const int numBlocksPerImage = numXBlocksPerImage * numYBlocksPerImage;
const int imageWidth = numXBlocksPerImage * blockSize.x();
const int imageHeight = numYBlocksPerImage * blockSize.y();
const int numBlocksRemaining = totalNumBlocks - m_numBlocksTested;
const int curNumNonDummyBlocks = de::min(numBlocksPerImage, numBlocksRemaining);
const int curNumDummyBlocks = numBlocksPerImage - curNumNonDummyBlocks;
const glu::RenderContext& renderCtx = m_context.getRenderContext();
const tcu::RGBA threshold = renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + (tcu::isAstcSRGBFormat(m_format) ? tcu::RGBA(2,2,2,2) : tcu::RGBA(1,1,1,1));
tcu::CompressedTexture compressed (m_format, imageWidth, imageHeight);
if (m_currentIteration == 0)
{
log << TestLog::Message << "Using texture of size "
<< imageWidth << "x" << imageHeight
<< ", with " << numXBlocksPerImage << " block columns and " << numYBlocksPerImage << " block rows "
<< ", with block size " << blockSize.x() << "x" << blockSize.y()
<< TestLog::EndMessage;
}
DE_ASSERT(compressed.getDataSize() == numBlocksPerImage*ASTC_BLOCK_SIZE_BYTES);
deMemcpy(compressed.getData(), &m_blockData[m_numBlocksTested*ASTC_BLOCK_SIZE_BYTES], curNumNonDummyBlocks*ASTC_BLOCK_SIZE_BYTES);
if (curNumDummyBlocks > 1)
generateDummyBlocks((deUint8*)compressed.getData() + curNumNonDummyBlocks*ASTC_BLOCK_SIZE_BYTES, curNumDummyBlocks);
// Create texture and render.
glu::Texture2D texture (renderCtx, m_context.getContextInfo(), 1, &compressed, tcu::TexDecompressionParams((m_renderer->getASTCSupport() == ASTCSUPPORTLEVEL_LDR ? tcu::TexDecompressionParams::ASTCMODE_LDR : tcu::TexDecompressionParams::ASTCMODE_HDR)));
Surface renderedFrame (imageWidth, imageHeight);
Surface referenceFrame (imageWidth, imageHeight);
m_renderer->render(referenceFrame, renderedFrame, texture, getUncompressedFormat(compressed.getFormat()));
// Compare and log.
// \note Since a case can draw quite many images, only log the first iteration and failures.
{
Surface errorMask;
IVec2 firstFailedBlockCoord;
IVec4 maxDiff;
const bool compareOk = compareBlockImages(referenceFrame, renderedFrame, threshold, blockSize, curNumNonDummyBlocks, firstFailedBlockCoord, errorMask, maxDiff);
if (m_currentIteration == 0 || !compareOk)
{
const char* const imageSetName = "ComparisonResult";
const char* const imageSetDesc = "Comparison Result";
{
tcu::ScopedLogSection section(log, "Iteration " + de::toString(m_currentIteration),
"Blocks " + de::toString(m_numBlocksTested) + " to " + de::toString(m_numBlocksTested + curNumNonDummyBlocks - 1));
if (curNumDummyBlocks > 0)
log << TestLog::Message << "Note: Only the first " << curNumNonDummyBlocks << " blocks in the image are relevant; rest " << curNumDummyBlocks << " are dummies and not checked" << TestLog::EndMessage;
if (!compareOk)
{
log << TestLog::Message << "Image comparison failed: max difference = " << maxDiff << ", threshold = " << threshold << TestLog::EndMessage
<< TestLog::ImageSet(imageSetName, imageSetDesc)
<< TestLog::Image("Result", "Result", renderedFrame)
<< TestLog::Image("Reference", "Reference", referenceFrame)
<< TestLog::Image("ErrorMask", "Error mask", errorMask)
<< TestLog::EndImageSet;
const int blockNdx = m_numBlocksTested + firstFailedBlockCoord.y()*numXBlocksPerImage + firstFailedBlockCoord.x();
DE_ASSERT(blockNdx < totalNumBlocks);
log << TestLog::Message << "First failed block at column " << firstFailedBlockCoord.x() << " and row " << firstFailedBlockCoord.y() << TestLog::EndMessage
<< TestLog::Message << "Data of first failed block:\n" << astcBlockDataStr(&m_blockData[blockNdx*ASTC_BLOCK_SIZE_BYTES]) << TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image comparison failed");
return STOP;
}
else
{
log << TestLog::ImageSet(imageSetName, imageSetDesc)
<< TestLog::Image("Result", "Result", renderedFrame)
<< TestLog::EndImageSet;
}
}
if (m_numBlocksTested + curNumNonDummyBlocks < totalNumBlocks)
log << TestLog::Message << "Note: not logging further images unless reference comparison fails" << TestLog::EndMessage;
}
}
m_currentIteration++;
m_numBlocksTested += curNumNonDummyBlocks;
if (m_numBlocksTested >= totalNumBlocks)
{
DE_ASSERT(m_numBlocksTested == totalNumBlocks);
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
return STOP;
}
return CONTINUE;
}
// Generate a number of trivial dummy blocks to fill unneeded space in a texture.
void ASTCBlockCase2D::generateDummyBlocks (deUint8* dst, int num)
{
using namespace ASTCBlockGeneratorInternal;
AssignBlock128 block = generateVoidExtentBlock(VoidExtentParams(false, 0, 0, 0, 0));
for (int i = 0; i < num; i++)
block.assignToMemory(&dst[i * ASTC_BLOCK_SIZE_BYTES]);
}
ASTCBlockSizeRemainderCase2D::ASTCBlockSizeRemainderCase2D (Context& context,
const char* name,
const char* description,
CompressedTexFormat format)
: TestCase (context, name, description)
, m_format (format)
, m_currentIteration (0)
, m_renderer (new ASTCRenderer2D(context, format, deStringHash(getName())))
{
}
ASTCBlockSizeRemainderCase2D::~ASTCBlockSizeRemainderCase2D (void)
{
ASTCBlockSizeRemainderCase2D::deinit();
}
void ASTCBlockSizeRemainderCase2D::init (void)
{
const IVec2 blockSize = m_renderer->getBlockSize();
m_renderer->initialize(MAX_NUM_BLOCKS_X*blockSize.x(), MAX_NUM_BLOCKS_Y*blockSize.y(), Vec4(1.0f), Vec4(0.0f));
}
void ASTCBlockSizeRemainderCase2D::deinit (void)
{
m_renderer->clear();
}
ASTCBlockSizeRemainderCase2D::IterateResult ASTCBlockSizeRemainderCase2D::iterate (void)
{
TestLog& log = m_testCtx.getLog();
const IVec2 blockSize = m_renderer->getBlockSize();
const int curRemainderX = m_currentIteration % blockSize.x();
const int curRemainderY = m_currentIteration / blockSize.x();
const int imageWidth = (MAX_NUM_BLOCKS_X-1)*blockSize.x() + curRemainderX;
const int imageHeight = (MAX_NUM_BLOCKS_Y-1)*blockSize.y() + curRemainderY;
const int numBlocksX = divRoundUp(imageWidth, blockSize.x());
const int numBlocksY = divRoundUp(imageHeight, blockSize.y());
const int totalNumBlocks = numBlocksX * numBlocksY;
const glu::RenderContext& renderCtx = m_context.getRenderContext();
const tcu::RGBA threshold = renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + (tcu::isAstcSRGBFormat(m_format) ? tcu::RGBA(2,2,2,2) : tcu::RGBA(1,1,1,1));
tcu::CompressedTexture compressed (m_format, imageWidth, imageHeight);
DE_ASSERT(compressed.getDataSize() == totalNumBlocks*ASTC_BLOCK_SIZE_BYTES);
generateDefaultBlockData((deUint8*)compressed.getData(), totalNumBlocks, blockSize.x(), blockSize.y());
// Create texture and render.
Surface renderedFrame (imageWidth, imageHeight);
Surface referenceFrame (imageWidth, imageHeight);
glu::Texture2D texture (renderCtx, m_context.getContextInfo(), 1, &compressed, tcu::TexDecompressionParams(m_renderer->getASTCSupport() == ASTCSUPPORTLEVEL_LDR ? tcu::TexDecompressionParams::ASTCMODE_LDR : tcu::TexDecompressionParams::ASTCMODE_HDR));
m_renderer->render(referenceFrame, renderedFrame, texture, getUncompressedFormat(compressed.getFormat()));
{
// Compare and log.
tcu::ScopedLogSection section(log, "Iteration " + de::toString(m_currentIteration),
"Remainder " + de::toString(curRemainderX) + "x" + de::toString(curRemainderY));
log << TestLog::Message << "Using texture of size "
<< imageWidth << "x" << imageHeight
<< " and block size "
<< blockSize.x() << "x" << blockSize.y()
<< "; the x and y remainders are "
<< curRemainderX << " and " << curRemainderY << " respectively"
<< TestLog::EndMessage;
const bool compareOk = tcu::pixelThresholdCompare(m_testCtx.getLog(), "ComparisonResult", "Comparison Result", referenceFrame, renderedFrame, threshold,
m_currentIteration == 0 ? tcu::COMPARE_LOG_RESULT : tcu::COMPARE_LOG_ON_ERROR);
if (!compareOk)
{
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image comparison failed");
return STOP;
}
}
if (m_currentIteration == 0 && m_currentIteration+1 < blockSize.x()*blockSize.y())
log << TestLog::Message << "Note: not logging further images unless reference comparison fails" << TestLog::EndMessage;
m_currentIteration++;
if (m_currentIteration >= blockSize.x()*blockSize.y())
{
DE_ASSERT(m_currentIteration == blockSize.x()*blockSize.y());
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
return STOP;
}
return CONTINUE;
}
void ASTCBlockSizeRemainderCase2D::generateDefaultBlockData (deUint8* dst, int numBlocks, int blockWidth, int blockHeight)
{
using namespace ASTCBlockGeneratorInternal;
NormalBlockParams blockParams;
blockParams.weightGridWidth = 3;
blockParams.weightGridHeight = 3;
blockParams.weightISEParams = ISEParams(ISEMODE_PLAIN_BIT, 5);
blockParams.isDualPlane = false;
blockParams.numPartitions = 1;
blockParams.colorEndpointModes[0] = 8;
NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
iseInputs.weight.isGivenInBlockForm = false;
const int numWeights = computeNumWeights(blockParams);
const int weightRangeMax = computeISERangeMax(blockParams.weightISEParams);
for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
{
for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
iseInputs.weight.value.plain[weightNdx] = (blockNdx*numWeights + weightNdx) * weightRangeMax / (numBlocks*numWeights-1);
generateNormalBlock(blockParams, blockWidth, blockHeight, iseInputs).assignToMemory(dst + blockNdx*ASTC_BLOCK_SIZE_BYTES);
}
}
const char* getBlockTestTypeName (ASTCBlockTestType testType)
{
switch (testType)
{
case ASTCBLOCKTESTTYPE_VOID_EXTENT_LDR: return "void_extent_ldr";
case ASTCBLOCKTESTTYPE_VOID_EXTENT_HDR: return "void_extent_hdr";
case ASTCBLOCKTESTTYPE_WEIGHT_GRID: return "weight_grid";
case ASTCBLOCKTESTTYPE_WEIGHT_ISE: return "weight_ise";
case ASTCBLOCKTESTTYPE_CEMS: return "color_endpoint_modes";
case ASTCBLOCKTESTTYPE_PARTITION_SEED: return "partition_pattern_index";
case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_LDR: return "endpoint_value_ldr";
case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_NO_15: return "endpoint_value_hdr_cem_not_15";
case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_15: return "endpoint_value_hdr_cem_15";
case ASTCBLOCKTESTTYPE_ENDPOINT_ISE: return "endpoint_ise";
case ASTCBLOCKTESTTYPE_CCS: return "color_component_selector";
case ASTCBLOCKTESTTYPE_RANDOM: return "random";
default:
DE_ASSERT(false);
return DE_NULL;
}
}
const char* getBlockTestTypeDescription (ASTCBlockTestType testType)
{
switch (testType)
{
case ASTCBLOCKTESTTYPE_VOID_EXTENT_LDR: return "Test void extent block, LDR mode";
case ASTCBLOCKTESTTYPE_VOID_EXTENT_HDR: return "Test void extent block, HDR mode";
case ASTCBLOCKTESTTYPE_WEIGHT_GRID: return "Test combinations of plane count, weight integer sequence encoding parameters, and weight grid size";
case ASTCBLOCKTESTTYPE_WEIGHT_ISE: return "Test different integer sequence encoding block values for weight grid";
case ASTCBLOCKTESTTYPE_CEMS: return "Test different color endpoint mode combinations, combined with different plane and partition counts";
case ASTCBLOCKTESTTYPE_PARTITION_SEED: return "Test different partition pattern indices";
case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_LDR: return "Test various combinations of each pair of color endpoint values, for each LDR color endpoint mode";
case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_NO_15: return "Test various combinations of each pair of color endpoint values, for each HDR color endpoint mode other than mode 15";
case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_15: return "Test various combinations of each pair of color endpoint values, HDR color endpoint mode 15";
case ASTCBLOCKTESTTYPE_ENDPOINT_ISE: return "Test different integer sequence encoding block values for color endpoints";
case ASTCBLOCKTESTTYPE_CCS: return "Test color component selector, for different partition counts";
case ASTCBLOCKTESTTYPE_RANDOM: return "Random block test";
default:
DE_ASSERT(false);
return DE_NULL;
}
}
bool isBlockTestTypeHDROnly (ASTCBlockTestType testType)
{
return testType == ASTCBLOCKTESTTYPE_VOID_EXTENT_HDR ||
testType == ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_NO_15 ||
testType == ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_15;
}
} // Functional
} // gles3
} // deqp