blob: f315a87ce90d39047a25b5a5f5aecbc49f321486 [file] [log] [blame]
// Copyright 2018 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#![no_main]
use std::fs::File;
use std::io::{Cursor, Read, Seek, SeekFrom};
use std::mem::size_of;
use std::os::unix::io::{AsRawFd, FromRawFd};
use std::panic;
use std::process;
use std::slice;
use std::sync::atomic::AtomicUsize;
use std::sync::Arc;
use devices::virtio::{Block, Queue, VirtioDevice};
use sys_util::{EventFd, GuestAddress, GuestMemory, SharedMemory};
const MEM_SIZE: u64 = 256 * 1024 * 1024;
const DESC_SIZE: u64 = 16; // Bytes in one virtio descriptor.
const QUEUE_SIZE: u16 = 16; // Max entries in the queue.
const CMD_SIZE: usize = 16; // Bytes in the command.
// Take the first 64 bits of data as an address and the next 64 bits as data to
// store there. The rest of the data is used as a qcow image.
#[export_name = "LLVMFuzzerTestOneInput"]
pub fn test_one_input(data: *const u8, size: usize) -> i32 {
// We cannot unwind past ffi boundaries.
panic::catch_unwind(|| {
// Safe because the libfuzzer runtime will guarantee that `data` is at least
// `size` bytes long and that it will be valid for the lifetime of this
// function.
let bytes = unsafe { slice::from_raw_parts(data, size) };
let size_u64 = size_of::<u64>();
let mem = GuestMemory::new(&[(GuestAddress(0), MEM_SIZE)]).unwrap();
// The fuzz data is interpreted as:
// starting index 8 bytes
// command location 8 bytes
// command 16 bytes
// descriptors circular buffer 16 bytes * 3
if bytes.len() < 4 * size_u64 {
// Need an index to start.
return;
}
let mut data_image = Cursor::new(bytes);
let first_index = read_u64(&mut data_image);
if first_index > MEM_SIZE / DESC_SIZE {
return;
}
let first_offset = first_index * DESC_SIZE;
if first_offset as usize + size_u64 > bytes.len() {
return;
}
let command_addr = read_u64(&mut data_image);
if command_addr > MEM_SIZE - CMD_SIZE as u64 {
return;
}
if mem
.write_all_at_addr(
&bytes[2 * size_u64..(2 * size_u64) + CMD_SIZE],
GuestAddress(command_addr as u64),
)
.is_err()
{
return;
}
data_image.seek(SeekFrom::Start(first_offset)).unwrap();
let desc_table = read_u64(&mut data_image);
if mem
.write_all_at_addr(&bytes[32..], GuestAddress(desc_table as u64))
.is_err()
{
return;
}
let mut q = Queue::new(QUEUE_SIZE);
q.ready = true;
q.size = QUEUE_SIZE / 2;
q.max_size = QUEUE_SIZE;
let queue_evts: Vec<EventFd> = vec![EventFd::new().unwrap()];
let queue_fd = queue_evts[0].as_raw_fd();
let queue_evt = unsafe { EventFd::from_raw_fd(libc::dup(queue_fd)) };
let shm = SharedMemory::new(None).unwrap();
let disk_file: File = shm.into();
let mut block = Block::new(disk_file, false, None).unwrap();
block.activate(
mem,
EventFd::new().unwrap(),
EventFd::new().unwrap(),
Arc::new(AtomicUsize::new(0)),
vec![q],
queue_evts,
);
queue_evt.write(77).unwrap(); // Rings the doorbell, any byte will do.
})
.err()
.map(|_| process::abort());
0
}
fn read_u64<T: Read>(readable: &mut T) -> u64 {
let mut buf = [0u8; size_of::<u64>()];
readable.read_exact(&mut buf[..]).unwrap();
u64::from_le_bytes(buf)
}