Add -mcpu=generic to arm32 build target

Bug: 159925616
Test: lunch walleye-userdebug && mm
Change-Id: I07888f62185b15b693f0082566abe807755c47eb
1 file changed
tree: 09b0ac6b537b142cbbe0c4e29bfa82a7ddc9cbe0
  1. bench/
  2. cmake/
  3. deps/
  4. include/
  5. scripts/
  6. src/
  7. test/
  8. tools/
  9. .gitignore
  10. .travis.yml
  11. Android.bp
  12. appveyor.yml
  13. CMakeLists.txt
  14. CMakeLists.txt.orig
  15. configure.py
  16. confu.yaml
  17. LICENSE
  18. METADATA
  19. MODULE_LICENSE_BSD
  20. OWNERS
  21. README.md
README.md

CPU INFOrmation library

BSD (2 clause) License Linux/Mac build status Windows build status

cpuinfo is a library to detect essential for performance optimization information about host CPU.

Features

  • Cross-platform availability:
    • Linux, Windows, macOS, Android, and iOS operating systems
    • x86, x86-64, ARM, and ARM64 architectures
  • Modern C/C++ interface
    • Thread-safe
    • No memory allocation after initialization
    • No exceptions thrown
  • Detection of supported instruction sets, up to AVX512 (x86) and ARMv8.3 extensions
  • Detection of SoC and core information:
    • Processor (SoC) name
    • Vendor and microarchitecture for each CPU core
    • ID (MIDR on ARM, CPUID leaf 1 EAX value on x86) for each CPU core
  • Detection of cache information:
    • Cache type (instruction/data/unified), size and line size
    • Cache associativity
    • Cores and logical processors (hyper-threads) sharing the cache
  • Detection of topology information (relative between logical processors, cores, and processor packages)
  • Well-tested production-quality code:
    • 60+ mock tests based on data from real devices
    • Includes work-arounds for common bugs in hardware and OS kernels
    • Supports systems with heterogenous cores, such as big.LITTLE and Max.Med.Min
  • Permissive open-source license (Simplified BSD)

Examples

Log processor name:

cpuinfo_initialize();
printf("Running on %s CPU\n", cpuinfo_get_package(0)->name);

Detect if target is a 32-bit or 64-bit ARM system:

#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
    /* 32-bit ARM-specific code here */
#endif

Check if the host CPU support ARM NEON

cpuinfo_initialize();
if (cpuinfo_has_arm_neon()) {
    neon_implementation(arguments);
}

Check if the host CPU supports x86 AVX

cpuinfo_initialize();
if (cpuinfo_has_x86_avx()) {
    avx_implementation(arguments);
}

Check if the thread runs on a Cortex-A53 core

cpuinfo_initialize();
switch (cpuinfo_get_current_core()->uarch) {
    case cpuinfo_uarch_cortex_a53:
        cortex_a53_implementation(arguments);
        break;
    default:
        generic_implementation(arguments);
        break;
}

Get the size of level 1 data cache on the fastest core in the processor (e.g. big core in big.LITTLE ARM systems):

cpuinfo_initialize();
const size_t l1_size = cpuinfo_get_processor(0)->cache.l1d->size;

Pin thread to cores sharing L2 cache with the current core (Linux or Android)

cpuinfo_initialize();
cpu_set_t cpu_set;
CPU_ZERO(&cpu_set);
const struct cpuinfo_cache* current_l2 = cpuinfo_get_current_processor()->cache.l2;
for (uint32_t i = 0; i < current_l2->processor_count; i++) {
    CPU_SET(cpuinfo_get_processor(current_l2->processor_start + i)->linux_id, &cpu_set);
}
pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpu_set);

Exposed information

  • [x] Processor (SoC) name
  • [x] Microarchitecture
  • [x] Usable instruction sets
  • [ ] CPU frequency
  • [x] Cache
    • [x] Size
    • [x] Associativity
    • [x] Line size
    • [x] Number of partitions
    • [x] Flags (unified, inclusive, complex hash function)
    • [x] Topology (logical processors that share this cache level)
  • [ ] TLB
    • [ ] Number of entries
    • [ ] Associativity
    • [ ] Covered page types (instruction, data)
    • [ ] Covered page sizes
  • [x] Topology information
    • [x] Logical processors
    • [x] Cores
    • [x] Packages (sockets)

Supported environments:

  • [x] Android
    • [x] x86 ABI
    • [x] x86_64 ABI
    • [x] armeabi ABI
    • [x] armeabiv7-a ABI
    • [x] arm64-v8a ABI
    • [ ] mips ABI
    • [ ] mips64 ABI
  • [x] Linux
    • [x] x86
    • [x] x86-64
    • [x] 32-bit ARM (ARMv5T and later)
    • [x] ARM64
    • [ ] PowerPC64
  • [x] iOS
    • [x] x86 (iPhone simulator)
    • [x] x86-64 (iPhone simulator)
    • [x] ARMv7
    • [x] ARM64
  • [x] OS X
    • [x] x86
    • [x] x86-64
  • [x] Windows
    • [x] x86
    • [x] x86-64

Methods

  • Processor (SoC) name detection
    • [x] Using CPUID leaves 0x80000002–0x80000004 on x86/x86-64
    • [x] Using /proc/cpuinfo on ARM
    • [x] Using ro.chipname, ro.board.platform, ro.product.board, ro.mediatek.platform, ro.arch properties (Android)
    • [ ] Using kernel log (dmesg) on ARM Linux
  • Vendor and microarchitecture detection
    • [x] Intel-designed x86/x86-64 cores (up to Kaby Lake, Airmont, and Knights Mill)
    • [x] AMD-designed x86/x86-64 cores (up to Puma/Jaguar and Zen)
    • [ ] VIA-designed x86/x86-64 cores
    • [ ] Other x86 cores (DM&P, RDC, Transmeta, Cyrix, Rise)
    • [x] ARM-designed ARM cores (up to Cortex-A55 and Cortex-A75)
    • [x] Qualcomm-designed ARM cores (up to Kryo, Kryo-280, and Kryo-385)
    • [x] Nvidia-designed ARM cores (Denver)
    • [x] Samsung-designed ARM cores (Mongoose and Meerkat)
    • [x] Intel-designed ARM cores (XScale up to 3rd-gen)
    • [x] Apple-designed ARM cores (up to Hurricane)
    • [x] Cavium-designed ARM cores (ThunderX)
    • [x] AppliedMicro-designed ARM cores (X-Gene)
  • Instruction set detection
    • [x] Using CPUID (x86/x86-64)
    • [x] Using dynamic code generation validator (Native Client/x86-64)
    • [x] Using /proc/cpuinfo on 32-bit ARM EABI (Linux)
    • [x] Using microarchitecture heuristics on (32-bit ARM)
    • [x] Using FPSID and WCID registers (32-bit ARM)
    • [x] Using getauxval (Linux/ARM)
    • [x] Using /proc/self/auxv (Android/ARM)
    • [ ] Using instruction probing on ARM (Linux)
    • [ ] Using CPUID registers on ARM64 (Linux)
  • Cache detection
    • [x] Using CPUID leaf 0x00000002 (x86/x86-64)
    • [x] Using CPUID leaf 0x00000004 (non-AMD x86/x86-64)
    • [ ] Using CPUID leaves 0x80000005-0x80000006 (AMD x86/x86-64)
    • [x] Using CPUID leaf 0x8000001D (AMD x86/x86-64)
    • [x] Using /proc/cpuinfo (Linux/pre-ARMv7)
    • [x] Using microarchitecture heuristics (ARM)
    • [x] Using chipset name (ARM)
    • [x] Using sysctlbyname (Mach)
    • [x] Using sysfs typology directories (ARM/Linux)
    • [ ] Using sysfs cache directories (Linux)
  • TLB detection
    • [x] Using CPUID leaf 0x00000002 (x86/x86-64)
    • [ ] Using CPUID leaves 0x80000005-0x80000006 and 0x80000019 (AMD x86/x86-64)
    • [x] Using microarchitecture heuristics (ARM)
  • Topology detection
    • [x] Using CPUID leaf 0x00000001 on x86/x86-64 (legacy APIC ID)
    • [x] Using CPUID leaf 0x0000000B on x86/x86-64 (Intel APIC ID)
    • [ ] Using CPUID leaf 0x8000001E on x86/x86-64 (AMD APIC ID)
    • [x] Using /proc/cpuinfo (Linux)
    • [x] Using host_info (Mach)
    • [x] Using GetLogicalProcessorInformationEx (Windows)
    • [x] Using sysfs (Linux)
    • [x] Using chipset name (ARM/Linux)