blob: c45bcdc1ced0556970f47a72fa9607d28ab82687 [file] [log] [blame]
//===-- tsan_interceptors.cc ----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// FIXME: move as many interceptors as possible into
// sanitizer_common/sanitizer_common_interceptors.inc
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_linux.h"
#include "sanitizer_common/sanitizer_platform_limits_posix.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "interception/interception.h"
#include "tsan_interface.h"
#include "tsan_platform.h"
#include "tsan_suppressions.h"
#include "tsan_rtl.h"
#include "tsan_mman.h"
#include "tsan_fd.h"
using namespace __tsan; // NOLINT
#if SANITIZER_FREEBSD
#define __errno_location __error
#define __libc_malloc __malloc
#define __libc_realloc __realloc
#define __libc_calloc __calloc
#define __libc_free __free
#define stdout __stdoutp
#define stderr __stderrp
#endif
#ifdef __mips__
const int kSigCount = 129;
#else
const int kSigCount = 65;
#endif
struct my_siginfo_t {
// The size is determined by looking at sizeof of real siginfo_t on linux.
u64 opaque[128 / sizeof(u64)];
};
#ifdef __mips__
struct ucontext_t {
u64 opaque[768 / sizeof(u64) + 1];
};
#else
struct ucontext_t {
// The size is determined by looking at sizeof of real ucontext_t on linux.
u64 opaque[936 / sizeof(u64) + 1];
};
#endif
extern "C" int pthread_attr_init(void *attr);
extern "C" int pthread_attr_destroy(void *attr);
DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
extern "C" int pthread_setspecific(unsigned key, const void *v);
DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
extern "C" int pthread_yield();
extern "C" int pthread_sigmask(int how, const __sanitizer_sigset_t *set,
__sanitizer_sigset_t *oldset);
// REAL(sigfillset) defined in common interceptors.
DECLARE_REAL(int, sigfillset, __sanitizer_sigset_t *set)
DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
extern "C" void *pthread_self();
extern "C" void _exit(int status);
extern "C" int *__errno_location();
extern "C" int fileno_unlocked(void *stream);
extern "C" void *__libc_malloc(uptr size);
extern "C" void *__libc_calloc(uptr size, uptr n);
extern "C" void *__libc_realloc(void *ptr, uptr size);
extern "C" void __libc_free(void *ptr);
extern "C" int dirfd(void *dirp);
#if !SANITIZER_FREEBSD
extern "C" int mallopt(int param, int value);
#endif
extern __sanitizer_FILE *stdout, *stderr;
const int PTHREAD_MUTEX_RECURSIVE = 1;
const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
const int EINVAL = 22;
const int EBUSY = 16;
const int EOWNERDEAD = 130;
const int EPOLL_CTL_ADD = 1;
const int SIGILL = 4;
const int SIGABRT = 6;
const int SIGFPE = 8;
const int SIGSEGV = 11;
const int SIGPIPE = 13;
const int SIGTERM = 15;
#ifdef __mips__
const int SIGBUS = 10;
const int SIGSYS = 12;
#else
const int SIGBUS = 7;
const int SIGSYS = 31;
#endif
void *const MAP_FAILED = (void*)-1;
const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
const int MAP_FIXED = 0x10;
typedef long long_t; // NOLINT
// From /usr/include/unistd.h
# define F_ULOCK 0 /* Unlock a previously locked region. */
# define F_LOCK 1 /* Lock a region for exclusive use. */
# define F_TLOCK 2 /* Test and lock a region for exclusive use. */
# define F_TEST 3 /* Test a region for other processes locks. */
#define errno (*__errno_location())
typedef void (*sighandler_t)(int sig);
typedef void (*sigactionhandler_t)(int sig, my_siginfo_t *siginfo, void *uctx);
struct sigaction_t {
#ifdef __mips__
u32 sa_flags;
#endif
union {
sighandler_t sa_handler;
sigactionhandler_t sa_sigaction;
};
#if SANITIZER_FREEBSD
int sa_flags;
__sanitizer_sigset_t sa_mask;
#else
__sanitizer_sigset_t sa_mask;
#ifndef __mips__
int sa_flags;
#endif
void (*sa_restorer)();
#endif
};
const sighandler_t SIG_DFL = (sighandler_t)0;
const sighandler_t SIG_IGN = (sighandler_t)1;
const sighandler_t SIG_ERR = (sighandler_t)-1;
#if SANITIZER_FREEBSD
const int SA_SIGINFO = 0x40;
const int SIG_SETMASK = 3;
#elif defined(__mips__)
const int SA_SIGINFO = 8;
const int SIG_SETMASK = 3;
#else
const int SA_SIGINFO = 4;
const int SIG_SETMASK = 2;
#endif
namespace std {
struct nothrow_t {};
} // namespace std
static sigaction_t sigactions[kSigCount];
namespace __tsan {
struct SignalDesc {
bool armed;
bool sigaction;
my_siginfo_t siginfo;
ucontext_t ctx;
};
struct ThreadSignalContext {
int int_signal_send;
atomic_uintptr_t in_blocking_func;
atomic_uintptr_t have_pending_signals;
SignalDesc pending_signals[kSigCount];
};
// The object is 64-byte aligned, because we want hot data to be located in
// a single cache line if possible (it's accessed in every interceptor).
static ALIGNED(64) char libignore_placeholder[sizeof(LibIgnore)];
static LibIgnore *libignore() {
return reinterpret_cast<LibIgnore*>(&libignore_placeholder[0]);
}
void InitializeLibIgnore() {
const SuppressionContext &supp = *Suppressions();
const uptr n = supp.SuppressionCount();
for (uptr i = 0; i < n; i++) {
const Suppression *s = supp.SuppressionAt(i);
if (0 == internal_strcmp(s->type, kSuppressionLib))
libignore()->AddIgnoredLibrary(s->templ);
}
libignore()->OnLibraryLoaded(0);
}
} // namespace __tsan
static ThreadSignalContext *SigCtx(ThreadState *thr) {
ThreadSignalContext *ctx = (ThreadSignalContext*)thr->signal_ctx;
if (ctx == 0 && !thr->is_dead) {
ctx = (ThreadSignalContext*)MmapOrDie(sizeof(*ctx), "ThreadSignalContext");
MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx));
thr->signal_ctx = ctx;
}
return ctx;
}
static unsigned g_thread_finalize_key;
class ScopedInterceptor {
public:
ScopedInterceptor(ThreadState *thr, const char *fname, uptr pc);
~ScopedInterceptor();
private:
ThreadState *const thr_;
const uptr pc_;
bool in_ignored_lib_;
};
ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
uptr pc)
: thr_(thr)
, pc_(pc)
, in_ignored_lib_(false) {
if (!thr_->ignore_interceptors) {
Initialize(thr);
FuncEntry(thr, pc);
}
DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
if (!thr_->in_ignored_lib && libignore()->IsIgnored(pc)) {
in_ignored_lib_ = true;
thr_->in_ignored_lib = true;
ThreadIgnoreBegin(thr_, pc_);
}
}
ScopedInterceptor::~ScopedInterceptor() {
if (in_ignored_lib_) {
thr_->in_ignored_lib = false;
ThreadIgnoreEnd(thr_, pc_);
}
if (!thr_->ignore_interceptors) {
ProcessPendingSignals(thr_);
FuncExit(thr_);
CheckNoLocks(thr_);
}
}
#define SCOPED_INTERCEPTOR_RAW(func, ...) \
ThreadState *thr = cur_thread(); \
const uptr caller_pc = GET_CALLER_PC(); \
ScopedInterceptor si(thr, #func, caller_pc); \
const uptr pc = StackTrace::GetCurrentPc(); \
(void)pc; \
/**/
#define SCOPED_TSAN_INTERCEPTOR(func, ...) \
SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \
if (REAL(func) == 0) { \
Report("FATAL: ThreadSanitizer: failed to intercept %s\n", #func); \
Die(); \
} \
if (thr->ignore_interceptors || thr->in_ignored_lib) \
return REAL(func)(__VA_ARGS__); \
/**/
#define TSAN_INTERCEPTOR(ret, func, ...) INTERCEPTOR(ret, func, __VA_ARGS__)
#define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
#if SANITIZER_FREEBSD
# define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
#else
# define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
#endif
#define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
struct BlockingCall {
explicit BlockingCall(ThreadState *thr)
: thr(thr)
, ctx(SigCtx(thr)) {
for (;;) {
atomic_store(&ctx->in_blocking_func, 1, memory_order_relaxed);
if (atomic_load(&ctx->have_pending_signals, memory_order_relaxed) == 0)
break;
atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
ProcessPendingSignals(thr);
}
// When we are in a "blocking call", we process signals asynchronously
// (right when they arrive). In this context we do not expect to be
// executing any user/runtime code. The known interceptor sequence when
// this is not true is: pthread_join -> munmap(stack). It's fine
// to ignore munmap in this case -- we handle stack shadow separately.
thr->ignore_interceptors++;
}
~BlockingCall() {
thr->ignore_interceptors--;
atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
}
ThreadState *thr;
ThreadSignalContext *ctx;
};
TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
SCOPED_TSAN_INTERCEPTOR(sleep, sec);
unsigned res = BLOCK_REAL(sleep)(sec);
AfterSleep(thr, pc);
return res;
}
TSAN_INTERCEPTOR(int, usleep, long_t usec) {
SCOPED_TSAN_INTERCEPTOR(usleep, usec);
int res = BLOCK_REAL(usleep)(usec);
AfterSleep(thr, pc);
return res;
}
TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
int res = BLOCK_REAL(nanosleep)(req, rem);
AfterSleep(thr, pc);
return res;
}
// The sole reason tsan wraps atexit callbacks is to establish synchronization
// between callback setup and callback execution.
struct AtExitCtx {
void (*f)();
void *arg;
};
static void at_exit_wrapper(void *arg) {
ThreadState *thr = cur_thread();
uptr pc = 0;
Acquire(thr, pc, (uptr)arg);
AtExitCtx *ctx = (AtExitCtx*)arg;
((void(*)(void *arg))ctx->f)(ctx->arg);
__libc_free(ctx);
}
static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
void *arg, void *dso);
TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
if (cur_thread()->in_symbolizer)
return 0;
// We want to setup the atexit callback even if we are in ignored lib
// or after fork.
SCOPED_INTERCEPTOR_RAW(atexit, f);
return setup_at_exit_wrapper(thr, pc, (void(*)())f, 0, 0);
}
TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
if (cur_thread()->in_symbolizer)
return 0;
SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
return setup_at_exit_wrapper(thr, pc, (void(*)())f, arg, dso);
}
static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
void *arg, void *dso) {
AtExitCtx *ctx = (AtExitCtx*)__libc_malloc(sizeof(AtExitCtx));
ctx->f = f;
ctx->arg = arg;
Release(thr, pc, (uptr)ctx);
// Memory allocation in __cxa_atexit will race with free during exit,
// because we do not see synchronization around atexit callback list.
ThreadIgnoreBegin(thr, pc);
int res = REAL(__cxa_atexit)(at_exit_wrapper, ctx, dso);
ThreadIgnoreEnd(thr, pc);
return res;
}
static void on_exit_wrapper(int status, void *arg) {
ThreadState *thr = cur_thread();
uptr pc = 0;
Acquire(thr, pc, (uptr)arg);
AtExitCtx *ctx = (AtExitCtx*)arg;
((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
__libc_free(ctx);
}
TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
if (cur_thread()->in_symbolizer)
return 0;
SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
AtExitCtx *ctx = (AtExitCtx*)__libc_malloc(sizeof(AtExitCtx));
ctx->f = (void(*)())f;
ctx->arg = arg;
Release(thr, pc, (uptr)ctx);
// Memory allocation in __cxa_atexit will race with free during exit,
// because we do not see synchronization around atexit callback list.
ThreadIgnoreBegin(thr, pc);
int res = REAL(on_exit)(on_exit_wrapper, ctx);
ThreadIgnoreEnd(thr, pc);
return res;
}
// Cleanup old bufs.
static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
JmpBuf *buf = &thr->jmp_bufs[i];
if (buf->sp <= sp) {
uptr sz = thr->jmp_bufs.Size();
thr->jmp_bufs[i] = thr->jmp_bufs[sz - 1];
thr->jmp_bufs.PopBack();
i--;
}
}
}
static void SetJmp(ThreadState *thr, uptr sp, uptr mangled_sp) {
if (!thr->is_inited) // called from libc guts during bootstrap
return;
// Cleanup old bufs.
JmpBufGarbageCollect(thr, sp);
// Remember the buf.
JmpBuf *buf = thr->jmp_bufs.PushBack();
buf->sp = sp;
buf->mangled_sp = mangled_sp;
buf->shadow_stack_pos = thr->shadow_stack_pos;
ThreadSignalContext *sctx = SigCtx(thr);
buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
buf->in_blocking_func = sctx ?
atomic_load(&sctx->in_blocking_func, memory_order_relaxed) :
false;
buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
memory_order_relaxed);
}
static void LongJmp(ThreadState *thr, uptr *env) {
#if SANITIZER_FREEBSD
uptr mangled_sp = env[2];
#else
uptr mangled_sp = env[6];
#endif // SANITIZER_FREEBSD
// Find the saved buf by mangled_sp.
for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
JmpBuf *buf = &thr->jmp_bufs[i];
if (buf->mangled_sp == mangled_sp) {
CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
// Unwind the stack.
while (thr->shadow_stack_pos > buf->shadow_stack_pos)
FuncExit(thr);
ThreadSignalContext *sctx = SigCtx(thr);
if (sctx) {
sctx->int_signal_send = buf->int_signal_send;
atomic_store(&sctx->in_blocking_func, buf->in_blocking_func,
memory_order_relaxed);
}
atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
memory_order_relaxed);
JmpBufGarbageCollect(thr, buf->sp - 1); // do not collect buf->sp
return;
}
}
Printf("ThreadSanitizer: can't find longjmp buf\n");
CHECK(0);
}
// FIXME: put everything below into a common extern "C" block?
extern "C" void __tsan_setjmp(uptr sp, uptr mangled_sp) {
SetJmp(cur_thread(), sp, mangled_sp);
}
// Not called. Merely to satisfy TSAN_INTERCEPT().
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
int __interceptor_setjmp(void *env);
extern "C" int __interceptor_setjmp(void *env) {
CHECK(0);
return 0;
}
// FIXME: any reason to have a separate declaration?
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
int __interceptor__setjmp(void *env);
extern "C" int __interceptor__setjmp(void *env) {
CHECK(0);
return 0;
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
int __interceptor_sigsetjmp(void *env);
extern "C" int __interceptor_sigsetjmp(void *env) {
CHECK(0);
return 0;
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
int __interceptor___sigsetjmp(void *env);
extern "C" int __interceptor___sigsetjmp(void *env) {
CHECK(0);
return 0;
}
extern "C" int setjmp(void *env);
extern "C" int _setjmp(void *env);
extern "C" int sigsetjmp(void *env);
extern "C" int __sigsetjmp(void *env);
DEFINE_REAL(int, setjmp, void *env)
DEFINE_REAL(int, _setjmp, void *env)
DEFINE_REAL(int, sigsetjmp, void *env)
DEFINE_REAL(int, __sigsetjmp, void *env)
TSAN_INTERCEPTOR(void, longjmp, uptr *env, int val) {
{
SCOPED_TSAN_INTERCEPTOR(longjmp, env, val);
}
LongJmp(cur_thread(), env);
REAL(longjmp)(env, val);
}
TSAN_INTERCEPTOR(void, siglongjmp, uptr *env, int val) {
{
SCOPED_TSAN_INTERCEPTOR(siglongjmp, env, val);
}
LongJmp(cur_thread(), env);
REAL(siglongjmp)(env, val);
}
TSAN_INTERCEPTOR(void*, malloc, uptr size) {
if (cur_thread()->in_symbolizer)
return __libc_malloc(size);
void *p = 0;
{
SCOPED_INTERCEPTOR_RAW(malloc, size);
p = user_alloc(thr, pc, size);
}
invoke_malloc_hook(p, size);
return p;
}
TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
SCOPED_TSAN_INTERCEPTOR(__libc_memalign, align, sz);
return user_alloc(thr, pc, sz, align);
}
TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
if (cur_thread()->in_symbolizer)
return __libc_calloc(size, n);
void *p = 0;
{
SCOPED_INTERCEPTOR_RAW(calloc, size, n);
p = user_calloc(thr, pc, size, n);
}
invoke_malloc_hook(p, n * size);
return p;
}
TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
if (cur_thread()->in_symbolizer)
return __libc_realloc(p, size);
if (p)
invoke_free_hook(p);
{
SCOPED_INTERCEPTOR_RAW(realloc, p, size);
p = user_realloc(thr, pc, p, size);
}
invoke_malloc_hook(p, size);
return p;
}
TSAN_INTERCEPTOR(void, free, void *p) {
if (p == 0)
return;
if (cur_thread()->in_symbolizer)
return __libc_free(p);
invoke_free_hook(p);
SCOPED_INTERCEPTOR_RAW(free, p);
user_free(thr, pc, p);
}
TSAN_INTERCEPTOR(void, cfree, void *p) {
if (p == 0)
return;
if (cur_thread()->in_symbolizer)
return __libc_free(p);
invoke_free_hook(p);
SCOPED_INTERCEPTOR_RAW(cfree, p);
user_free(thr, pc, p);
}
TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
return user_alloc_usable_size(p);
}
#define OPERATOR_NEW_BODY(mangled_name) \
if (cur_thread()->in_symbolizer) \
return __libc_malloc(size); \
void *p = 0; \
{ \
SCOPED_INTERCEPTOR_RAW(mangled_name, size); \
p = user_alloc(thr, pc, size); \
} \
invoke_malloc_hook(p, size); \
return p;
SANITIZER_INTERFACE_ATTRIBUTE
void *operator new(__sanitizer::uptr size);
void *operator new(__sanitizer::uptr size) {
OPERATOR_NEW_BODY(_Znwm);
}
SANITIZER_INTERFACE_ATTRIBUTE
void *operator new[](__sanitizer::uptr size);
void *operator new[](__sanitizer::uptr size) {
OPERATOR_NEW_BODY(_Znam);
}
SANITIZER_INTERFACE_ATTRIBUTE
void *operator new(__sanitizer::uptr size, std::nothrow_t const&);
void *operator new(__sanitizer::uptr size, std::nothrow_t const&) {
OPERATOR_NEW_BODY(_ZnwmRKSt9nothrow_t);
}
SANITIZER_INTERFACE_ATTRIBUTE
void *operator new[](__sanitizer::uptr size, std::nothrow_t const&);
void *operator new[](__sanitizer::uptr size, std::nothrow_t const&) {
OPERATOR_NEW_BODY(_ZnamRKSt9nothrow_t);
}
#define OPERATOR_DELETE_BODY(mangled_name) \
if (ptr == 0) return; \
if (cur_thread()->in_symbolizer) \
return __libc_free(ptr); \
invoke_free_hook(ptr); \
SCOPED_INTERCEPTOR_RAW(mangled_name, ptr); \
user_free(thr, pc, ptr);
SANITIZER_INTERFACE_ATTRIBUTE
void operator delete(void *ptr) throw();
void operator delete(void *ptr) throw() {
OPERATOR_DELETE_BODY(_ZdlPv);
}
SANITIZER_INTERFACE_ATTRIBUTE
void operator delete[](void *ptr) throw();
void operator delete[](void *ptr) throw() {
OPERATOR_DELETE_BODY(_ZdaPv);
}
SANITIZER_INTERFACE_ATTRIBUTE
void operator delete(void *ptr, std::nothrow_t const&);
void operator delete(void *ptr, std::nothrow_t const&) {
OPERATOR_DELETE_BODY(_ZdlPvRKSt9nothrow_t);
}
SANITIZER_INTERFACE_ATTRIBUTE
void operator delete[](void *ptr, std::nothrow_t const&);
void operator delete[](void *ptr, std::nothrow_t const&) {
OPERATOR_DELETE_BODY(_ZdaPvRKSt9nothrow_t);
}
TSAN_INTERCEPTOR(uptr, strlen, const char *s) {
SCOPED_TSAN_INTERCEPTOR(strlen, s);
uptr len = internal_strlen(s);
MemoryAccessRange(thr, pc, (uptr)s, len + 1, false);
return len;
}
TSAN_INTERCEPTOR(void*, memset, void *dst, int v, uptr size) {
SCOPED_TSAN_INTERCEPTOR(memset, dst, v, size);
MemoryAccessRange(thr, pc, (uptr)dst, size, true);
return internal_memset(dst, v, size);
}
TSAN_INTERCEPTOR(void*, memcpy, void *dst, const void *src, uptr size) {
// On FreeBSD we get here from libthr internals on thread initialization.
if (cur_thread()->is_inited) {
SCOPED_TSAN_INTERCEPTOR(memcpy, dst, src, size);
MemoryAccessRange(thr, pc, (uptr)dst, size, true);
MemoryAccessRange(thr, pc, (uptr)src, size, false);
}
return internal_memcpy(dst, src, size);
}
TSAN_INTERCEPTOR(int, memcmp, const void *s1, const void *s2, uptr n) {
SCOPED_TSAN_INTERCEPTOR(memcmp, s1, s2, n);
int res = 0;
uptr len = 0;
for (; len < n; len++) {
if ((res = ((const unsigned char *)s1)[len] -
((const unsigned char *)s2)[len]))
break;
}
MemoryAccessRange(thr, pc, (uptr)s1, len < n ? len + 1 : n, false);
MemoryAccessRange(thr, pc, (uptr)s2, len < n ? len + 1 : n, false);
return res;
}
TSAN_INTERCEPTOR(void*, memmove, void *dst, void *src, uptr n) {
SCOPED_TSAN_INTERCEPTOR(memmove, dst, src, n);
MemoryAccessRange(thr, pc, (uptr)dst, n, true);
MemoryAccessRange(thr, pc, (uptr)src, n, false);
return REAL(memmove)(dst, src, n);
}
TSAN_INTERCEPTOR(char*, strchr, char *s, int c) {
SCOPED_TSAN_INTERCEPTOR(strchr, s, c);
char *res = REAL(strchr)(s, c);
uptr len = res ? (char*)res - (char*)s + 1 : internal_strlen(s) + 1;
MemoryAccessRange(thr, pc, (uptr)s, len, false);
return res;
}
TSAN_INTERCEPTOR(char*, strchrnul, char *s, int c) {
SCOPED_TSAN_INTERCEPTOR(strchrnul, s, c);
char *res = REAL(strchrnul)(s, c);
uptr len = (char*)res - (char*)s + 1;
MemoryAccessRange(thr, pc, (uptr)s, len, false);
return res;
}
TSAN_INTERCEPTOR(char*, strrchr, char *s, int c) {
SCOPED_TSAN_INTERCEPTOR(strrchr, s, c);
MemoryAccessRange(thr, pc, (uptr)s, internal_strlen(s) + 1, false);
return REAL(strrchr)(s, c);
}
TSAN_INTERCEPTOR(char*, strcpy, char *dst, const char *src) { // NOLINT
SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src); // NOLINT
uptr srclen = internal_strlen(src);
MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
return REAL(strcpy)(dst, src); // NOLINT
}
TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
uptr srclen = internal_strnlen(src, n);
MemoryAccessRange(thr, pc, (uptr)dst, n, true);
MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
return REAL(strncpy)(dst, src, n);
}
TSAN_INTERCEPTOR(const char*, strstr, const char *s1, const char *s2) {
SCOPED_TSAN_INTERCEPTOR(strstr, s1, s2);
const char *res = REAL(strstr)(s1, s2);
uptr len1 = internal_strlen(s1);
uptr len2 = internal_strlen(s2);
MemoryAccessRange(thr, pc, (uptr)s1, len1 + 1, false);
MemoryAccessRange(thr, pc, (uptr)s2, len2 + 1, false);
return res;
}
TSAN_INTERCEPTOR(char*, strdup, const char *str) {
SCOPED_TSAN_INTERCEPTOR(strdup, str);
// strdup will call malloc, so no instrumentation is required here.
return REAL(strdup)(str);
}
static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
if (*addr) {
if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
if (flags & MAP_FIXED) {
errno = EINVAL;
return false;
} else {
*addr = 0;
}
}
}
return true;
}
TSAN_INTERCEPTOR(void*, mmap, void *addr, long_t sz, int prot,
int flags, int fd, unsigned off) {
SCOPED_TSAN_INTERCEPTOR(mmap, addr, sz, prot, flags, fd, off);
if (!fix_mmap_addr(&addr, sz, flags))
return MAP_FAILED;
void *res = REAL(mmap)(addr, sz, prot, flags, fd, off);
if (res != MAP_FAILED) {
if (fd > 0)
FdAccess(thr, pc, fd);
MemoryRangeImitateWrite(thr, pc, (uptr)res, sz);
}
return res;
}
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(void*, mmap64, void *addr, long_t sz, int prot,
int flags, int fd, u64 off) {
SCOPED_TSAN_INTERCEPTOR(mmap64, addr, sz, prot, flags, fd, off);
if (!fix_mmap_addr(&addr, sz, flags))
return MAP_FAILED;
void *res = REAL(mmap64)(addr, sz, prot, flags, fd, off);
if (res != MAP_FAILED) {
if (fd > 0)
FdAccess(thr, pc, fd);
MemoryRangeImitateWrite(thr, pc, (uptr)res, sz);
}
return res;
}
#define TSAN_MAYBE_INTERCEPT_MMAP64 TSAN_INTERCEPT(mmap64)
#else
#define TSAN_MAYBE_INTERCEPT_MMAP64
#endif
TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
DontNeedShadowFor((uptr)addr, sz);
ctx->metamap.ResetRange(thr, pc, (uptr)addr, (uptr)sz);
int res = REAL(munmap)(addr, sz);
return res;
}
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
return user_alloc(thr, pc, sz, align);
}
#define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
#else
#define TSAN_MAYBE_INTERCEPT_MEMALIGN
#endif
TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
return user_alloc(thr, pc, sz, align);
}
TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
SCOPED_INTERCEPTOR_RAW(valloc, sz);
return user_alloc(thr, pc, sz, GetPageSizeCached());
}
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
sz = RoundUp(sz, GetPageSizeCached());
return user_alloc(thr, pc, sz, GetPageSizeCached());
}
#define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
#else
#define TSAN_MAYBE_INTERCEPT_PVALLOC
#endif
TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
*memptr = user_alloc(thr, pc, sz, align);
return 0;
}
// Used in thread-safe function static initialization.
extern "C" int INTERFACE_ATTRIBUTE __cxa_guard_acquire(atomic_uint32_t *g) {
SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
for (;;) {
u32 cmp = atomic_load(g, memory_order_acquire);
if (cmp == 0) {
if (atomic_compare_exchange_strong(g, &cmp, 1<<16, memory_order_relaxed))
return 1;
} else if (cmp == 1) {
Acquire(thr, pc, (uptr)g);
return 0;
} else {
internal_sched_yield();
}
}
}
extern "C" void INTERFACE_ATTRIBUTE __cxa_guard_release(atomic_uint32_t *g) {
SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
Release(thr, pc, (uptr)g);
atomic_store(g, 1, memory_order_release);
}
extern "C" void INTERFACE_ATTRIBUTE __cxa_guard_abort(atomic_uint32_t *g) {
SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
atomic_store(g, 0, memory_order_relaxed);
}
static void thread_finalize(void *v) {
uptr iter = (uptr)v;
if (iter > 1) {
if (pthread_setspecific(g_thread_finalize_key, (void*)(iter - 1))) {
Printf("ThreadSanitizer: failed to set thread key\n");
Die();
}
return;
}
{
ThreadState *thr = cur_thread();
ThreadFinish(thr);
ThreadSignalContext *sctx = thr->signal_ctx;
if (sctx) {
thr->signal_ctx = 0;
UnmapOrDie(sctx, sizeof(*sctx));
}
}
}
struct ThreadParam {
void* (*callback)(void *arg);
void *param;
atomic_uintptr_t tid;
};
extern "C" void *__tsan_thread_start_func(void *arg) {
ThreadParam *p = (ThreadParam*)arg;
void* (*callback)(void *arg) = p->callback;
void *param = p->param;
int tid = 0;
{
ThreadState *thr = cur_thread();
// Thread-local state is not initialized yet.
ScopedIgnoreInterceptors ignore;
ThreadIgnoreBegin(thr, 0);
if (pthread_setspecific(g_thread_finalize_key,
(void *)kPthreadDestructorIterations)) {
Printf("ThreadSanitizer: failed to set thread key\n");
Die();
}
ThreadIgnoreEnd(thr, 0);
while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0)
pthread_yield();
atomic_store(&p->tid, 0, memory_order_release);
ThreadStart(thr, tid, GetTid());
}
void *res = callback(param);
// Prevent the callback from being tail called,
// it mixes up stack traces.
volatile int foo = 42;
foo++;
return res;
}
TSAN_INTERCEPTOR(int, pthread_create,
void *th, void *attr, void *(*callback)(void*), void * param) {
SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
if (ctx->after_multithreaded_fork) {
if (flags()->die_after_fork) {
Report("ThreadSanitizer: starting new threads after multi-threaded "
"fork is not supported. Dying (set die_after_fork=0 to override)\n");
Die();
} else {
VPrintf(1, "ThreadSanitizer: starting new threads after multi-threaded "
"fork is not supported (pid %d). Continuing because of "
"die_after_fork=0, but you are on your own\n", internal_getpid());
}
}
__sanitizer_pthread_attr_t myattr;
if (attr == 0) {
pthread_attr_init(&myattr);
attr = &myattr;
}
int detached = 0;
REAL(pthread_attr_getdetachstate)(attr, &detached);
AdjustStackSize(attr);
ThreadParam p;
p.callback = callback;
p.param = param;
atomic_store(&p.tid, 0, memory_order_relaxed);
int res = -1;
{
// Otherwise we see false positives in pthread stack manipulation.
ScopedIgnoreInterceptors ignore;
ThreadIgnoreBegin(thr, pc);
res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
ThreadIgnoreEnd(thr, pc);
}
if (res == 0) {
int tid = ThreadCreate(thr, pc, *(uptr*)th, detached);
CHECK_NE(tid, 0);
atomic_store(&p.tid, tid, memory_order_release);
while (atomic_load(&p.tid, memory_order_acquire) != 0)
pthread_yield();
}
if (attr == &myattr)
pthread_attr_destroy(&myattr);
return res;
}
TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
int tid = ThreadTid(thr, pc, (uptr)th);
ThreadIgnoreBegin(thr, pc);
int res = BLOCK_REAL(pthread_join)(th, ret);
ThreadIgnoreEnd(thr, pc);
if (res == 0) {
ThreadJoin(thr, pc, tid);
}
return res;
}
DEFINE_REAL_PTHREAD_FUNCTIONS
TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
SCOPED_TSAN_INTERCEPTOR(pthread_detach, th);
int tid = ThreadTid(thr, pc, (uptr)th);
int res = REAL(pthread_detach)(th);
if (res == 0) {
ThreadDetach(thr, pc, tid);
}
return res;
}
// Problem:
// NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
// pthread_cond_t has different size in the different versions.
// If call new REAL functions for old pthread_cond_t, they will corrupt memory
// after pthread_cond_t (old cond is smaller).
// If we call old REAL functions for new pthread_cond_t, we will lose some
// functionality (e.g. old functions do not support waiting against
// CLOCK_REALTIME).
// Proper handling would require to have 2 versions of interceptors as well.
// But this is messy, in particular requires linker scripts when sanitizer
// runtime is linked into a shared library.
// Instead we assume we don't have dynamic libraries built against old
// pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
// that allows to work with old libraries (but this mode does not support
// some features, e.g. pthread_condattr_getpshared).
static void *init_cond(void *c, bool force = false) {
// sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
// So we allocate additional memory on the side large enough to hold
// any pthread_cond_t object. Always call new REAL functions, but pass
// the aux object to them.
// Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
// first word of pthread_cond_t to zero.
// It's all relevant only for linux.
if (!common_flags()->legacy_pthread_cond)
return c;
atomic_uintptr_t *p = (atomic_uintptr_t*)c;
uptr cond = atomic_load(p, memory_order_acquire);
if (!force && cond != 0)
return (void*)cond;
void *newcond = WRAP(malloc)(pthread_cond_t_sz);
internal_memset(newcond, 0, pthread_cond_t_sz);
if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
memory_order_acq_rel))
return newcond;
WRAP(free)(newcond);
return (void*)cond;
}
struct CondMutexUnlockCtx {
ThreadState *thr;
uptr pc;
void *m;
};
static void cond_mutex_unlock(CondMutexUnlockCtx *arg) {
MutexLock(arg->thr, arg->pc, (uptr)arg->m);
}
INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
void *cond = init_cond(c, true);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
return REAL(pthread_cond_init)(cond, a);
}
INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
void *cond = init_cond(c);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
MutexUnlock(thr, pc, (uptr)m);
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
CondMutexUnlockCtx arg = {thr, pc, m};
// This ensures that we handle mutex lock even in case of pthread_cancel.
// See test/tsan/cond_cancel.cc.
int res = call_pthread_cancel_with_cleanup(
(int(*)(void *c, void *m, void *abstime))REAL(pthread_cond_wait),
cond, m, 0, (void(*)(void *arg))cond_mutex_unlock, &arg);
if (res == errno_EOWNERDEAD)
MutexRepair(thr, pc, (uptr)m);
MutexLock(thr, pc, (uptr)m);
return res;
}
INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
void *cond = init_cond(c);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
MutexUnlock(thr, pc, (uptr)m);
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
CondMutexUnlockCtx arg = {thr, pc, m};
// This ensures that we handle mutex lock even in case of pthread_cancel.
// See test/tsan/cond_cancel.cc.
int res = call_pthread_cancel_with_cleanup(
REAL(pthread_cond_timedwait), cond, m, abstime,
(void(*)(void *arg))cond_mutex_unlock, &arg);
if (res == errno_EOWNERDEAD)
MutexRepair(thr, pc, (uptr)m);
MutexLock(thr, pc, (uptr)m);
return res;
}
INTERCEPTOR(int, pthread_cond_signal, void *c) {
void *cond = init_cond(c);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
return REAL(pthread_cond_signal)(cond);
}
INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
void *cond = init_cond(c);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
return REAL(pthread_cond_broadcast)(cond);
}
INTERCEPTOR(int, pthread_cond_destroy, void *c) {
void *cond = init_cond(c);
SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
int res = REAL(pthread_cond_destroy)(cond);
if (common_flags()->legacy_pthread_cond) {
// Free our aux cond and zero the pointer to not leave dangling pointers.
WRAP(free)(cond);
atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
int res = REAL(pthread_mutex_init)(m, a);
if (res == 0) {
bool recursive = false;
if (a) {
int type = 0;
if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
recursive = (type == PTHREAD_MUTEX_RECURSIVE
|| type == PTHREAD_MUTEX_RECURSIVE_NP);
}
MutexCreate(thr, pc, (uptr)m, false, recursive, false);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
int res = REAL(pthread_mutex_destroy)(m);
if (res == 0 || res == EBUSY) {
MutexDestroy(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
int res = REAL(pthread_mutex_trylock)(m);
if (res == EOWNERDEAD)
MutexRepair(thr, pc, (uptr)m);
if (res == 0 || res == EOWNERDEAD)
MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
return res;
}
TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
int res = REAL(pthread_mutex_timedlock)(m, abstime);
if (res == 0) {
MutexLock(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
int res = REAL(pthread_spin_init)(m, pshared);
if (res == 0) {
MutexCreate(thr, pc, (uptr)m, false, false, false);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
int res = REAL(pthread_spin_destroy)(m);
if (res == 0) {
MutexDestroy(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
int res = REAL(pthread_spin_lock)(m);
if (res == 0) {
MutexLock(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
int res = REAL(pthread_spin_trylock)(m);
if (res == 0) {
MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
MutexUnlock(thr, pc, (uptr)m);
int res = REAL(pthread_spin_unlock)(m);
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
int res = REAL(pthread_rwlock_init)(m, a);
if (res == 0) {
MutexCreate(thr, pc, (uptr)m, true, false, false);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
int res = REAL(pthread_rwlock_destroy)(m);
if (res == 0) {
MutexDestroy(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
int res = REAL(pthread_rwlock_rdlock)(m);
if (res == 0) {
MutexReadLock(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
int res = REAL(pthread_rwlock_tryrdlock)(m);
if (res == 0) {
MutexReadLock(thr, pc, (uptr)m, /*try_lock=*/true);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
if (res == 0) {
MutexReadLock(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
int res = REAL(pthread_rwlock_wrlock)(m);
if (res == 0) {
MutexLock(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
int res = REAL(pthread_rwlock_trywrlock)(m);
if (res == 0) {
MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
if (res == 0) {
MutexLock(thr, pc, (uptr)m);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
MutexReadOrWriteUnlock(thr, pc, (uptr)m);
int res = REAL(pthread_rwlock_unlock)(m);
return res;
}
TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
int res = REAL(pthread_barrier_init)(b, a, count);
return res;
}
TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
int res = REAL(pthread_barrier_destroy)(b);
return res;
}
TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
Release(thr, pc, (uptr)b);
MemoryRead(thr, pc, (uptr)b, kSizeLog1);
int res = REAL(pthread_barrier_wait)(b);
MemoryRead(thr, pc, (uptr)b, kSizeLog1);
if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
Acquire(thr, pc, (uptr)b);
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
if (o == 0 || f == 0)
return EINVAL;
atomic_uint32_t *a = static_cast<atomic_uint32_t*>(o);
u32 v = atomic_load(a, memory_order_acquire);
if (v == 0 && atomic_compare_exchange_strong(a, &v, 1,
memory_order_relaxed)) {
(*f)();
if (!thr->in_ignored_lib)
Release(thr, pc, (uptr)o);
atomic_store(a, 2, memory_order_release);
} else {
while (v != 2) {
pthread_yield();
v = atomic_load(a, memory_order_acquire);
}
if (!thr->in_ignored_lib)
Acquire(thr, pc, (uptr)o);
}
return 0;
}
TSAN_INTERCEPTOR(int, sem_init, void *s, int pshared, unsigned value) {
SCOPED_TSAN_INTERCEPTOR(sem_init, s, pshared, value);
int res = REAL(sem_init)(s, pshared, value);
return res;
}
TSAN_INTERCEPTOR(int, sem_destroy, void *s) {
SCOPED_TSAN_INTERCEPTOR(sem_destroy, s);
int res = REAL(sem_destroy)(s);
return res;
}
TSAN_INTERCEPTOR(int, sem_wait, void *s) {
SCOPED_TSAN_INTERCEPTOR(sem_wait, s);
int res = BLOCK_REAL(sem_wait)(s);
if (res == 0) {
Acquire(thr, pc, (uptr)s);
}
return res;
}
TSAN_INTERCEPTOR(int, sem_trywait, void *s) {
SCOPED_TSAN_INTERCEPTOR(sem_trywait, s);
int res = BLOCK_REAL(sem_trywait)(s);
if (res == 0) {
Acquire(thr, pc, (uptr)s);
}
return res;
}
TSAN_INTERCEPTOR(int, sem_timedwait, void *s, void *abstime) {
SCOPED_TSAN_INTERCEPTOR(sem_timedwait, s, abstime);
int res = BLOCK_REAL(sem_timedwait)(s, abstime);
if (res == 0) {
Acquire(thr, pc, (uptr)s);
}
return res;
}
TSAN_INTERCEPTOR(int, sem_post, void *s) {
SCOPED_TSAN_INTERCEPTOR(sem_post, s);
Release(thr, pc, (uptr)s);
int res = REAL(sem_post)(s);
return res;
}
TSAN_INTERCEPTOR(int, sem_getvalue, void *s, int *sval) {
SCOPED_TSAN_INTERCEPTOR(sem_getvalue, s, sval);
int res = REAL(sem_getvalue)(s, sval);
if (res == 0) {
Acquire(thr, pc, (uptr)s);
}
return res;
}
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(int, __xstat, int version, const char *path, void *buf) {
SCOPED_TSAN_INTERCEPTOR(__xstat, version, path, buf);
return REAL(__xstat)(version, path, buf);
}
#define TSAN_MAYBE_INTERCEPT___XSTAT TSAN_INTERCEPT(__xstat)
#else
#define TSAN_MAYBE_INTERCEPT___XSTAT
#endif
TSAN_INTERCEPTOR(int, stat, const char *path, void *buf) {
#if SANITIZER_FREEBSD
SCOPED_TSAN_INTERCEPTOR(stat, path, buf);
return REAL(stat)(path, buf);
#else
SCOPED_TSAN_INTERCEPTOR(__xstat, 0, path, buf);
return REAL(__xstat)(0, path, buf);
#endif
}
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(int, __xstat64, int version, const char *path, void *buf) {
SCOPED_TSAN_INTERCEPTOR(__xstat64, version, path, buf);
return REAL(__xstat64)(version, path, buf);
}
#define TSAN_MAYBE_INTERCEPT___XSTAT64 TSAN_INTERCEPT(__xstat64)
#else
#define TSAN_MAYBE_INTERCEPT___XSTAT64
#endif
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(int, stat64, const char *path, void *buf) {
SCOPED_TSAN_INTERCEPTOR(__xstat64, 0, path, buf);
return REAL(__xstat64)(0, path, buf);
}
#define TSAN_MAYBE_INTERCEPT_STAT64 TSAN_INTERCEPT(stat64)
#else
#define TSAN_MAYBE_INTERCEPT_STAT64
#endif
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(int, __lxstat, int version, const char *path, void *buf) {
SCOPED_TSAN_INTERCEPTOR(__lxstat, version, path, buf);
return REAL(__lxstat)(version, path, buf);
}
#define TSAN_MAYBE_INTERCEPT___LXSTAT TSAN_INTERCEPT(__lxstat)
#else
#define TSAN_MAYBE_INTERCEPT___LXSTAT
#endif
TSAN_INTERCEPTOR(int, lstat, const char *path, void *buf) {
#if SANITIZER_FREEBSD
SCOPED_TSAN_INTERCEPTOR(lstat, path, buf);
return REAL(lstat)(path, buf);
#else
SCOPED_TSAN_INTERCEPTOR(__lxstat, 0, path, buf);
return REAL(__lxstat)(0, path, buf);
#endif
}
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(int, __lxstat64, int version, const char *path, void *buf) {
SCOPED_TSAN_INTERCEPTOR(__lxstat64, version, path, buf);
return REAL(__lxstat64)(version, path, buf);
}
#define TSAN_MAYBE_INTERCEPT___LXSTAT64 TSAN_INTERCEPT(__lxstat64)
#else
#define TSAN_MAYBE_INTERCEPT___LXSTAT64
#endif
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(int, lstat64, const char *path, void *buf) {
SCOPED_TSAN_INTERCEPTOR(__lxstat64, 0, path, buf);
return REAL(__lxstat64)(0, path, buf);
}
#define TSAN_MAYBE_INTERCEPT_LSTAT64 TSAN_INTERCEPT(lstat64)
#else
#define TSAN_MAYBE_INTERCEPT_LSTAT64
#endif
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
if (fd > 0)
FdAccess(thr, pc, fd);
return REAL(__fxstat)(version, fd, buf);
}
#define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
#else
#define TSAN_MAYBE_INTERCEPT___FXSTAT
#endif
TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
#if SANITIZER_FREEBSD
SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
if (fd > 0)
FdAccess(thr, pc, fd);
return REAL(fstat)(fd, buf);
#else
SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf);
if (fd > 0)
FdAccess(thr, pc, fd);
return REAL(__fxstat)(0, fd, buf);
#endif
}
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
if (fd > 0)
FdAccess(thr, pc, fd);
return REAL(__fxstat64)(version, fd, buf);
}
#define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
#else
#define TSAN_MAYBE_INTERCEPT___FXSTAT64
#endif
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf);
if (fd > 0)
FdAccess(thr, pc, fd);
return REAL(__fxstat64)(0, fd, buf);
}
#define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
#else
#define TSAN_MAYBE_INTERCEPT_FSTAT64
#endif
TSAN_INTERCEPTOR(int, open, const char *name, int flags, int mode) {
SCOPED_TSAN_INTERCEPTOR(open, name, flags, mode);
int fd = REAL(open)(name, flags, mode);
if (fd >= 0)
FdFileCreate(thr, pc, fd);
return fd;
}
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(int, open64, const char *name, int flags, int mode) {
SCOPED_TSAN_INTERCEPTOR(open64, name, flags, mode);
int fd = REAL(open64)(name, flags, mode);
if (fd >= 0)
FdFileCreate(thr, pc, fd);
return fd;
}
#define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
#else
#define TSAN_MAYBE_INTERCEPT_OPEN64
#endif
TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
int fd = REAL(creat)(name, mode);
if (fd >= 0)
FdFileCreate(thr, pc, fd);
return fd;
}
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
int fd = REAL(creat64)(name, mode);
if (fd >= 0)
FdFileCreate(thr, pc, fd);
return fd;
}
#define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
#else
#define TSAN_MAYBE_INTERCEPT_CREAT64
#endif
TSAN_INTERCEPTOR(int, dup, int oldfd) {
SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
int newfd = REAL(dup)(oldfd);
if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
FdDup(thr, pc, oldfd, newfd);
return newfd;
}
TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
int newfd2 = REAL(dup2)(oldfd, newfd);
if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
FdDup(thr, pc, oldfd, newfd2);
return newfd2;
}
TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
int newfd2 = REAL(dup3)(oldfd, newfd, flags);
if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
FdDup(thr, pc, oldfd, newfd2);
return newfd2;
}
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
int fd = REAL(eventfd)(initval, flags);
if (fd >= 0)
FdEventCreate(thr, pc, fd);
return fd;
}
#define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
#else
#define TSAN_MAYBE_INTERCEPT_EVENTFD
#endif
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
SCOPED_TSAN_INTERCEPTOR(signalfd, fd, mask, flags);
if (fd >= 0)
FdClose(thr, pc, fd);
fd = REAL(signalfd)(fd, mask, flags);
if (fd >= 0)
FdSignalCreate(thr, pc, fd);
return fd;
}
#define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
#else
#define TSAN_MAYBE_INTERCEPT_SIGNALFD
#endif
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(int, inotify_init, int fake) {
SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
int fd = REAL(inotify_init)(fake);
if (fd >= 0)
FdInotifyCreate(thr, pc, fd);
return fd;
}
#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
#else
#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
#endif
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
int fd = REAL(inotify_init1)(flags);
if (fd >= 0)
FdInotifyCreate(thr, pc, fd);
return fd;
}
#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
#else
#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
#endif
TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
int fd = REAL(socket)(domain, type, protocol);
if (fd >= 0)
FdSocketCreate(thr, pc, fd);
return fd;
}
TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
int res = REAL(socketpair)(domain, type, protocol, fd);
if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
FdPipeCreate(thr, pc, fd[0], fd[1]);
return res;
}
TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
FdSocketConnecting(thr, pc, fd);
int res = REAL(connect)(fd, addr, addrlen);
if (res == 0 && fd >= 0)
FdSocketConnect(thr, pc, fd);
return res;
}
TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
int res = REAL(bind)(fd, addr, addrlen);
if (fd > 0 && res == 0)
FdAccess(thr, pc, fd);
return res;
}
TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
int res = REAL(listen)(fd, backlog);
if (fd > 0 && res == 0)
FdAccess(thr, pc, fd);
return res;
}
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(int, epoll_create, int size) {
SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
int fd = REAL(epoll_create)(size);
if (fd >= 0)
FdPollCreate(thr, pc, fd);
return fd;
}
#define TSAN_MAYBE_INTERCEPT_EPOLL_CREATE TSAN_INTERCEPT(epoll_create)
#else
#define TSAN_MAYBE_INTERCEPT_EPOLL_CREATE
#endif
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
int fd = REAL(epoll_create1)(flags);
if (fd >= 0)
FdPollCreate(thr, pc, fd);
return fd;
}
#define TSAN_MAYBE_INTERCEPT_EPOLL_CREATE1 TSAN_INTERCEPT(epoll_create1)
#else
#define TSAN_MAYBE_INTERCEPT_EPOLL_CREATE1
#endif
TSAN_INTERCEPTOR(int, close, int fd) {
SCOPED_TSAN_INTERCEPTOR(close, fd);
if (fd >= 0)
FdClose(thr, pc, fd);
return REAL(close)(fd);
}
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(int, __close, int fd) {
SCOPED_TSAN_INTERCEPTOR(__close, fd);
if (fd >= 0)
FdClose(thr, pc, fd);
return REAL(__close)(fd);
}
#define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
#else
#define TSAN_MAYBE_INTERCEPT___CLOSE
#endif
// glibc guts
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
SCOPED_TSAN_INTERCEPTOR(__res_iclose, state, free_addr);
int fds[64];
int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
for (int i = 0; i < cnt; i++) {
if (fds[i] > 0)
FdClose(thr, pc, fds[i]);
}
REAL(__res_iclose)(state, free_addr);
}
#define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
#else
#define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
#endif
TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
int res = REAL(pipe)(pipefd);
if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
return res;
}
TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
int res = REAL(pipe2)(pipefd, flags);
if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
return res;
}
TSAN_INTERCEPTOR(long_t, send, int fd, void *buf, long_t len, int flags) {
SCOPED_TSAN_INTERCEPTOR(send, fd, buf, len, flags);
if (fd >= 0) {
FdAccess(thr, pc, fd);
FdRelease(thr, pc, fd);
}
int res = REAL(send)(fd, buf, len, flags);
return res;
}
TSAN_INTERCEPTOR(long_t, sendmsg, int fd, void *msg, int flags) {
SCOPED_TSAN_INTERCEPTOR(sendmsg, fd, msg, flags);
if (fd >= 0) {
FdAccess(thr, pc, fd);
FdRelease(thr, pc, fd);
}
int res = REAL(sendmsg)(fd, msg, flags);
return res;
}
TSAN_INTERCEPTOR(long_t, recv, int fd, void *buf, long_t len, int flags) {
SCOPED_TSAN_INTERCEPTOR(recv, fd, buf, len, flags);
if (fd >= 0)
FdAccess(thr, pc, fd);
int res = REAL(recv)(fd, buf, len, flags);
if (res >= 0 && fd >= 0) {
FdAcquire(thr, pc, fd);
}
return res;
}
TSAN_INTERCEPTOR(int, unlink, char *path) {
SCOPED_TSAN_INTERCEPTOR(unlink, path);
Release(thr, pc, File2addr(path));
int res = REAL(unlink)(path);
return res;
}
TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
void *res = REAL(tmpfile)(fake);
if (res) {
int fd = fileno_unlocked(res);
if (fd >= 0)
FdFileCreate(thr, pc, fd);
}
return res;
}
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
void *res = REAL(tmpfile64)(fake);
if (res) {
int fd = fileno_unlocked(res);
if (fd >= 0)
FdFileCreate(thr, pc, fd);
}
return res;
}
#define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
#else
#define TSAN_MAYBE_INTERCEPT_TMPFILE64
#endif
TSAN_INTERCEPTOR(uptr, fread, void *ptr, uptr size, uptr nmemb, void *f) {
// libc file streams can call user-supplied functions, see fopencookie.
{
SCOPED_TSAN_INTERCEPTOR(fread, ptr, size, nmemb, f);
MemoryAccessRange(thr, pc, (uptr)ptr, size * nmemb, true);
}
return REAL(fread)(ptr, size, nmemb, f);
}
TSAN_INTERCEPTOR(uptr, fwrite, const void *p, uptr size, uptr nmemb, void *f) {
// libc file streams can call user-supplied functions, see fopencookie.
{
SCOPED_TSAN_INTERCEPTOR(fwrite, p, size, nmemb, f);
MemoryAccessRange(thr, pc, (uptr)p, size * nmemb, false);
}
return REAL(fwrite)(p, size, nmemb, f);
}
static void FlushStreams() {
// Flushing all the streams here may freeze the process if a child thread is
// performing file stream operations at the same time.
REAL(fflush)(stdout);
REAL(fflush)(stderr);
}
TSAN_INTERCEPTOR(void, abort, int fake) {
SCOPED_TSAN_INTERCEPTOR(abort, fake);
FlushStreams();
REAL(abort)(fake);
}
TSAN_INTERCEPTOR(int, puts, const char *s) {
SCOPED_TSAN_INTERCEPTOR(puts, s);
MemoryAccessRange(thr, pc, (uptr)s, internal_strlen(s), false);
return REAL(puts)(s);
}
TSAN_INTERCEPTOR(int, rmdir, char *path) {
SCOPED_TSAN_INTERCEPTOR(rmdir, path);
Release(thr, pc, Dir2addr(path));
int res = REAL(rmdir)(path);
return res;
}
TSAN_INTERCEPTOR(int, closedir, void *dirp) {
SCOPED_TSAN_INTERCEPTOR(closedir, dirp);
int fd = dirfd(dirp);
FdClose(thr, pc, fd);
return REAL(closedir)(dirp);
}
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
if (epfd >= 0)
FdAccess(thr, pc, epfd);
if (epfd >= 0 && fd >= 0)
FdAccess(thr, pc, fd);
if (op == EPOLL_CTL_ADD && epfd >= 0)
FdRelease(thr, pc, epfd);
int res = REAL(epoll_ctl)(epfd, op, fd, ev);
return res;
}
#define TSAN_MAYBE_INTERCEPT_EPOLL_CTL TSAN_INTERCEPT(epoll_ctl)
#else
#define TSAN_MAYBE_INTERCEPT_EPOLL_CTL
#endif
#if !SANITIZER_FREEBSD
TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
if (epfd >= 0)
FdAccess(thr, pc, epfd);
int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
if (res > 0 && epfd >= 0)
FdAcquire(thr, pc, epfd);
return res;
}
#define TSAN_MAYBE_INTERCEPT_EPOLL_WAIT TSAN_INTERCEPT(epoll_wait)
#else
#define TSAN_MAYBE_INTERCEPT_EPOLL_WAIT
#endif
namespace __tsan {
static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
bool sigact, int sig, my_siginfo_t *info, void *uctx) {
if (acquire)
Acquire(thr, 0, (uptr)&sigactions[sig]);
// Ensure that the handler does not spoil errno.
const int saved_errno = errno;
errno = 99;
// This code races with sigaction. Be careful to not read sa_sigaction twice.
// Also need to remember pc for reporting before the call,
// because the handler can reset it.
volatile uptr pc = sigact ?
(uptr)sigactions[sig].sa_sigaction :
(uptr)sigactions[sig].sa_handler;
if (pc != (uptr)SIG_DFL && pc != (uptr)SIG_IGN) {
if (sigact)
((sigactionhandler_t)pc)(sig, info, uctx);
else
((sighandler_t)pc)(sig);
}
// We do not detect errno spoiling for SIGTERM,
// because some SIGTERM handlers do spoil errno but reraise SIGTERM,
// tsan reports false positive in such case.
// It's difficult to properly detect this situation (reraise),
// because in async signal processing case (when handler is called directly
// from rtl_generic_sighandler) we have not yet received the reraised
// signal; and it looks too fragile to intercept all ways to reraise a signal.
if (flags()->report_bugs && !sync && sig != SIGTERM && errno != 99) {
VarSizeStackTrace stack;
// StackTrace::GetNestInstructionPc(pc) is used because return address is
// expected, OutputReport() will undo this.
ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack);
ThreadRegistryLock l(ctx->thread_registry);
ScopedReport rep(ReportTypeErrnoInSignal);
if (!IsFiredSuppression(ctx, rep, stack)) {
rep.AddStack(stack, true);
OutputReport(thr, rep);
}
}
errno = saved_errno;
}
void ProcessPendingSignals(ThreadState *thr) {
ThreadSignalContext *sctx = SigCtx(thr);
if (sctx == 0 ||
atomic_load(&sctx->have_pending_signals, memory_order_relaxed) == 0)
return;
atomic_store(&sctx->have_pending_signals, 0, memory_order_relaxed);
atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
// These are too big for stack.
static THREADLOCAL __sanitizer_sigset_t emptyset, oldset;
CHECK_EQ(0, REAL(sigfillset)(&emptyset));
CHECK_EQ(0, pthread_sigmask(SIG_SETMASK, &emptyset, &oldset));
for (int sig = 0; sig < kSigCount; sig++) {
SignalDesc *signal = &sctx->pending_signals[sig];
if (signal->armed) {
signal->armed = false;
CallUserSignalHandler(thr, false, true, signal->sigaction, sig,
&signal->siginfo, &signal->ctx);
}
}
CHECK_EQ(0, pthread_sigmask(SIG_SETMASK, &oldset, 0));
atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
}
} // namespace __tsan
static bool is_sync_signal(ThreadSignalContext *sctx, int sig) {
return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS ||
// If we are sending signal to ourselves, we must process it now.
(sctx && sig == sctx->int_signal_send);
}
void ALWAYS_INLINE rtl_generic_sighandler(bool sigact, int sig,
my_siginfo_t *info, void *ctx) {
ThreadState *thr = cur_thread();
ThreadSignalContext *sctx = SigCtx(thr);
if (sig < 0 || sig >= kSigCount) {
VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
return;
}
// Don't mess with synchronous signals.
const bool sync = is_sync_signal(sctx, sig);
if (sync ||
// If we are in blocking function, we can safely process it now
// (but check if we are in a recursive interceptor,
// i.e. pthread_join()->munmap()).
(sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed))) {
atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
if (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed)) {
// We ignore interceptors in blocking functions,
// temporary enbled them again while we are calling user function.
int const i = thr->ignore_interceptors;
thr->ignore_interceptors = 0;
atomic_store(&sctx->in_blocking_func, 0, memory_order_relaxed);
CallUserSignalHandler(thr, sync, true, sigact, sig, info, ctx);
thr->ignore_interceptors = i;
atomic_store(&sctx->in_blocking_func, 1, memory_order_relaxed);
} else {
// Be very conservative with when we do acquire in this case.
// It's unsafe to do acquire in async handlers, because ThreadState
// can be in inconsistent state.
// SIGSYS looks relatively safe -- it's synchronous and can actually
// need some global state.
bool acq = (sig == SIGSYS);
CallUserSignalHandler(thr, sync, acq, sigact, sig, info, ctx);
}
atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
return;
}
if (sctx == 0)
return;
SignalDesc *signal = &sctx->pending_signals[sig];
if (signal->armed == false) {
signal->armed = true;
signal->sigaction = sigact;
if (info)
internal_memcpy(&signal->siginfo, info, sizeof(*info));
if (ctx)
internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
atomic_store(&sctx->have_pending_signals, 1, memory_order_relaxed);
}
}
static void rtl_sighandler(int sig) {
rtl_generic_sighandler(false, sig, 0, 0);
}
static void rtl_sigaction(int sig, my_siginfo_t *info, void *ctx) {
rtl_generic_sighandler(true, sig, info, ctx);
}
TSAN_INTERCEPTOR(int, sigaction, int sig, sigaction_t *act, sigaction_t *old) {
SCOPED_TSAN_INTERCEPTOR(sigaction, sig, act, old);
if (old)
internal_memcpy(old, &sigactions[sig], sizeof(*old));
if (act == 0)
return 0;
// Copy act into sigactions[sig].
// Can't use struct copy, because compiler can emit call to memcpy.
// Can't use internal_memcpy, because it copies byte-by-byte,
// and signal handler reads the sa_handler concurrently. It it can read
// some bytes from old value and some bytes from new value.
// Use volatile to prevent insertion of memcpy.
sigactions[sig].sa_handler = *(volatile sighandler_t*)&act->sa_handler;
sigactions[sig].sa_flags = *(volatile int*)&act->sa_flags;
internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask,
sizeof(sigactions[sig].sa_mask));
#if !SANITIZER_FREEBSD
sigactions[sig].sa_restorer = act->sa_restorer;
#endif
sigaction_t newact;
internal_memcpy(&newact, act, sizeof(newact));
REAL(sigfillset)(&newact.sa_mask);
if (act->sa_handler != SIG_IGN && act->sa_handler != SIG_DFL) {
if (newact.sa_flags & SA_SIGINFO)
newact.sa_sigaction = rtl_sigaction;
else
newact.sa_handler = rtl_sighandler;
}
ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
int res = REAL(sigaction)(sig, &newact, 0);
return res;
}
TSAN_INTERCEPTOR(sighandler_t, signal, int sig, sighandler_t h) {
sigaction_t act;
act.sa_handler = h;
REAL(memset)(&act.sa_mask, -1, sizeof(act.sa_mask));
act.sa_flags = 0;
sigaction_t old;
int res = sigaction(sig, &act, &old);
if (res)
return SIG_ERR;
return old.sa_handler;
}
TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
return REAL(sigsuspend)(mask);
}
TSAN_INTERCEPTOR(int, raise, int sig) {
SCOPED_TSAN_INTERCEPTOR(raise, sig);
ThreadSignalContext *sctx = SigCtx(thr);
CHECK_NE(sctx, 0);
int prev = sctx->int_signal_send;
sctx->int_signal_send = sig;
int res = REAL(raise)(sig);
CHECK_EQ(sctx->int_signal_send, sig);
sctx->int_signal_send = prev;
return res;
}
TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
ThreadSignalContext *sctx = SigCtx(thr);
CHECK_NE(sctx, 0);
int prev = sctx->int_signal_send;
if (pid == (int)internal_getpid()) {
sctx->int_signal_send = sig;
}
int res = REAL(kill)(pid, sig);
if (pid == (int)internal_getpid()) {
CHECK_EQ(sctx->int_signal_send, sig);
sctx->int_signal_send = prev;
}
return res;
}
TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
ThreadSignalContext *sctx = SigCtx(thr);
CHECK_NE(sctx, 0);
int prev = sctx->int_signal_send;
if (tid == pthread_self()) {
sctx->int_signal_send = sig;
}
int res = REAL(pthread_kill)(tid, sig);
if (tid == pthread_self()) {
CHECK_EQ(sctx->int_signal_send, sig);
sctx->int_signal_send = prev;
}
return res;
}
TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
// It's intercepted merely to process pending signals.
return REAL(gettimeofday)(tv, tz);
}
TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
void *hints, void *rv) {
SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
// We miss atomic synchronization in getaddrinfo,
// and can report false race between malloc and free
// inside of getaddrinfo. So ignore memory accesses.
ThreadIgnoreBegin(thr, pc);
int res = REAL(getaddrinfo)(node, service, hints, rv);
ThreadIgnoreEnd(thr, pc);
return res;
}
TSAN_INTERCEPTOR(int, fork, int fake) {
if (cur_thread()->in_symbolizer)
return REAL(fork)(fake);
SCOPED_INTERCEPTOR_RAW(fork, fake);
ForkBefore(thr, pc);
int pid = REAL(fork)(fake);
if (pid == 0) {
// child
ForkChildAfter(thr, pc);
FdOnFork(thr, pc);
} else if (pid > 0) {
// parent
ForkParentAfter(thr, pc);
} else {
// error
ForkParentAfter(thr, pc);
}
return pid;
}
TSAN_INTERCEPTOR(int, vfork, int fake) {
// Some programs (e.g. openjdk) call close for all file descriptors
// in the child process. Under tsan it leads to false positives, because
// address space is shared, so the parent process also thinks that
// the descriptors are closed (while they are actually not).
// This leads to false positives due to missed synchronization.
// Strictly saying this is undefined behavior, because vfork child is not
// allowed to call any functions other than exec/exit. But this is what
// openjdk does, so we want to handle it.
// We could disable interceptors in the child process. But it's not possible
// to simply intercept and wrap vfork, because vfork child is not allowed
// to return from the function that calls vfork, and that's exactly what
// we would do. So this would require some assembly trickery as well.
// Instead we simply turn vfork into fork.
return WRAP(fork)(fake);
}
static int OnExit(ThreadState *thr) {
int status = Finalize(thr);
FlushStreams();
return status;
}
struct TsanInterceptorContext {
ThreadState *thr;
const uptr caller_pc;
const uptr pc;
};
static void HandleRecvmsg(ThreadState *thr, uptr pc,
__sanitizer_msghdr *msg) {
int fds[64];
int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
for (int i = 0; i < cnt; i++)
FdEventCreate(thr, pc, fds[i]);
}
#include "sanitizer_common/sanitizer_platform_interceptors.h"
// Causes interceptor recursion (getaddrinfo() and fopen())
#undef SANITIZER_INTERCEPT_GETADDRINFO
// There interceptors do not seem to be strictly necessary for tsan.
// But we see cases where the interceptors consume 70% of execution time.
// Memory blocks passed to fgetgrent_r are "written to" by tsan several times.
// First, there is some recursion (getgrnam_r calls fgetgrent_r), and each
// function "writes to" the buffer. Then, the same memory is "written to"
// twice, first as buf and then as pwbufp (both of them refer to the same
// addresses).
#undef SANITIZER_INTERCEPT_GETPWENT
#undef SANITIZER_INTERCEPT_GETPWENT_R
#undef SANITIZER_INTERCEPT_FGETPWENT
#undef SANITIZER_INTERCEPT_GETPWNAM_AND_FRIENDS
#undef SANITIZER_INTERCEPT_GETPWNAM_R_AND_FRIENDS
// __tls_get_addr can be called with mis-aligned stack due to:
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
// There are two potential issues:
// 1. Sanitizer code contains a MOVDQA spill (it does not seem to be the case
// right now). or 2. ProcessPendingSignal calls user handler which contains
// MOVDQA spill (this happens right now).
// Since the interceptor only initializes memory for msan, the simplest solution
// is to disable the interceptor in tsan (other sanitizers do not call
// signal handlers from COMMON_INTERCEPTOR_ENTER).
#undef SANITIZER_INTERCEPT_TLS_GET_ADDR
#define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
#define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size) \
MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr, \
((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
true)
#define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size) \
MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr, \
((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
false)
#define COMMON_INTERCEPTOR_ENTER(ctx, func, ...) \
SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__); \
TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
ctx = (void *)&_ctx; \
(void) ctx;
#define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \
TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
ctx = (void *)&_ctx; \
(void) ctx;
#define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
Acquire(thr, pc, File2addr(path)); \
if (file) { \
int fd = fileno_unlocked(file); \
if (fd >= 0) FdFileCreate(thr, pc, fd); \
}
#define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
if (file) { \
int fd = fileno_unlocked(file); \
if (fd >= 0) FdClose(thr, pc, fd); \
}
#define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
libignore()->OnLibraryLoaded(filename)
#define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
libignore()->OnLibraryUnloaded()
#define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
#define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
#define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
#define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
#define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
#define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
#define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
__tsan::ctx->thread_registry->SetThreadNameByUserId(thread, name)
#define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
#define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
OnExit(((TsanInterceptorContext *) ctx)->thr)
#define COMMON_INTERCEPTOR_MUTEX_LOCK(ctx, m) \
MutexLock(((TsanInterceptorContext *)ctx)->thr, \
((TsanInterceptorContext *)ctx)->pc, (uptr)m)
#define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \
MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \
((TsanInterceptorContext *)ctx)->pc, (uptr)m)
#define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \
MutexRepair(((TsanInterceptorContext *)ctx)->thr, \
((TsanInterceptorContext *)ctx)->pc, (uptr)m)
#define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
((TsanInterceptorContext *)ctx)->pc, msg)
#include "sanitizer_common/sanitizer_common_interceptors.inc"
#define TSAN_SYSCALL() \
ThreadState *thr = cur_thread(); \
if (thr->ignore_interceptors) \
return; \
ScopedSyscall scoped_syscall(thr) \
/**/
struct ScopedSyscall {
ThreadState *thr;
explicit ScopedSyscall(ThreadState *thr)
: thr(thr) {
Initialize(thr);
}
~ScopedSyscall() {
ProcessPendingSignals(thr);
}
};
static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
TSAN_SYSCALL();
MemoryAccessRange(thr, pc, p, s, write);
}
static void syscall_acquire(uptr pc, uptr addr) {
TSAN_SYSCALL();
Acquire(thr, pc, addr);
DPrintf("syscall_acquire(%p)\n", addr);
}
static void syscall_release(uptr pc, uptr addr) {
TSAN_SYSCALL();
DPrintf("syscall_release(%p)\n", addr);
Release(thr, pc, addr);
}
static void syscall_fd_close(uptr pc, int fd) {
TSAN_SYSCALL();
FdClose(thr, pc, fd);
}
static USED void syscall_fd_acquire(uptr pc, int fd) {
TSAN_SYSCALL();
FdAcquire(thr, pc, fd);
DPrintf("syscall_fd_acquire(%p)\n", fd);
}
static USED void syscall_fd_release(uptr pc, int fd) {
TSAN_SYSCALL();
DPrintf("syscall_fd_release(%p)\n", fd);
FdRelease(thr, pc, fd);
}
static void syscall_pre_fork(uptr pc) {
TSAN_SYSCALL();
ForkBefore(thr, pc);
}
static void syscall_post_fork(uptr pc, int pid) {
TSAN_SYSCALL();
if (pid == 0) {
// child
ForkChildAfter(thr, pc);
FdOnFork(thr, pc);
} else if (pid > 0) {
// parent
ForkParentAfter(thr, pc);
} else {
// error
ForkParentAfter(thr, pc);
}
}
#define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
#define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
#define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
do { \
(void)(p); \
(void)(s); \
} while (false)
#define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
do { \
(void)(p); \
(void)(s); \
} while (false)
#define COMMON_SYSCALL_ACQUIRE(addr) \
syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
#define COMMON_SYSCALL_RELEASE(addr) \
syscall_release(GET_CALLER_PC(), (uptr)(addr))
#define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
#define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
#define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
#define COMMON_SYSCALL_PRE_FORK() \
syscall_pre_fork(GET_CALLER_PC())
#define COMMON_SYSCALL_POST_FORK(res) \
syscall_post_fork(GET_CALLER_PC(), res)
#include "sanitizer_common/sanitizer_common_syscalls.inc"
namespace __tsan {
static void finalize(void *arg) {
ThreadState *thr = cur_thread();
int status = Finalize(thr);
// Make sure the output is not lost.
FlushStreams();
if (status)
REAL(_exit)(status);
}
static void unreachable() {
Report("FATAL: ThreadSanitizer: unreachable called\n");
Die();
}
void InitializeInterceptors() {
// We need to setup it early, because functions like dlsym() can call it.
REAL(memset) = internal_memset;
REAL(memcpy) = internal_memcpy;
REAL(memcmp) = internal_memcmp;
// Instruct libc malloc to consume less memory.
#if !SANITIZER_FREEBSD
mallopt(1, 0); // M_MXFAST