| //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis member access expressions. |
| // |
| //===----------------------------------------------------------------------===// |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/AST/ASTLambda.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| |
| using namespace clang; |
| using namespace sema; |
| |
| typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet; |
| static bool BaseIsNotInSet(const CXXRecordDecl *Base, void *BasesPtr) { |
| const BaseSet &Bases = *reinterpret_cast<const BaseSet*>(BasesPtr); |
| return !Bases.count(Base->getCanonicalDecl()); |
| } |
| |
| /// Determines if the given class is provably not derived from all of |
| /// the prospective base classes. |
| static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record, |
| const BaseSet &Bases) { |
| void *BasesPtr = const_cast<void*>(reinterpret_cast<const void*>(&Bases)); |
| return BaseIsNotInSet(Record, BasesPtr) && |
| Record->forallBases(BaseIsNotInSet, BasesPtr); |
| } |
| |
| enum IMAKind { |
| /// The reference is definitely not an instance member access. |
| IMA_Static, |
| |
| /// The reference may be an implicit instance member access. |
| IMA_Mixed, |
| |
| /// The reference may be to an instance member, but it might be invalid if |
| /// so, because the context is not an instance method. |
| IMA_Mixed_StaticContext, |
| |
| /// The reference may be to an instance member, but it is invalid if |
| /// so, because the context is from an unrelated class. |
| IMA_Mixed_Unrelated, |
| |
| /// The reference is definitely an implicit instance member access. |
| IMA_Instance, |
| |
| /// The reference may be to an unresolved using declaration. |
| IMA_Unresolved, |
| |
| /// The reference is a contextually-permitted abstract member reference. |
| IMA_Abstract, |
| |
| /// The reference may be to an unresolved using declaration and the |
| /// context is not an instance method. |
| IMA_Unresolved_StaticContext, |
| |
| // The reference refers to a field which is not a member of the containing |
| // class, which is allowed because we're in C++11 mode and the context is |
| // unevaluated. |
| IMA_Field_Uneval_Context, |
| |
| /// All possible referrents are instance members and the current |
| /// context is not an instance method. |
| IMA_Error_StaticContext, |
| |
| /// All possible referrents are instance members of an unrelated |
| /// class. |
| IMA_Error_Unrelated |
| }; |
| |
| /// The given lookup names class member(s) and is not being used for |
| /// an address-of-member expression. Classify the type of access |
| /// according to whether it's possible that this reference names an |
| /// instance member. This is best-effort in dependent contexts; it is okay to |
| /// conservatively answer "yes", in which case some errors will simply |
| /// not be caught until template-instantiation. |
| static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef, |
| Scope *CurScope, |
| const LookupResult &R) { |
| assert(!R.empty() && (*R.begin())->isCXXClassMember()); |
| |
| DeclContext *DC = SemaRef.getFunctionLevelDeclContext(); |
| |
| bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() && |
| (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic()); |
| |
| if (R.isUnresolvableResult()) |
| return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved; |
| |
| // Collect all the declaring classes of instance members we find. |
| bool hasNonInstance = false; |
| bool isField = false; |
| BaseSet Classes; |
| for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { |
| NamedDecl *D = *I; |
| |
| if (D->isCXXInstanceMember()) { |
| if (dyn_cast<FieldDecl>(D) || dyn_cast<MSPropertyDecl>(D) |
| || dyn_cast<IndirectFieldDecl>(D)) |
| isField = true; |
| |
| CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext()); |
| Classes.insert(R->getCanonicalDecl()); |
| } |
| else |
| hasNonInstance = true; |
| } |
| |
| // If we didn't find any instance members, it can't be an implicit |
| // member reference. |
| if (Classes.empty()) |
| return IMA_Static; |
| |
| // C++11 [expr.prim.general]p12: |
| // An id-expression that denotes a non-static data member or non-static |
| // member function of a class can only be used: |
| // (...) |
| // - if that id-expression denotes a non-static data member and it |
| // appears in an unevaluated operand. |
| // |
| // This rule is specific to C++11. However, we also permit this form |
| // in unevaluated inline assembly operands, like the operand to a SIZE. |
| IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false' |
| assert(!AbstractInstanceResult); |
| switch (SemaRef.ExprEvalContexts.back().Context) { |
| case Sema::Unevaluated: |
| if (isField && SemaRef.getLangOpts().CPlusPlus11) |
| AbstractInstanceResult = IMA_Field_Uneval_Context; |
| break; |
| |
| case Sema::UnevaluatedAbstract: |
| AbstractInstanceResult = IMA_Abstract; |
| break; |
| |
| case Sema::ConstantEvaluated: |
| case Sema::PotentiallyEvaluated: |
| case Sema::PotentiallyEvaluatedIfUsed: |
| break; |
| } |
| |
| // If the current context is not an instance method, it can't be |
| // an implicit member reference. |
| if (isStaticContext) { |
| if (hasNonInstance) |
| return IMA_Mixed_StaticContext; |
| |
| return AbstractInstanceResult ? AbstractInstanceResult |
| : IMA_Error_StaticContext; |
| } |
| |
| CXXRecordDecl *contextClass; |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) |
| contextClass = MD->getParent()->getCanonicalDecl(); |
| else |
| contextClass = cast<CXXRecordDecl>(DC); |
| |
| // [class.mfct.non-static]p3: |
| // ...is used in the body of a non-static member function of class X, |
| // if name lookup (3.4.1) resolves the name in the id-expression to a |
| // non-static non-type member of some class C [...] |
| // ...if C is not X or a base class of X, the class member access expression |
| // is ill-formed. |
| if (R.getNamingClass() && |
| contextClass->getCanonicalDecl() != |
| R.getNamingClass()->getCanonicalDecl()) { |
| // If the naming class is not the current context, this was a qualified |
| // member name lookup, and it's sufficient to check that we have the naming |
| // class as a base class. |
| Classes.clear(); |
| Classes.insert(R.getNamingClass()->getCanonicalDecl()); |
| } |
| |
| // If we can prove that the current context is unrelated to all the |
| // declaring classes, it can't be an implicit member reference (in |
| // which case it's an error if any of those members are selected). |
| if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes)) |
| return hasNonInstance ? IMA_Mixed_Unrelated : |
| AbstractInstanceResult ? AbstractInstanceResult : |
| IMA_Error_Unrelated; |
| |
| return (hasNonInstance ? IMA_Mixed : IMA_Instance); |
| } |
| |
| /// Diagnose a reference to a field with no object available. |
| static void diagnoseInstanceReference(Sema &SemaRef, |
| const CXXScopeSpec &SS, |
| NamedDecl *Rep, |
| const DeclarationNameInfo &nameInfo) { |
| SourceLocation Loc = nameInfo.getLoc(); |
| SourceRange Range(Loc); |
| if (SS.isSet()) Range.setBegin(SS.getRange().getBegin()); |
| |
| DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext(); |
| CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC); |
| CXXRecordDecl *ContextClass = Method ? Method->getParent() : 0; |
| CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext()); |
| |
| bool InStaticMethod = Method && Method->isStatic(); |
| bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep); |
| |
| if (IsField && InStaticMethod) |
| // "invalid use of member 'x' in static member function" |
| SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method) |
| << Range << nameInfo.getName(); |
| else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod && |
| !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass)) |
| // Unqualified lookup in a non-static member function found a member of an |
| // enclosing class. |
| SemaRef.Diag(Loc, diag::err_nested_non_static_member_use) |
| << IsField << RepClass << nameInfo.getName() << ContextClass << Range; |
| else if (IsField) |
| SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use) |
| << nameInfo.getName() << Range; |
| else |
| SemaRef.Diag(Loc, diag::err_member_call_without_object) |
| << Range; |
| } |
| |
| /// Builds an expression which might be an implicit member expression. |
| ExprResult |
| Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| LookupResult &R, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) { |
| case IMA_Instance: |
| return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true); |
| |
| case IMA_Mixed: |
| case IMA_Mixed_Unrelated: |
| case IMA_Unresolved: |
| return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false); |
| |
| case IMA_Field_Uneval_Context: |
| Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use) |
| << R.getLookupNameInfo().getName(); |
| // Fall through. |
| case IMA_Static: |
| case IMA_Abstract: |
| case IMA_Mixed_StaticContext: |
| case IMA_Unresolved_StaticContext: |
| if (TemplateArgs || TemplateKWLoc.isValid()) |
| return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs); |
| return BuildDeclarationNameExpr(SS, R, false); |
| |
| case IMA_Error_StaticContext: |
| case IMA_Error_Unrelated: |
| diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(), |
| R.getLookupNameInfo()); |
| return ExprError(); |
| } |
| |
| llvm_unreachable("unexpected instance member access kind"); |
| } |
| |
| /// Check an ext-vector component access expression. |
| /// |
| /// VK should be set in advance to the value kind of the base |
| /// expression. |
| static QualType |
| CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK, |
| SourceLocation OpLoc, const IdentifierInfo *CompName, |
| SourceLocation CompLoc) { |
| // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements, |
| // see FIXME there. |
| // |
| // FIXME: This logic can be greatly simplified by splitting it along |
| // halving/not halving and reworking the component checking. |
| const ExtVectorType *vecType = baseType->getAs<ExtVectorType>(); |
| |
| // The vector accessor can't exceed the number of elements. |
| const char *compStr = CompName->getNameStart(); |
| |
| // This flag determines whether or not the component is one of the four |
| // special names that indicate a subset of exactly half the elements are |
| // to be selected. |
| bool HalvingSwizzle = false; |
| |
| // This flag determines whether or not CompName has an 's' char prefix, |
| // indicating that it is a string of hex values to be used as vector indices. |
| bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1]; |
| |
| bool HasRepeated = false; |
| bool HasIndex[16] = {}; |
| |
| int Idx; |
| |
| // Check that we've found one of the special components, or that the component |
| // names must come from the same set. |
| if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") || |
| !strcmp(compStr, "even") || !strcmp(compStr, "odd")) { |
| HalvingSwizzle = true; |
| } else if (!HexSwizzle && |
| (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) { |
| do { |
| if (HasIndex[Idx]) HasRepeated = true; |
| HasIndex[Idx] = true; |
| compStr++; |
| } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1); |
| } else { |
| if (HexSwizzle) compStr++; |
| while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) { |
| if (HasIndex[Idx]) HasRepeated = true; |
| HasIndex[Idx] = true; |
| compStr++; |
| } |
| } |
| |
| if (!HalvingSwizzle && *compStr) { |
| // We didn't get to the end of the string. This means the component names |
| // didn't come from the same set *or* we encountered an illegal name. |
| S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal) |
| << StringRef(compStr, 1) << SourceRange(CompLoc); |
| return QualType(); |
| } |
| |
| // Ensure no component accessor exceeds the width of the vector type it |
| // operates on. |
| if (!HalvingSwizzle) { |
| compStr = CompName->getNameStart(); |
| |
| if (HexSwizzle) |
| compStr++; |
| |
| while (*compStr) { |
| if (!vecType->isAccessorWithinNumElements(*compStr++)) { |
| S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length) |
| << baseType << SourceRange(CompLoc); |
| return QualType(); |
| } |
| } |
| } |
| |
| // The component accessor looks fine - now we need to compute the actual type. |
| // The vector type is implied by the component accessor. For example, |
| // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc. |
| // vec4.s0 is a float, vec4.s23 is a vec3, etc. |
| // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2. |
| unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2 |
| : CompName->getLength(); |
| if (HexSwizzle) |
| CompSize--; |
| |
| if (CompSize == 1) |
| return vecType->getElementType(); |
| |
| if (HasRepeated) VK = VK_RValue; |
| |
| QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize); |
| // Now look up the TypeDefDecl from the vector type. Without this, |
| // diagostics look bad. We want extended vector types to appear built-in. |
| for (Sema::ExtVectorDeclsType::iterator |
| I = S.ExtVectorDecls.begin(S.getExternalSource()), |
| E = S.ExtVectorDecls.end(); |
| I != E; ++I) { |
| if ((*I)->getUnderlyingType() == VT) |
| return S.Context.getTypedefType(*I); |
| } |
| |
| return VT; // should never get here (a typedef type should always be found). |
| } |
| |
| static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl, |
| IdentifierInfo *Member, |
| const Selector &Sel, |
| ASTContext &Context) { |
| if (Member) |
| if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member)) |
| return PD; |
| if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel)) |
| return OMD; |
| |
| for (const auto *I : PDecl->protocols()) { |
| if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, |
| Context)) |
| return D; |
| } |
| return 0; |
| } |
| |
| static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy, |
| IdentifierInfo *Member, |
| const Selector &Sel, |
| ASTContext &Context) { |
| // Check protocols on qualified interfaces. |
| Decl *GDecl = 0; |
| for (const auto *I : QIdTy->quals()) { |
| if (Member) |
| if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(Member)) { |
| GDecl = PD; |
| break; |
| } |
| // Also must look for a getter or setter name which uses property syntax. |
| if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) { |
| GDecl = OMD; |
| break; |
| } |
| } |
| if (!GDecl) { |
| for (const auto *I : QIdTy->quals()) { |
| // Search in the protocol-qualifier list of current protocol. |
| GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context); |
| if (GDecl) |
| return GDecl; |
| } |
| } |
| return GDecl; |
| } |
| |
| ExprResult |
| Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType, |
| bool IsArrow, SourceLocation OpLoc, |
| const CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| NamedDecl *FirstQualifierInScope, |
| const DeclarationNameInfo &NameInfo, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| // Even in dependent contexts, try to diagnose base expressions with |
| // obviously wrong types, e.g.: |
| // |
| // T* t; |
| // t.f; |
| // |
| // In Obj-C++, however, the above expression is valid, since it could be |
| // accessing the 'f' property if T is an Obj-C interface. The extra check |
| // allows this, while still reporting an error if T is a struct pointer. |
| if (!IsArrow) { |
| const PointerType *PT = BaseType->getAs<PointerType>(); |
| if (PT && (!getLangOpts().ObjC1 || |
| PT->getPointeeType()->isRecordType())) { |
| assert(BaseExpr && "cannot happen with implicit member accesses"); |
| Diag(OpLoc, diag::err_typecheck_member_reference_struct_union) |
| << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange(); |
| return ExprError(); |
| } |
| } |
| |
| assert(BaseType->isDependentType() || |
| NameInfo.getName().isDependentName() || |
| isDependentScopeSpecifier(SS)); |
| |
| // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr |
| // must have pointer type, and the accessed type is the pointee. |
| return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType, |
| IsArrow, OpLoc, |
| SS.getWithLocInContext(Context), |
| TemplateKWLoc, |
| FirstQualifierInScope, |
| NameInfo, TemplateArgs)); |
| } |
| |
| /// We know that the given qualified member reference points only to |
| /// declarations which do not belong to the static type of the base |
| /// expression. Diagnose the problem. |
| static void DiagnoseQualifiedMemberReference(Sema &SemaRef, |
| Expr *BaseExpr, |
| QualType BaseType, |
| const CXXScopeSpec &SS, |
| NamedDecl *rep, |
| const DeclarationNameInfo &nameInfo) { |
| // If this is an implicit member access, use a different set of |
| // diagnostics. |
| if (!BaseExpr) |
| return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo); |
| |
| SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated) |
| << SS.getRange() << rep << BaseType; |
| } |
| |
| // Check whether the declarations we found through a nested-name |
| // specifier in a member expression are actually members of the base |
| // type. The restriction here is: |
| // |
| // C++ [expr.ref]p2: |
| // ... In these cases, the id-expression shall name a |
| // member of the class or of one of its base classes. |
| // |
| // So it's perfectly legitimate for the nested-name specifier to name |
| // an unrelated class, and for us to find an overload set including |
| // decls from classes which are not superclasses, as long as the decl |
| // we actually pick through overload resolution is from a superclass. |
| bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr, |
| QualType BaseType, |
| const CXXScopeSpec &SS, |
| const LookupResult &R) { |
| CXXRecordDecl *BaseRecord = |
| cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType)); |
| if (!BaseRecord) { |
| // We can't check this yet because the base type is still |
| // dependent. |
| assert(BaseType->isDependentType()); |
| return false; |
| } |
| |
| for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { |
| // If this is an implicit member reference and we find a |
| // non-instance member, it's not an error. |
| if (!BaseExpr && !(*I)->isCXXInstanceMember()) |
| return false; |
| |
| // Note that we use the DC of the decl, not the underlying decl. |
| DeclContext *DC = (*I)->getDeclContext(); |
| while (DC->isTransparentContext()) |
| DC = DC->getParent(); |
| |
| if (!DC->isRecord()) |
| continue; |
| |
| CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl(); |
| if (BaseRecord->getCanonicalDecl() == MemberRecord || |
| !BaseRecord->isProvablyNotDerivedFrom(MemberRecord)) |
| return false; |
| } |
| |
| DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, |
| R.getRepresentativeDecl(), |
| R.getLookupNameInfo()); |
| return true; |
| } |
| |
| namespace { |
| |
| // Callback to only accept typo corrections that are either a ValueDecl or a |
| // FunctionTemplateDecl and are declared in the current record or, for a C++ |
| // classes, one of its base classes. |
| class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback { |
| public: |
| explicit RecordMemberExprValidatorCCC(const RecordType *RTy) |
| : Record(RTy->getDecl()) {} |
| |
| bool ValidateCandidate(const TypoCorrection &candidate) override { |
| NamedDecl *ND = candidate.getCorrectionDecl(); |
| // Don't accept candidates that cannot be member functions, constants, |
| // variables, or templates. |
| if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))) |
| return false; |
| |
| // Accept candidates that occur in the current record. |
| if (Record->containsDecl(ND)) |
| return true; |
| |
| if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) { |
| // Accept candidates that occur in any of the current class' base classes. |
| for (const auto &BS : RD->bases()) { |
| if (const RecordType *BSTy = dyn_cast_or_null<RecordType>( |
| BS.getType().getTypePtrOrNull())) { |
| if (BSTy->getDecl()->containsDecl(ND)) |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| private: |
| const RecordDecl *const Record; |
| }; |
| |
| } |
| |
| static bool |
| LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R, |
| SourceRange BaseRange, const RecordType *RTy, |
| SourceLocation OpLoc, CXXScopeSpec &SS, |
| bool HasTemplateArgs) { |
| RecordDecl *RDecl = RTy->getDecl(); |
| if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) && |
| SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0), |
| diag::err_typecheck_incomplete_tag, |
| BaseRange)) |
| return true; |
| |
| if (HasTemplateArgs) { |
| // LookupTemplateName doesn't expect these both to exist simultaneously. |
| QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0); |
| |
| bool MOUS; |
| SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS); |
| return false; |
| } |
| |
| DeclContext *DC = RDecl; |
| if (SS.isSet()) { |
| // If the member name was a qualified-id, look into the |
| // nested-name-specifier. |
| DC = SemaRef.computeDeclContext(SS, false); |
| |
| if (SemaRef.RequireCompleteDeclContext(SS, DC)) { |
| SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag) |
| << SS.getRange() << DC; |
| return true; |
| } |
| |
| assert(DC && "Cannot handle non-computable dependent contexts in lookup"); |
| |
| if (!isa<TypeDecl>(DC)) { |
| SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass) |
| << DC << SS.getRange(); |
| return true; |
| } |
| } |
| |
| // The record definition is complete, now look up the member. |
| SemaRef.LookupQualifiedName(R, DC); |
| |
| if (!R.empty()) |
| return false; |
| |
| // We didn't find anything with the given name, so try to correct |
| // for typos. |
| DeclarationName Name = R.getLookupName(); |
| RecordMemberExprValidatorCCC Validator(RTy); |
| TypoCorrection Corrected = SemaRef.CorrectTypo(R.getLookupNameInfo(), |
| R.getLookupKind(), NULL, |
| &SS, Validator, |
| Sema::CTK_ErrorRecovery, DC); |
| R.clear(); |
| if (Corrected.isResolved() && !Corrected.isKeyword()) { |
| R.setLookupName(Corrected.getCorrection()); |
| for (TypoCorrection::decl_iterator DI = Corrected.begin(), |
| DIEnd = Corrected.end(); |
| DI != DIEnd; ++DI) { |
| R.addDecl(*DI); |
| } |
| R.resolveKind(); |
| |
| // If we're typo-correcting to an overloaded name, we don't yet have enough |
| // information to do overload resolution, so we don't know which previous |
| // declaration to point to. |
| if (Corrected.isOverloaded()) |
| Corrected.setCorrectionDecl(0); |
| bool DroppedSpecifier = |
| Corrected.WillReplaceSpecifier() && |
| Name.getAsString() == Corrected.getAsString(SemaRef.getLangOpts()); |
| SemaRef.diagnoseTypo(Corrected, |
| SemaRef.PDiag(diag::err_no_member_suggest) |
| << Name << DC << DroppedSpecifier << SS.getRange()); |
| } |
| |
| return false; |
| } |
| |
| ExprResult |
| Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType, |
| SourceLocation OpLoc, bool IsArrow, |
| CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| NamedDecl *FirstQualifierInScope, |
| const DeclarationNameInfo &NameInfo, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| if (BaseType->isDependentType() || |
| (SS.isSet() && isDependentScopeSpecifier(SS))) |
| return ActOnDependentMemberExpr(Base, BaseType, |
| IsArrow, OpLoc, |
| SS, TemplateKWLoc, FirstQualifierInScope, |
| NameInfo, TemplateArgs); |
| |
| LookupResult R(*this, NameInfo, LookupMemberName); |
| |
| // Implicit member accesses. |
| if (!Base) { |
| QualType RecordTy = BaseType; |
| if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType(); |
| if (LookupMemberExprInRecord(*this, R, SourceRange(), |
| RecordTy->getAs<RecordType>(), |
| OpLoc, SS, TemplateArgs != 0)) |
| return ExprError(); |
| |
| // Explicit member accesses. |
| } else { |
| ExprResult BaseResult = Owned(Base); |
| ExprResult Result = |
| LookupMemberExpr(R, BaseResult, IsArrow, OpLoc, |
| SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0); |
| |
| if (BaseResult.isInvalid()) |
| return ExprError(); |
| Base = BaseResult.take(); |
| |
| if (Result.isInvalid()) { |
| Owned(Base); |
| return ExprError(); |
| } |
| |
| if (Result.get()) |
| return Result; |
| |
| // LookupMemberExpr can modify Base, and thus change BaseType |
| BaseType = Base->getType(); |
| } |
| |
| return BuildMemberReferenceExpr(Base, BaseType, |
| OpLoc, IsArrow, SS, TemplateKWLoc, |
| FirstQualifierInScope, R, TemplateArgs); |
| } |
| |
| static ExprResult |
| BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow, |
| const CXXScopeSpec &SS, FieldDecl *Field, |
| DeclAccessPair FoundDecl, |
| const DeclarationNameInfo &MemberNameInfo); |
| |
| ExprResult |
| Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS, |
| SourceLocation loc, |
| IndirectFieldDecl *indirectField, |
| DeclAccessPair foundDecl, |
| Expr *baseObjectExpr, |
| SourceLocation opLoc) { |
| // First, build the expression that refers to the base object. |
| |
| bool baseObjectIsPointer = false; |
| Qualifiers baseQuals; |
| |
| // Case 1: the base of the indirect field is not a field. |
| VarDecl *baseVariable = indirectField->getVarDecl(); |
| CXXScopeSpec EmptySS; |
| if (baseVariable) { |
| assert(baseVariable->getType()->isRecordType()); |
| |
| // In principle we could have a member access expression that |
| // accesses an anonymous struct/union that's a static member of |
| // the base object's class. However, under the current standard, |
| // static data members cannot be anonymous structs or unions. |
| // Supporting this is as easy as building a MemberExpr here. |
| assert(!baseObjectExpr && "anonymous struct/union is static data member?"); |
| |
| DeclarationNameInfo baseNameInfo(DeclarationName(), loc); |
| |
| ExprResult result |
| = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable); |
| if (result.isInvalid()) return ExprError(); |
| |
| baseObjectExpr = result.take(); |
| baseObjectIsPointer = false; |
| baseQuals = baseObjectExpr->getType().getQualifiers(); |
| |
| // Case 2: the base of the indirect field is a field and the user |
| // wrote a member expression. |
| } else if (baseObjectExpr) { |
| // The caller provided the base object expression. Determine |
| // whether its a pointer and whether it adds any qualifiers to the |
| // anonymous struct/union fields we're looking into. |
| QualType objectType = baseObjectExpr->getType(); |
| |
| if (const PointerType *ptr = objectType->getAs<PointerType>()) { |
| baseObjectIsPointer = true; |
| objectType = ptr->getPointeeType(); |
| } else { |
| baseObjectIsPointer = false; |
| } |
| baseQuals = objectType.getQualifiers(); |
| |
| // Case 3: the base of the indirect field is a field and we should |
| // build an implicit member access. |
| } else { |
| // We've found a member of an anonymous struct/union that is |
| // inside a non-anonymous struct/union, so in a well-formed |
| // program our base object expression is "this". |
| QualType ThisTy = getCurrentThisType(); |
| if (ThisTy.isNull()) { |
| Diag(loc, diag::err_invalid_member_use_in_static_method) |
| << indirectField->getDeclName(); |
| return ExprError(); |
| } |
| |
| // Our base object expression is "this". |
| CheckCXXThisCapture(loc); |
| baseObjectExpr |
| = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true); |
| baseObjectIsPointer = true; |
| baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers(); |
| } |
| |
| // Build the implicit member references to the field of the |
| // anonymous struct/union. |
| Expr *result = baseObjectExpr; |
| IndirectFieldDecl::chain_iterator |
| FI = indirectField->chain_begin(), FEnd = indirectField->chain_end(); |
| |
| // Build the first member access in the chain with full information. |
| if (!baseVariable) { |
| FieldDecl *field = cast<FieldDecl>(*FI); |
| |
| // Make a nameInfo that properly uses the anonymous name. |
| DeclarationNameInfo memberNameInfo(field->getDeclName(), loc); |
| |
| result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer, |
| EmptySS, field, foundDecl, |
| memberNameInfo).take(); |
| if (!result) |
| return ExprError(); |
| |
| // FIXME: check qualified member access |
| } |
| |
| // In all cases, we should now skip the first declaration in the chain. |
| ++FI; |
| |
| while (FI != FEnd) { |
| FieldDecl *field = cast<FieldDecl>(*FI++); |
| |
| // FIXME: these are somewhat meaningless |
| DeclarationNameInfo memberNameInfo(field->getDeclName(), loc); |
| DeclAccessPair fakeFoundDecl = |
| DeclAccessPair::make(field, field->getAccess()); |
| |
| result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false, |
| (FI == FEnd? SS : EmptySS), field, |
| fakeFoundDecl, memberNameInfo).take(); |
| } |
| |
| return Owned(result); |
| } |
| |
| static ExprResult |
| BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow, |
| const CXXScopeSpec &SS, |
| MSPropertyDecl *PD, |
| const DeclarationNameInfo &NameInfo) { |
| // Property names are always simple identifiers and therefore never |
| // require any interesting additional storage. |
| return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow, |
| S.Context.PseudoObjectTy, VK_LValue, |
| SS.getWithLocInContext(S.Context), |
| NameInfo.getLoc()); |
| } |
| |
| /// \brief Build a MemberExpr AST node. |
| static MemberExpr *BuildMemberExpr(Sema &SemaRef, |
| ASTContext &C, Expr *Base, bool isArrow, |
| const CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| ValueDecl *Member, |
| DeclAccessPair FoundDecl, |
| const DeclarationNameInfo &MemberNameInfo, |
| QualType Ty, |
| ExprValueKind VK, ExprObjectKind OK, |
| const TemplateArgumentListInfo *TemplateArgs = 0) { |
| assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue"); |
| MemberExpr *E = |
| MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C), |
| TemplateKWLoc, Member, FoundDecl, MemberNameInfo, |
| TemplateArgs, Ty, VK, OK); |
| SemaRef.MarkMemberReferenced(E); |
| return E; |
| } |
| |
| ExprResult |
| Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType, |
| SourceLocation OpLoc, bool IsArrow, |
| const CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| NamedDecl *FirstQualifierInScope, |
| LookupResult &R, |
| const TemplateArgumentListInfo *TemplateArgs, |
| bool SuppressQualifierCheck, |
| ActOnMemberAccessExtraArgs *ExtraArgs) { |
| QualType BaseType = BaseExprType; |
| if (IsArrow) { |
| assert(BaseType->isPointerType()); |
| BaseType = BaseType->castAs<PointerType>()->getPointeeType(); |
| } |
| R.setBaseObjectType(BaseType); |
| |
| LambdaScopeInfo *const CurLSI = getCurLambda(); |
| // If this is an implicit member reference and the overloaded |
| // name refers to both static and non-static member functions |
| // (i.e. BaseExpr is null) and if we are currently processing a lambda, |
| // check if we should/can capture 'this'... |
| // Keep this example in mind: |
| // struct X { |
| // void f(int) { } |
| // static void f(double) { } |
| // |
| // int g() { |
| // auto L = [=](auto a) { |
| // return [](int i) { |
| // return [=](auto b) { |
| // f(b); |
| // //f(decltype(a){}); |
| // }; |
| // }; |
| // }; |
| // auto M = L(0.0); |
| // auto N = M(3); |
| // N(5.32); // OK, must not error. |
| // return 0; |
| // } |
| // }; |
| // |
| if (!BaseExpr && CurLSI) { |
| SourceLocation Loc = R.getNameLoc(); |
| if (SS.getRange().isValid()) |
| Loc = SS.getRange().getBegin(); |
| DeclContext *EnclosingFunctionCtx = CurContext->getParent()->getParent(); |
| // If the enclosing function is not dependent, then this lambda is |
| // capture ready, so if we can capture this, do so. |
| if (!EnclosingFunctionCtx->isDependentContext()) { |
| // If the current lambda and all enclosing lambdas can capture 'this' - |
| // then go ahead and capture 'this' (since our unresolved overload set |
| // contains both static and non-static member functions). |
| if (!CheckCXXThisCapture(Loc, /*Explcit*/false, /*Diagnose*/false)) |
| CheckCXXThisCapture(Loc); |
| } else if (CurContext->isDependentContext()) { |
| // ... since this is an implicit member reference, that might potentially |
| // involve a 'this' capture, mark 'this' for potential capture in |
| // enclosing lambdas. |
| if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None) |
| CurLSI->addPotentialThisCapture(Loc); |
| } |
| } |
| const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo(); |
| DeclarationName MemberName = MemberNameInfo.getName(); |
| SourceLocation MemberLoc = MemberNameInfo.getLoc(); |
| |
| if (R.isAmbiguous()) |
| return ExprError(); |
| |
| if (R.empty()) { |
| // Rederive where we looked up. |
| DeclContext *DC = (SS.isSet() |
| ? computeDeclContext(SS, false) |
| : BaseType->getAs<RecordType>()->getDecl()); |
| |
| if (ExtraArgs) { |
| ExprResult RetryExpr; |
| if (!IsArrow && BaseExpr) { |
| SFINAETrap Trap(*this, true); |
| ParsedType ObjectType; |
| bool MayBePseudoDestructor = false; |
| RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr, |
| OpLoc, tok::arrow, ObjectType, |
| MayBePseudoDestructor); |
| if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) { |
| CXXScopeSpec TempSS(SS); |
| RetryExpr = ActOnMemberAccessExpr( |
| ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS, |
| TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl, |
| ExtraArgs->HasTrailingLParen); |
| } |
| if (Trap.hasErrorOccurred()) |
| RetryExpr = ExprError(); |
| } |
| if (RetryExpr.isUsable()) { |
| Diag(OpLoc, diag::err_no_member_overloaded_arrow) |
| << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->"); |
| return RetryExpr; |
| } |
| } |
| |
| Diag(R.getNameLoc(), diag::err_no_member) |
| << MemberName << DC |
| << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange()); |
| return ExprError(); |
| } |
| |
| // Diagnose lookups that find only declarations from a non-base |
| // type. This is possible for either qualified lookups (which may |
| // have been qualified with an unrelated type) or implicit member |
| // expressions (which were found with unqualified lookup and thus |
| // may have come from an enclosing scope). Note that it's okay for |
| // lookup to find declarations from a non-base type as long as those |
| // aren't the ones picked by overload resolution. |
| if ((SS.isSet() || !BaseExpr || |
| (isa<CXXThisExpr>(BaseExpr) && |
| cast<CXXThisExpr>(BaseExpr)->isImplicit())) && |
| !SuppressQualifierCheck && |
| CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R)) |
| return ExprError(); |
| |
| // Construct an unresolved result if we in fact got an unresolved |
| // result. |
| if (R.isOverloadedResult() || R.isUnresolvableResult()) { |
| // Suppress any lookup-related diagnostics; we'll do these when we |
| // pick a member. |
| R.suppressDiagnostics(); |
| |
| UnresolvedMemberExpr *MemExpr |
| = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(), |
| BaseExpr, BaseExprType, |
| IsArrow, OpLoc, |
| SS.getWithLocInContext(Context), |
| TemplateKWLoc, MemberNameInfo, |
| TemplateArgs, R.begin(), R.end()); |
| |
| return Owned(MemExpr); |
| } |
| |
| assert(R.isSingleResult()); |
| DeclAccessPair FoundDecl = R.begin().getPair(); |
| NamedDecl *MemberDecl = R.getFoundDecl(); |
| |
| // FIXME: diagnose the presence of template arguments now. |
| |
| // If the decl being referenced had an error, return an error for this |
| // sub-expr without emitting another error, in order to avoid cascading |
| // error cases. |
| if (MemberDecl->isInvalidDecl()) |
| return ExprError(); |
| |
| // Handle the implicit-member-access case. |
| if (!BaseExpr) { |
| // If this is not an instance member, convert to a non-member access. |
| if (!MemberDecl->isCXXInstanceMember()) |
| return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl); |
| |
| SourceLocation Loc = R.getNameLoc(); |
| if (SS.getRange().isValid()) |
| Loc = SS.getRange().getBegin(); |
| CheckCXXThisCapture(Loc); |
| BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true); |
| } |
| |
| bool ShouldCheckUse = true; |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) { |
| // Don't diagnose the use of a virtual member function unless it's |
| // explicitly qualified. |
| if (MD->isVirtual() && !SS.isSet()) |
| ShouldCheckUse = false; |
| } |
| |
| // Check the use of this member. |
| if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) { |
| Owned(BaseExpr); |
| return ExprError(); |
| } |
| |
| if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) |
| return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow, |
| SS, FD, FoundDecl, MemberNameInfo); |
| |
| if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl)) |
| return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD, |
| MemberNameInfo); |
| |
| if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl)) |
| // We may have found a field within an anonymous union or struct |
| // (C++ [class.union]). |
| return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD, |
| FoundDecl, BaseExpr, |
| OpLoc); |
| |
| if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) { |
| return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, |
| TemplateKWLoc, Var, FoundDecl, MemberNameInfo, |
| Var->getType().getNonReferenceType(), |
| VK_LValue, OK_Ordinary)); |
| } |
| |
| if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) { |
| ExprValueKind valueKind; |
| QualType type; |
| if (MemberFn->isInstance()) { |
| valueKind = VK_RValue; |
| type = Context.BoundMemberTy; |
| } else { |
| valueKind = VK_LValue; |
| type = MemberFn->getType(); |
| } |
| |
| return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, |
| TemplateKWLoc, MemberFn, FoundDecl, |
| MemberNameInfo, type, valueKind, |
| OK_Ordinary)); |
| } |
| assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?"); |
| |
| if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) { |
| return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, |
| TemplateKWLoc, Enum, FoundDecl, MemberNameInfo, |
| Enum->getType(), VK_RValue, OK_Ordinary)); |
| } |
| |
| Owned(BaseExpr); |
| |
| // We found something that we didn't expect. Complain. |
| if (isa<TypeDecl>(MemberDecl)) |
| Diag(MemberLoc, diag::err_typecheck_member_reference_type) |
| << MemberName << BaseType << int(IsArrow); |
| else |
| Diag(MemberLoc, diag::err_typecheck_member_reference_unknown) |
| << MemberName << BaseType << int(IsArrow); |
| |
| Diag(MemberDecl->getLocation(), diag::note_member_declared_here) |
| << MemberName; |
| R.suppressDiagnostics(); |
| return ExprError(); |
| } |
| |
| /// Given that normal member access failed on the given expression, |
| /// and given that the expression's type involves builtin-id or |
| /// builtin-Class, decide whether substituting in the redefinition |
| /// types would be profitable. The redefinition type is whatever |
| /// this translation unit tried to typedef to id/Class; we store |
| /// it to the side and then re-use it in places like this. |
| static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) { |
| const ObjCObjectPointerType *opty |
| = base.get()->getType()->getAs<ObjCObjectPointerType>(); |
| if (!opty) return false; |
| |
| const ObjCObjectType *ty = opty->getObjectType(); |
| |
| QualType redef; |
| if (ty->isObjCId()) { |
| redef = S.Context.getObjCIdRedefinitionType(); |
| } else if (ty->isObjCClass()) { |
| redef = S.Context.getObjCClassRedefinitionType(); |
| } else { |
| return false; |
| } |
| |
| // Do the substitution as long as the redefinition type isn't just a |
| // possibly-qualified pointer to builtin-id or builtin-Class again. |
| opty = redef->getAs<ObjCObjectPointerType>(); |
| if (opty && !opty->getObjectType()->getInterface()) |
| return false; |
| |
| base = S.ImpCastExprToType(base.take(), redef, CK_BitCast); |
| return true; |
| } |
| |
| static bool isRecordType(QualType T) { |
| return T->isRecordType(); |
| } |
| static bool isPointerToRecordType(QualType T) { |
| if (const PointerType *PT = T->getAs<PointerType>()) |
| return PT->getPointeeType()->isRecordType(); |
| return false; |
| } |
| |
| /// Perform conversions on the LHS of a member access expression. |
| ExprResult |
| Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) { |
| if (IsArrow && !Base->getType()->isFunctionType()) |
| return DefaultFunctionArrayLvalueConversion(Base); |
| |
| return CheckPlaceholderExpr(Base); |
| } |
| |
| /// Look up the given member of the given non-type-dependent |
| /// expression. This can return in one of two ways: |
| /// * If it returns a sentinel null-but-valid result, the caller will |
| /// assume that lookup was performed and the results written into |
| /// the provided structure. It will take over from there. |
| /// * Otherwise, the returned expression will be produced in place of |
| /// an ordinary member expression. |
| /// |
| /// The ObjCImpDecl bit is a gross hack that will need to be properly |
| /// fixed for ObjC++. |
| ExprResult |
| Sema::LookupMemberExpr(LookupResult &R, ExprResult &BaseExpr, |
| bool &IsArrow, SourceLocation OpLoc, |
| CXXScopeSpec &SS, |
| Decl *ObjCImpDecl, bool HasTemplateArgs) { |
| assert(BaseExpr.get() && "no base expression"); |
| |
| // Perform default conversions. |
| BaseExpr = PerformMemberExprBaseConversion(BaseExpr.take(), IsArrow); |
| if (BaseExpr.isInvalid()) |
| return ExprError(); |
| |
| QualType BaseType = BaseExpr.get()->getType(); |
| assert(!BaseType->isDependentType()); |
| |
| DeclarationName MemberName = R.getLookupName(); |
| SourceLocation MemberLoc = R.getNameLoc(); |
| |
| // For later type-checking purposes, turn arrow accesses into dot |
| // accesses. The only access type we support that doesn't follow |
| // the C equivalence "a->b === (*a).b" is ObjC property accesses, |
| // and those never use arrows, so this is unaffected. |
| if (IsArrow) { |
| if (const PointerType *Ptr = BaseType->getAs<PointerType>()) |
| BaseType = Ptr->getPointeeType(); |
| else if (const ObjCObjectPointerType *Ptr |
| = BaseType->getAs<ObjCObjectPointerType>()) |
| BaseType = Ptr->getPointeeType(); |
| else if (BaseType->isRecordType()) { |
| // Recover from arrow accesses to records, e.g.: |
| // struct MyRecord foo; |
| // foo->bar |
| // This is actually well-formed in C++ if MyRecord has an |
| // overloaded operator->, but that should have been dealt with |
| // by now--or a diagnostic message already issued if a problem |
| // was encountered while looking for the overloaded operator->. |
| if (!getLangOpts().CPlusPlus) { |
| Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) |
| << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange() |
| << FixItHint::CreateReplacement(OpLoc, "."); |
| } |
| IsArrow = false; |
| } else if (BaseType->isFunctionType()) { |
| goto fail; |
| } else { |
| Diag(MemberLoc, diag::err_typecheck_member_reference_arrow) |
| << BaseType << BaseExpr.get()->getSourceRange(); |
| return ExprError(); |
| } |
| } |
| |
| // Handle field access to simple records. |
| if (const RecordType *RTy = BaseType->getAs<RecordType>()) { |
| if (LookupMemberExprInRecord(*this, R, BaseExpr.get()->getSourceRange(), |
| RTy, OpLoc, SS, HasTemplateArgs)) |
| return ExprError(); |
| |
| // Returning valid-but-null is how we indicate to the caller that |
| // the lookup result was filled in. |
| return Owned((Expr*) 0); |
| } |
| |
| // Handle ivar access to Objective-C objects. |
| if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) { |
| if (!SS.isEmpty() && !SS.isInvalid()) { |
| Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access) |
| << 1 << SS.getScopeRep() |
| << FixItHint::CreateRemoval(SS.getRange()); |
| SS.clear(); |
| } |
| |
| IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); |
| |
| // There are three cases for the base type: |
| // - builtin id (qualified or unqualified) |
| // - builtin Class (qualified or unqualified) |
| // - an interface |
| ObjCInterfaceDecl *IDecl = OTy->getInterface(); |
| if (!IDecl) { |
| if (getLangOpts().ObjCAutoRefCount && |
| (OTy->isObjCId() || OTy->isObjCClass())) |
| goto fail; |
| // There's an implicit 'isa' ivar on all objects. |
| // But we only actually find it this way on objects of type 'id', |
| // apparently. |
| if (OTy->isObjCId() && Member->isStr("isa")) |
| return Owned(new (Context) ObjCIsaExpr(BaseExpr.take(), IsArrow, MemberLoc, |
| OpLoc, |
| Context.getObjCClassType())); |
| if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr)) |
| return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, |
| ObjCImpDecl, HasTemplateArgs); |
| goto fail; |
| } |
| |
| if (RequireCompleteType(OpLoc, BaseType, diag::err_typecheck_incomplete_tag, |
| BaseExpr.get())) |
| return ExprError(); |
| |
| ObjCInterfaceDecl *ClassDeclared = 0; |
| ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared); |
| |
| if (!IV) { |
| // Attempt to correct for typos in ivar names. |
| DeclFilterCCC<ObjCIvarDecl> Validator; |
| Validator.IsObjCIvarLookup = IsArrow; |
| if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(), |
| LookupMemberName, NULL, NULL, |
| Validator, CTK_ErrorRecovery, |
| IDecl)) { |
| IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>(); |
| diagnoseTypo(Corrected, |
| PDiag(diag::err_typecheck_member_reference_ivar_suggest) |
| << IDecl->getDeclName() << MemberName); |
| |
| // Figure out the class that declares the ivar. |
| assert(!ClassDeclared); |
| Decl *D = cast<Decl>(IV->getDeclContext()); |
| if (ObjCCategoryDecl *CAT = dyn_cast<ObjCCategoryDecl>(D)) |
| D = CAT->getClassInterface(); |
| ClassDeclared = cast<ObjCInterfaceDecl>(D); |
| } else { |
| if (IsArrow && IDecl->FindPropertyDeclaration(Member)) { |
| Diag(MemberLoc, |
| diag::err_property_found_suggest) |
| << Member << BaseExpr.get()->getType() |
| << FixItHint::CreateReplacement(OpLoc, "."); |
| return ExprError(); |
| } |
| |
| Diag(MemberLoc, diag::err_typecheck_member_reference_ivar) |
| << IDecl->getDeclName() << MemberName |
| << BaseExpr.get()->getSourceRange(); |
| return ExprError(); |
| } |
| } |
| |
| assert(ClassDeclared); |
| |
| // If the decl being referenced had an error, return an error for this |
| // sub-expr without emitting another error, in order to avoid cascading |
| // error cases. |
| if (IV->isInvalidDecl()) |
| return ExprError(); |
| |
| // Check whether we can reference this field. |
| if (DiagnoseUseOfDecl(IV, MemberLoc)) |
| return ExprError(); |
| if (IV->getAccessControl() != ObjCIvarDecl::Public && |
| IV->getAccessControl() != ObjCIvarDecl::Package) { |
| ObjCInterfaceDecl *ClassOfMethodDecl = 0; |
| if (ObjCMethodDecl *MD = getCurMethodDecl()) |
| ClassOfMethodDecl = MD->getClassInterface(); |
| else if (ObjCImpDecl && getCurFunctionDecl()) { |
| // Case of a c-function declared inside an objc implementation. |
| // FIXME: For a c-style function nested inside an objc implementation |
| // class, there is no implementation context available, so we pass |
| // down the context as argument to this routine. Ideally, this context |
| // need be passed down in the AST node and somehow calculated from the |
| // AST for a function decl. |
| if (ObjCImplementationDecl *IMPD = |
| dyn_cast<ObjCImplementationDecl>(ObjCImpDecl)) |
| ClassOfMethodDecl = IMPD->getClassInterface(); |
| else if (ObjCCategoryImplDecl* CatImplClass = |
| dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl)) |
| ClassOfMethodDecl = CatImplClass->getClassInterface(); |
| } |
| if (!getLangOpts().DebuggerSupport) { |
| if (IV->getAccessControl() == ObjCIvarDecl::Private) { |
| if (!declaresSameEntity(ClassDeclared, IDecl) || |
| !declaresSameEntity(ClassOfMethodDecl, ClassDeclared)) |
| Diag(MemberLoc, diag::error_private_ivar_access) |
| << IV->getDeclName(); |
| } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl)) |
| // @protected |
| Diag(MemberLoc, diag::error_protected_ivar_access) |
| << IV->getDeclName(); |
| } |
| } |
| bool warn = true; |
| if (getLangOpts().ObjCAutoRefCount) { |
| Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts(); |
| if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp)) |
| if (UO->getOpcode() == UO_Deref) |
| BaseExp = UO->getSubExpr()->IgnoreParenCasts(); |
| |
| if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp)) |
| if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { |
| Diag(DE->getLocation(), diag::error_arc_weak_ivar_access); |
| warn = false; |
| } |
| } |
| if (warn) { |
| if (ObjCMethodDecl *MD = getCurMethodDecl()) { |
| ObjCMethodFamily MF = MD->getMethodFamily(); |
| warn = (MF != OMF_init && MF != OMF_dealloc && |
| MF != OMF_finalize && |
| !IvarBacksCurrentMethodAccessor(IDecl, MD, IV)); |
| } |
| if (warn) |
| Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName(); |
| } |
| |
| ObjCIvarRefExpr *Result = new (Context) ObjCIvarRefExpr(IV, IV->getType(), |
| MemberLoc, OpLoc, |
| BaseExpr.take(), |
| IsArrow); |
| |
| if (getLangOpts().ObjCAutoRefCount) { |
| if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { |
| DiagnosticsEngine::Level Level = |
| Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, |
| MemberLoc); |
| if (Level != DiagnosticsEngine::Ignored) |
| recordUseOfEvaluatedWeak(Result); |
| } |
| } |
| |
| return Owned(Result); |
| } |
| |
| // Objective-C property access. |
| const ObjCObjectPointerType *OPT; |
| if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) { |
| if (!SS.isEmpty() && !SS.isInvalid()) { |
| Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access) |
| << 0 << SS.getScopeRep() |
| << FixItHint::CreateRemoval(SS.getRange()); |
| SS.clear(); |
| } |
| |
| // This actually uses the base as an r-value. |
| BaseExpr = DefaultLvalueConversion(BaseExpr.take()); |
| if (BaseExpr.isInvalid()) |
| return ExprError(); |
| |
| assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr.get()->getType())); |
| |
| IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); |
| |
| const ObjCObjectType *OT = OPT->getObjectType(); |
| |
| // id, with and without qualifiers. |
| if (OT->isObjCId()) { |
| // Check protocols on qualified interfaces. |
| Selector Sel = PP.getSelectorTable().getNullarySelector(Member); |
| if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) { |
| if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) { |
| // Check the use of this declaration |
| if (DiagnoseUseOfDecl(PD, MemberLoc)) |
| return ExprError(); |
| |
| return Owned(new (Context) ObjCPropertyRefExpr(PD, |
| Context.PseudoObjectTy, |
| VK_LValue, |
| OK_ObjCProperty, |
| MemberLoc, |
| BaseExpr.take())); |
| } |
| |
| if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) { |
| // Check the use of this method. |
| if (DiagnoseUseOfDecl(OMD, MemberLoc)) |
| return ExprError(); |
| Selector SetterSel = |
| SelectorTable::constructSetterSelector(PP.getIdentifierTable(), |
| PP.getSelectorTable(), |
| Member); |
| ObjCMethodDecl *SMD = 0; |
| if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0, |
| SetterSel, Context)) |
| SMD = dyn_cast<ObjCMethodDecl>(SDecl); |
| |
| return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD, |
| Context.PseudoObjectTy, |
| VK_LValue, OK_ObjCProperty, |
| MemberLoc, BaseExpr.take())); |
| } |
| } |
| // Use of id.member can only be for a property reference. Do not |
| // use the 'id' redefinition in this case. |
| if (IsArrow && ShouldTryAgainWithRedefinitionType(*this, BaseExpr)) |
| return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, |
| ObjCImpDecl, HasTemplateArgs); |
| |
| return ExprError(Diag(MemberLoc, diag::err_property_not_found) |
| << MemberName << BaseType); |
| } |
| |
| // 'Class', unqualified only. |
| if (OT->isObjCClass()) { |
| // Only works in a method declaration (??!). |
| ObjCMethodDecl *MD = getCurMethodDecl(); |
| if (!MD) { |
| if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr)) |
| return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, |
| ObjCImpDecl, HasTemplateArgs); |
| |
| goto fail; |
| } |
| |
| // Also must look for a getter name which uses property syntax. |
| Selector Sel = PP.getSelectorTable().getNullarySelector(Member); |
| ObjCInterfaceDecl *IFace = MD->getClassInterface(); |
| ObjCMethodDecl *Getter; |
| if ((Getter = IFace->lookupClassMethod(Sel))) { |
| // Check the use of this method. |
| if (DiagnoseUseOfDecl(Getter, MemberLoc)) |
| return ExprError(); |
| } else |
| Getter = IFace->lookupPrivateMethod(Sel, false); |
| // If we found a getter then this may be a valid dot-reference, we |
| // will look for the matching setter, in case it is needed. |
| Selector SetterSel = |
| SelectorTable::constructSetterSelector(PP.getIdentifierTable(), |
| PP.getSelectorTable(), |
| Member); |
| ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); |
| if (!Setter) { |
| // If this reference is in an @implementation, also check for 'private' |
| // methods. |
| Setter = IFace->lookupPrivateMethod(SetterSel, false); |
| } |
| |
| if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) |
| return ExprError(); |
| |
| if (Getter || Setter) { |
| return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, |
| Context.PseudoObjectTy, |
| VK_LValue, OK_ObjCProperty, |
| MemberLoc, BaseExpr.take())); |
| } |
| |
| if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr)) |
| return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, |
| ObjCImpDecl, HasTemplateArgs); |
| |
| return ExprError(Diag(MemberLoc, diag::err_property_not_found) |
| << MemberName << BaseType); |
| } |
| |
| // Normal property access. |
| return HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, |
| MemberName, MemberLoc, |
| SourceLocation(), QualType(), false); |
| } |
| |
| // Handle 'field access' to vectors, such as 'V.xx'. |
| if (BaseType->isExtVectorType()) { |
| // FIXME: this expr should store IsArrow. |
| IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); |
| ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind()); |
| QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc, |
| Member, MemberLoc); |
| if (ret.isNull()) |
| return ExprError(); |
| |
| return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr.take(), |
| *Member, MemberLoc)); |
| } |
| |
| // Adjust builtin-sel to the appropriate redefinition type if that's |
| // not just a pointer to builtin-sel again. |
| if (IsArrow && |
| BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) && |
| !Context.getObjCSelRedefinitionType()->isObjCSelType()) { |
| BaseExpr = ImpCastExprToType(BaseExpr.take(), |
| Context.getObjCSelRedefinitionType(), |
| CK_BitCast); |
| return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, |
| ObjCImpDecl, HasTemplateArgs); |
| } |
| |
| // Failure cases. |
| fail: |
| |
| // Recover from dot accesses to pointers, e.g.: |
| // type *foo; |
| // foo.bar |
| // This is actually well-formed in two cases: |
| // - 'type' is an Objective C type |
| // - 'bar' is a pseudo-destructor name which happens to refer to |
| // the appropriate pointer type |
| if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { |
| if (!IsArrow && Ptr->getPointeeType()->isRecordType() && |
| MemberName.getNameKind() != DeclarationName::CXXDestructorName) { |
| Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) |
| << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange() |
| << FixItHint::CreateReplacement(OpLoc, "->"); |
| |
| // Recurse as an -> access. |
| IsArrow = true; |
| return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, |
| ObjCImpDecl, HasTemplateArgs); |
| } |
| } |
| |
| // If the user is trying to apply -> or . to a function name, it's probably |
| // because they forgot parentheses to call that function. |
| if (tryToRecoverWithCall(BaseExpr, |
| PDiag(diag::err_member_reference_needs_call), |
| /*complain*/ false, |
| IsArrow ? &isPointerToRecordType : &isRecordType)) { |
| if (BaseExpr.isInvalid()) |
| return ExprError(); |
| BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take()); |
| return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS, |
| ObjCImpDecl, HasTemplateArgs); |
| } |
| |
| Diag(OpLoc, diag::err_typecheck_member_reference_struct_union) |
| << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc; |
| |
| return ExprError(); |
| } |
| |
| /// The main callback when the parser finds something like |
| /// expression . [nested-name-specifier] identifier |
| /// expression -> [nested-name-specifier] identifier |
| /// where 'identifier' encompasses a fairly broad spectrum of |
| /// possibilities, including destructor and operator references. |
| /// |
| /// \param OpKind either tok::arrow or tok::period |
| /// \param HasTrailingLParen whether the next token is '(', which |
| /// is used to diagnose mis-uses of special members that can |
| /// only be called |
| /// \param ObjCImpDecl the current Objective-C \@implementation |
| /// decl; this is an ugly hack around the fact that Objective-C |
| /// \@implementations aren't properly put in the context chain |
| ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base, |
| SourceLocation OpLoc, |
| tok::TokenKind OpKind, |
| CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| UnqualifiedId &Id, |
| Decl *ObjCImpDecl, |
| bool HasTrailingLParen) { |
| if (SS.isSet() && SS.isInvalid()) |
| return ExprError(); |
| |
| // Warn about the explicit constructor calls Microsoft extension. |
| if (getLangOpts().MicrosoftExt && |
| Id.getKind() == UnqualifiedId::IK_ConstructorName) |
| Diag(Id.getSourceRange().getBegin(), |
| diag::ext_ms_explicit_constructor_call); |
| |
| TemplateArgumentListInfo TemplateArgsBuffer; |
| |
| // Decompose the name into its component parts. |
| DeclarationNameInfo NameInfo; |
| const TemplateArgumentListInfo *TemplateArgs; |
| DecomposeUnqualifiedId(Id, TemplateArgsBuffer, |
| NameInfo, TemplateArgs); |
| |
| DeclarationName Name = NameInfo.getName(); |
| bool IsArrow = (OpKind == tok::arrow); |
| |
| NamedDecl *FirstQualifierInScope |
| = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S, SS.getScopeRep())); |
| |
| // This is a postfix expression, so get rid of ParenListExprs. |
| ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); |
| if (Result.isInvalid()) return ExprError(); |
| Base = Result.take(); |
| |
| if (Base->getType()->isDependentType() || Name.isDependentName() || |
| isDependentScopeSpecifier(SS)) { |
| Result = ActOnDependentMemberExpr(Base, Base->getType(), |
| IsArrow, OpLoc, |
| SS, TemplateKWLoc, FirstQualifierInScope, |
| NameInfo, TemplateArgs); |
| } else { |
| LookupResult R(*this, NameInfo, LookupMemberName); |
| ExprResult BaseResult = Owned(Base); |
| Result = LookupMemberExpr(R, BaseResult, IsArrow, OpLoc, |
| SS, ObjCImpDecl, TemplateArgs != 0); |
| if (BaseResult.isInvalid()) |
| return ExprError(); |
| Base = BaseResult.take(); |
| |
| if (Result.isInvalid()) { |
| Owned(Base); |
| return ExprError(); |
| } |
| |
| if (Result.get()) { |
| // The only way a reference to a destructor can be used is to |
| // immediately call it, which falls into this case. If the |
| // next token is not a '(', produce a diagnostic and build the |
| // call now. |
| if (!HasTrailingLParen && |
| Id.getKind() == UnqualifiedId::IK_DestructorName) |
| return DiagnoseDtorReference(NameInfo.getLoc(), Result.get()); |
| |
| return Result; |
| } |
| |
| ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl, HasTrailingLParen}; |
| Result = BuildMemberReferenceExpr(Base, Base->getType(), |
| OpLoc, IsArrow, SS, TemplateKWLoc, |
| FirstQualifierInScope, R, TemplateArgs, |
| false, &ExtraArgs); |
| } |
| |
| return Result; |
| } |
| |
| static ExprResult |
| BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow, |
| const CXXScopeSpec &SS, FieldDecl *Field, |
| DeclAccessPair FoundDecl, |
| const DeclarationNameInfo &MemberNameInfo) { |
| // x.a is an l-value if 'a' has a reference type. Otherwise: |
| // x.a is an l-value/x-value/pr-value if the base is (and note |
| // that *x is always an l-value), except that if the base isn't |
| // an ordinary object then we must have an rvalue. |
| ExprValueKind VK = VK_LValue; |
| ExprObjectKind OK = OK_Ordinary; |
| if (!IsArrow) { |
| if (BaseExpr->getObjectKind() == OK_Ordinary) |
| VK = BaseExpr->getValueKind(); |
| else |
| VK = VK_RValue; |
| } |
| if (VK != VK_RValue && Field->isBitField()) |
| OK = OK_BitField; |
| |
| // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref] |
| QualType MemberType = Field->getType(); |
| if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) { |
| MemberType = Ref->getPointeeType(); |
| VK = VK_LValue; |
| } else { |
| QualType BaseType = BaseExpr->getType(); |
| if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType(); |
| |
| Qualifiers BaseQuals = BaseType.getQualifiers(); |
| |
| // GC attributes are never picked up by members. |
| BaseQuals.removeObjCGCAttr(); |
| |
| // CVR attributes from the base are picked up by members, |
| // except that 'mutable' members don't pick up 'const'. |
| if (Field->isMutable()) BaseQuals.removeConst(); |
| |
| Qualifiers MemberQuals |
| = S.Context.getCanonicalType(MemberType).getQualifiers(); |
| |
| assert(!MemberQuals.hasAddressSpace()); |
| |
| |
| Qualifiers Combined = BaseQuals + MemberQuals; |
| if (Combined != MemberQuals) |
| MemberType = S.Context.getQualifiedType(MemberType, Combined); |
| } |
| |
| S.UnusedPrivateFields.remove(Field); |
| |
| ExprResult Base = |
| S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(), |
| FoundDecl, Field); |
| if (Base.isInvalid()) |
| return ExprError(); |
| return S.Owned(BuildMemberExpr(S, S.Context, Base.take(), IsArrow, SS, |
| /*TemplateKWLoc=*/SourceLocation(), |
| Field, FoundDecl, MemberNameInfo, |
| MemberType, VK, OK)); |
| } |
| |
| /// Builds an implicit member access expression. The current context |
| /// is known to be an instance method, and the given unqualified lookup |
| /// set is known to contain only instance members, at least one of which |
| /// is from an appropriate type. |
| ExprResult |
| Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| LookupResult &R, |
| const TemplateArgumentListInfo *TemplateArgs, |
| bool IsKnownInstance) { |
| assert(!R.empty() && !R.isAmbiguous()); |
| |
| SourceLocation loc = R.getNameLoc(); |
| |
| // If this is known to be an instance access, go ahead and build an |
| // implicit 'this' expression now. |
| // 'this' expression now. |
| QualType ThisTy = getCurrentThisType(); |
| assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'"); |
| |
| Expr *baseExpr = 0; // null signifies implicit access |
| if (IsKnownInstance) { |
| SourceLocation Loc = R.getNameLoc(); |
| if (SS.getRange().isValid()) |
| Loc = SS.getRange().getBegin(); |
| CheckCXXThisCapture(Loc); |
| baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true); |
| } |
| |
| return BuildMemberReferenceExpr(baseExpr, ThisTy, |
| /*OpLoc*/ SourceLocation(), |
| /*IsArrow*/ true, |
| SS, TemplateKWLoc, |
| /*FirstQualifierInScope*/ 0, |
| R, TemplateArgs); |
| } |