blob: 96253ca301fa67b58ac40a0d3373a2bb8145083a [file] [log] [blame]
//===--- ASTReaderDecl.cpp - Decl Deserialization ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ASTReader::ReadDeclRecord method, which is the
// entrypoint for loading a decl.
//
//===----------------------------------------------------------------------===//
#include "clang/Serialization/ASTReader.h"
#include "ASTCommon.h"
#include "ASTReaderInternals.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclGroup.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/AST/Expr.h"
#include "clang/Sema/IdentifierResolver.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace clang;
using namespace clang::serialization;
//===----------------------------------------------------------------------===//
// Declaration deserialization
//===----------------------------------------------------------------------===//
namespace clang {
class ASTDeclReader : public DeclVisitor<ASTDeclReader, void> {
ASTReader &Reader;
ModuleFile &F;
const DeclID ThisDeclID;
const unsigned RawLocation;
typedef ASTReader::RecordData RecordData;
const RecordData &Record;
unsigned &Idx;
TypeID TypeIDForTypeDecl;
bool HasPendingBody;
uint64_t GetCurrentCursorOffset();
SourceLocation ReadSourceLocation(const RecordData &R, unsigned &I) {
return Reader.ReadSourceLocation(F, R, I);
}
SourceRange ReadSourceRange(const RecordData &R, unsigned &I) {
return Reader.ReadSourceRange(F, R, I);
}
TypeSourceInfo *GetTypeSourceInfo(const RecordData &R, unsigned &I) {
return Reader.GetTypeSourceInfo(F, R, I);
}
serialization::DeclID ReadDeclID(const RecordData &R, unsigned &I) {
return Reader.ReadDeclID(F, R, I);
}
Decl *ReadDecl(const RecordData &R, unsigned &I) {
return Reader.ReadDecl(F, R, I);
}
template<typename T>
T *ReadDeclAs(const RecordData &R, unsigned &I) {
return Reader.ReadDeclAs<T>(F, R, I);
}
void ReadQualifierInfo(QualifierInfo &Info,
const RecordData &R, unsigned &I) {
Reader.ReadQualifierInfo(F, Info, R, I);
}
void ReadDeclarationNameLoc(DeclarationNameLoc &DNLoc, DeclarationName Name,
const RecordData &R, unsigned &I) {
Reader.ReadDeclarationNameLoc(F, DNLoc, Name, R, I);
}
void ReadDeclarationNameInfo(DeclarationNameInfo &NameInfo,
const RecordData &R, unsigned &I) {
Reader.ReadDeclarationNameInfo(F, NameInfo, R, I);
}
serialization::SubmoduleID readSubmoduleID(const RecordData &R,
unsigned &I) {
if (I >= R.size())
return 0;
return Reader.getGlobalSubmoduleID(F, R[I++]);
}
Module *readModule(const RecordData &R, unsigned &I) {
return Reader.getSubmodule(readSubmoduleID(R, I));
}
void ReadCXXRecordDefinition(CXXRecordDecl *D);
void ReadCXXDefinitionData(struct CXXRecordDecl::DefinitionData &Data,
const RecordData &R, unsigned &I);
void MergeDefinitionData(CXXRecordDecl *D,
struct CXXRecordDecl::DefinitionData &NewDD);
/// \brief RAII class used to capture the first ID within a redeclaration
/// chain and to introduce it into the list of pending redeclaration chains
/// on destruction.
///
/// The caller can choose not to introduce this ID into the redeclaration
/// chain by calling \c suppress().
class RedeclarableResult {
ASTReader &Reader;
GlobalDeclID FirstID;
mutable bool Owning;
Decl::Kind DeclKind;
void operator=(RedeclarableResult &) LLVM_DELETED_FUNCTION;
public:
RedeclarableResult(ASTReader &Reader, GlobalDeclID FirstID,
Decl::Kind DeclKind)
: Reader(Reader), FirstID(FirstID), Owning(true), DeclKind(DeclKind) { }
RedeclarableResult(const RedeclarableResult &Other)
: Reader(Other.Reader), FirstID(Other.FirstID), Owning(Other.Owning) ,
DeclKind(Other.DeclKind)
{
Other.Owning = false;
}
~RedeclarableResult() {
if (FirstID && Owning && isRedeclarableDeclKind(DeclKind) &&
Reader.PendingDeclChainsKnown.insert(FirstID))
Reader.PendingDeclChains.push_back(FirstID);
}
/// \brief Retrieve the first ID.
GlobalDeclID getFirstID() const { return FirstID; }
/// \brief Do not introduce this declaration ID into the set of pending
/// declaration chains.
void suppress() {
Owning = false;
}
};
/// \brief Class used to capture the result of searching for an existing
/// declaration of a specific kind and name, along with the ability
/// to update the place where this result was found (the declaration
/// chain hanging off an identifier or the DeclContext we searched in)
/// if requested.
class FindExistingResult {
ASTReader &Reader;
NamedDecl *New;
NamedDecl *Existing;
mutable bool AddResult;
void operator=(FindExistingResult&) LLVM_DELETED_FUNCTION;
public:
FindExistingResult(ASTReader &Reader)
: Reader(Reader), New(0), Existing(0), AddResult(false) { }
FindExistingResult(ASTReader &Reader, NamedDecl *New, NamedDecl *Existing)
: Reader(Reader), New(New), Existing(Existing), AddResult(true) { }
FindExistingResult(const FindExistingResult &Other)
: Reader(Other.Reader), New(Other.New), Existing(Other.Existing),
AddResult(Other.AddResult)
{
Other.AddResult = false;
}
~FindExistingResult();
/// \brief Suppress the addition of this result into the known set of
/// names.
void suppress() { AddResult = false; }
operator NamedDecl*() const { return Existing; }
template<typename T>
operator T*() const { return dyn_cast_or_null<T>(Existing); }
};
FindExistingResult findExisting(NamedDecl *D);
public:
ASTDeclReader(ASTReader &Reader, ModuleFile &F,
DeclID thisDeclID,
unsigned RawLocation,
const RecordData &Record, unsigned &Idx)
: Reader(Reader), F(F), ThisDeclID(thisDeclID),
RawLocation(RawLocation), Record(Record), Idx(Idx),
TypeIDForTypeDecl(0), HasPendingBody(false) { }
static void attachPreviousDecl(Decl *D, Decl *previous);
static void attachLatestDecl(Decl *D, Decl *latest);
/// \brief Determine whether this declaration has a pending body.
bool hasPendingBody() const { return HasPendingBody; }
void Visit(Decl *D);
void UpdateDecl(Decl *D, ModuleFile &ModuleFile,
const RecordData &Record);
static void setNextObjCCategory(ObjCCategoryDecl *Cat,
ObjCCategoryDecl *Next) {
Cat->NextClassCategory = Next;
}
void VisitDecl(Decl *D);
void VisitTranslationUnitDecl(TranslationUnitDecl *TU);
void VisitNamedDecl(NamedDecl *ND);
void VisitLabelDecl(LabelDecl *LD);
void VisitNamespaceDecl(NamespaceDecl *D);
void VisitUsingDirectiveDecl(UsingDirectiveDecl *D);
void VisitNamespaceAliasDecl(NamespaceAliasDecl *D);
void VisitTypeDecl(TypeDecl *TD);
void VisitTypedefNameDecl(TypedefNameDecl *TD);
void VisitTypedefDecl(TypedefDecl *TD);
void VisitTypeAliasDecl(TypeAliasDecl *TD);
void VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D);
RedeclarableResult VisitTagDecl(TagDecl *TD);
void VisitEnumDecl(EnumDecl *ED);
RedeclarableResult VisitRecordDeclImpl(RecordDecl *RD);
void VisitRecordDecl(RecordDecl *RD) { VisitRecordDeclImpl(RD); }
RedeclarableResult VisitCXXRecordDeclImpl(CXXRecordDecl *D);
void VisitCXXRecordDecl(CXXRecordDecl *D) { VisitCXXRecordDeclImpl(D); }
RedeclarableResult VisitClassTemplateSpecializationDeclImpl(
ClassTemplateSpecializationDecl *D);
void VisitClassTemplateSpecializationDecl(
ClassTemplateSpecializationDecl *D) {
VisitClassTemplateSpecializationDeclImpl(D);
}
void VisitClassTemplatePartialSpecializationDecl(
ClassTemplatePartialSpecializationDecl *D);
void VisitClassScopeFunctionSpecializationDecl(
ClassScopeFunctionSpecializationDecl *D);
RedeclarableResult
VisitVarTemplateSpecializationDeclImpl(VarTemplateSpecializationDecl *D);
void VisitVarTemplateSpecializationDecl(VarTemplateSpecializationDecl *D) {
VisitVarTemplateSpecializationDeclImpl(D);
}
void VisitVarTemplatePartialSpecializationDecl(
VarTemplatePartialSpecializationDecl *D);
void VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D);
void VisitValueDecl(ValueDecl *VD);
void VisitEnumConstantDecl(EnumConstantDecl *ECD);
void VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D);
void VisitDeclaratorDecl(DeclaratorDecl *DD);
void VisitFunctionDecl(FunctionDecl *FD);
void VisitCXXMethodDecl(CXXMethodDecl *D);
void VisitCXXConstructorDecl(CXXConstructorDecl *D);
void VisitCXXDestructorDecl(CXXDestructorDecl *D);
void VisitCXXConversionDecl(CXXConversionDecl *D);
void VisitFieldDecl(FieldDecl *FD);
void VisitMSPropertyDecl(MSPropertyDecl *FD);
void VisitIndirectFieldDecl(IndirectFieldDecl *FD);
RedeclarableResult VisitVarDeclImpl(VarDecl *D);
void VisitVarDecl(VarDecl *VD) { VisitVarDeclImpl(VD); }
void VisitImplicitParamDecl(ImplicitParamDecl *PD);
void VisitParmVarDecl(ParmVarDecl *PD);
void VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D);
DeclID VisitTemplateDecl(TemplateDecl *D);
RedeclarableResult VisitRedeclarableTemplateDecl(RedeclarableTemplateDecl *D);
void VisitClassTemplateDecl(ClassTemplateDecl *D);
void VisitVarTemplateDecl(VarTemplateDecl *D);
void VisitFunctionTemplateDecl(FunctionTemplateDecl *D);
void VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D);
void VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D);
void VisitUsingDecl(UsingDecl *D);
void VisitUsingShadowDecl(UsingShadowDecl *D);
void VisitLinkageSpecDecl(LinkageSpecDecl *D);
void VisitFileScopeAsmDecl(FileScopeAsmDecl *AD);
void VisitImportDecl(ImportDecl *D);
void VisitAccessSpecDecl(AccessSpecDecl *D);
void VisitFriendDecl(FriendDecl *D);
void VisitFriendTemplateDecl(FriendTemplateDecl *D);
void VisitStaticAssertDecl(StaticAssertDecl *D);
void VisitBlockDecl(BlockDecl *BD);
void VisitCapturedDecl(CapturedDecl *CD);
void VisitEmptyDecl(EmptyDecl *D);
std::pair<uint64_t, uint64_t> VisitDeclContext(DeclContext *DC);
template<typename T>
RedeclarableResult VisitRedeclarable(Redeclarable<T> *D);
template<typename T>
void mergeRedeclarable(Redeclarable<T> *D, RedeclarableResult &Redecl,
DeclID TemplatePatternID = 0);
template<typename T>
void mergeRedeclarable(Redeclarable<T> *D, T *Existing,
RedeclarableResult &Redecl,
DeclID TemplatePatternID = 0);
template<typename T>
void mergeMergeable(Mergeable<T> *D);
void mergeTemplatePattern(RedeclarableTemplateDecl *D,
RedeclarableTemplateDecl *Existing,
DeclID DsID);
// FIXME: Reorder according to DeclNodes.td?
void VisitObjCMethodDecl(ObjCMethodDecl *D);
void VisitObjCContainerDecl(ObjCContainerDecl *D);
void VisitObjCInterfaceDecl(ObjCInterfaceDecl *D);
void VisitObjCIvarDecl(ObjCIvarDecl *D);
void VisitObjCProtocolDecl(ObjCProtocolDecl *D);
void VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D);
void VisitObjCCategoryDecl(ObjCCategoryDecl *D);
void VisitObjCImplDecl(ObjCImplDecl *D);
void VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D);
void VisitObjCImplementationDecl(ObjCImplementationDecl *D);
void VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *D);
void VisitObjCPropertyDecl(ObjCPropertyDecl *D);
void VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D);
void VisitOMPThreadPrivateDecl(OMPThreadPrivateDecl *D);
};
}
uint64_t ASTDeclReader::GetCurrentCursorOffset() {
return F.DeclsCursor.GetCurrentBitNo() + F.GlobalBitOffset;
}
void ASTDeclReader::Visit(Decl *D) {
DeclVisitor<ASTDeclReader, void>::Visit(D);
if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
if (DD->DeclInfo) {
DeclaratorDecl::ExtInfo *Info =
DD->DeclInfo.get<DeclaratorDecl::ExtInfo *>();
Info->TInfo =
GetTypeSourceInfo(Record, Idx);
}
else {
DD->DeclInfo = GetTypeSourceInfo(Record, Idx);
}
}
if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
// We have a fully initialized TypeDecl. Read its type now.
TD->setTypeForDecl(Reader.GetType(TypeIDForTypeDecl).getTypePtrOrNull());
} else if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D)) {
// if we have a fully initialized TypeDecl, we can safely read its type now.
ID->TypeForDecl = Reader.GetType(TypeIDForTypeDecl).getTypePtrOrNull();
} else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
// FunctionDecl's body was written last after all other Stmts/Exprs.
// We only read it if FD doesn't already have a body (e.g., from another
// module).
// FIXME: Also consider = default and = delete.
// FIXME: Can we diagnose ODR violations somehow?
if (Record[Idx++]) {
Reader.PendingBodies[FD] = GetCurrentCursorOffset();
HasPendingBody = true;
}
}
}
void ASTDeclReader::VisitDecl(Decl *D) {
if (D->isTemplateParameter() || D->isTemplateParameterPack() ||
isa<ParmVarDecl>(D)) {
// We don't want to deserialize the DeclContext of a template
// parameter or of a parameter of a function template immediately. These
// entities might be used in the formulation of its DeclContext (for
// example, a function parameter can be used in decltype() in trailing
// return type of the function). Use the translation unit DeclContext as a
// placeholder.
GlobalDeclID SemaDCIDForTemplateParmDecl = ReadDeclID(Record, Idx);
GlobalDeclID LexicalDCIDForTemplateParmDecl = ReadDeclID(Record, Idx);
Reader.addPendingDeclContextInfo(D,
SemaDCIDForTemplateParmDecl,
LexicalDCIDForTemplateParmDecl);
D->setDeclContext(Reader.getContext().getTranslationUnitDecl());
} else {
DeclContext *SemaDC = ReadDeclAs<DeclContext>(Record, Idx);
DeclContext *LexicalDC = ReadDeclAs<DeclContext>(Record, Idx);
DeclContext *MergedSemaDC = Reader.MergedDeclContexts.lookup(SemaDC);
// Avoid calling setLexicalDeclContext() directly because it uses
// Decl::getASTContext() internally which is unsafe during derialization.
D->setDeclContextsImpl(MergedSemaDC ? MergedSemaDC : SemaDC, LexicalDC,
Reader.getContext());
}
D->setLocation(Reader.ReadSourceLocation(F, RawLocation));
D->setInvalidDecl(Record[Idx++]);
if (Record[Idx++]) { // hasAttrs
AttrVec Attrs;
Reader.ReadAttributes(F, Attrs, Record, Idx);
// Avoid calling setAttrs() directly because it uses Decl::getASTContext()
// internally which is unsafe during derialization.
D->setAttrsImpl(Attrs, Reader.getContext());
}
D->setImplicit(Record[Idx++]);
D->Used = Record[Idx++];
D->setReferenced(Record[Idx++]);
D->setTopLevelDeclInObjCContainer(Record[Idx++]);
D->setAccess((AccessSpecifier)Record[Idx++]);
D->FromASTFile = true;
D->setModulePrivate(Record[Idx++]);
D->Hidden = D->isModulePrivate();
// Determine whether this declaration is part of a (sub)module. If so, it
// may not yet be visible.
if (unsigned SubmoduleID = readSubmoduleID(Record, Idx)) {
// Store the owning submodule ID in the declaration.
D->setOwningModuleID(SubmoduleID);
// Module-private declarations are never visible, so there is no work to do.
if (!D->isModulePrivate()) {
if (Module *Owner = Reader.getSubmodule(SubmoduleID)) {
if (Owner->NameVisibility != Module::AllVisible) {
// The owning module is not visible. Mark this declaration as hidden.
D->Hidden = true;
// Note that this declaration was hidden because its owning module is
// not yet visible.
Reader.HiddenNamesMap[Owner].HiddenDecls.push_back(D);
}
}
}
}
}
void ASTDeclReader::VisitTranslationUnitDecl(TranslationUnitDecl *TU) {
llvm_unreachable("Translation units are not serialized");
}
void ASTDeclReader::VisitNamedDecl(NamedDecl *ND) {
VisitDecl(ND);
ND->setDeclName(Reader.ReadDeclarationName(F, Record, Idx));
}
void ASTDeclReader::VisitTypeDecl(TypeDecl *TD) {
VisitNamedDecl(TD);
TD->setLocStart(ReadSourceLocation(Record, Idx));
// Delay type reading until after we have fully initialized the decl.
TypeIDForTypeDecl = Reader.getGlobalTypeID(F, Record[Idx++]);
}
void ASTDeclReader::VisitTypedefNameDecl(TypedefNameDecl *TD) {
RedeclarableResult Redecl = VisitRedeclarable(TD);
VisitTypeDecl(TD);
TypeSourceInfo *TInfo = GetTypeSourceInfo(Record, Idx);
if (Record[Idx++]) { // isModed
QualType modedT = Reader.readType(F, Record, Idx);
TD->setModedTypeSourceInfo(TInfo, modedT);
} else
TD->setTypeSourceInfo(TInfo);
mergeRedeclarable(TD, Redecl);
}
void ASTDeclReader::VisitTypedefDecl(TypedefDecl *TD) {
VisitTypedefNameDecl(TD);
}
void ASTDeclReader::VisitTypeAliasDecl(TypeAliasDecl *TD) {
VisitTypedefNameDecl(TD);
}
ASTDeclReader::RedeclarableResult ASTDeclReader::VisitTagDecl(TagDecl *TD) {
RedeclarableResult Redecl = VisitRedeclarable(TD);
VisitTypeDecl(TD);
TD->IdentifierNamespace = Record[Idx++];
TD->setTagKind((TagDecl::TagKind)Record[Idx++]);
TD->setCompleteDefinition(Record[Idx++]);
TD->setEmbeddedInDeclarator(Record[Idx++]);
TD->setFreeStanding(Record[Idx++]);
TD->setCompleteDefinitionRequired(Record[Idx++]);
TD->setRBraceLoc(ReadSourceLocation(Record, Idx));
if (Record[Idx++]) { // hasExtInfo
TagDecl::ExtInfo *Info = new (Reader.getContext()) TagDecl::ExtInfo();
ReadQualifierInfo(*Info, Record, Idx);
TD->NamedDeclOrQualifier = Info;
} else
TD->NamedDeclOrQualifier = ReadDeclAs<NamedDecl>(Record, Idx);
if (!isa<CXXRecordDecl>(TD))
mergeRedeclarable(TD, Redecl);
return Redecl;
}
void ASTDeclReader::VisitEnumDecl(EnumDecl *ED) {
VisitTagDecl(ED);
if (TypeSourceInfo *TI = Reader.GetTypeSourceInfo(F, Record, Idx))
ED->setIntegerTypeSourceInfo(TI);
else
ED->setIntegerType(Reader.readType(F, Record, Idx));
ED->setPromotionType(Reader.readType(F, Record, Idx));
ED->setNumPositiveBits(Record[Idx++]);
ED->setNumNegativeBits(Record[Idx++]);
ED->IsScoped = Record[Idx++];
ED->IsScopedUsingClassTag = Record[Idx++];
ED->IsFixed = Record[Idx++];
// If this is a definition subject to the ODR, and we already have a
// definition, merge this one into it.
if (ED->IsCompleteDefinition &&
Reader.getContext().getLangOpts().Modules &&
Reader.getContext().getLangOpts().CPlusPlus) {
if (EnumDecl *&OldDef = Reader.EnumDefinitions[ED->getCanonicalDecl()]) {
Reader.MergedDeclContexts.insert(std::make_pair(ED, OldDef));
ED->IsCompleteDefinition = false;
} else {
OldDef = ED;
}
}
if (EnumDecl *InstED = ReadDeclAs<EnumDecl>(Record, Idx)) {
TemplateSpecializationKind TSK = (TemplateSpecializationKind)Record[Idx++];
SourceLocation POI = ReadSourceLocation(Record, Idx);
ED->setInstantiationOfMemberEnum(Reader.getContext(), InstED, TSK);
ED->getMemberSpecializationInfo()->setPointOfInstantiation(POI);
}
}
ASTDeclReader::RedeclarableResult
ASTDeclReader::VisitRecordDeclImpl(RecordDecl *RD) {
RedeclarableResult Redecl = VisitTagDecl(RD);
RD->setHasFlexibleArrayMember(Record[Idx++]);
RD->setAnonymousStructOrUnion(Record[Idx++]);
RD->setHasObjectMember(Record[Idx++]);
RD->setHasVolatileMember(Record[Idx++]);
return Redecl;
}
void ASTDeclReader::VisitValueDecl(ValueDecl *VD) {
VisitNamedDecl(VD);
VD->setType(Reader.readType(F, Record, Idx));
}
void ASTDeclReader::VisitEnumConstantDecl(EnumConstantDecl *ECD) {
VisitValueDecl(ECD);
if (Record[Idx++])
ECD->setInitExpr(Reader.ReadExpr(F));
ECD->setInitVal(Reader.ReadAPSInt(Record, Idx));
mergeMergeable(ECD);
}
void ASTDeclReader::VisitDeclaratorDecl(DeclaratorDecl *DD) {
VisitValueDecl(DD);
DD->setInnerLocStart(ReadSourceLocation(Record, Idx));
if (Record[Idx++]) { // hasExtInfo
DeclaratorDecl::ExtInfo *Info
= new (Reader.getContext()) DeclaratorDecl::ExtInfo();
ReadQualifierInfo(*Info, Record, Idx);
DD->DeclInfo = Info;
}
}
void ASTDeclReader::VisitFunctionDecl(FunctionDecl *FD) {
RedeclarableResult Redecl = VisitRedeclarable(FD);
VisitDeclaratorDecl(FD);
ReadDeclarationNameLoc(FD->DNLoc, FD->getDeclName(), Record, Idx);
FD->IdentifierNamespace = Record[Idx++];
// FunctionDecl's body is handled last at ASTDeclReader::Visit,
// after everything else is read.
FD->SClass = (StorageClass)Record[Idx++];
FD->IsInline = Record[Idx++];
FD->IsInlineSpecified = Record[Idx++];
FD->IsVirtualAsWritten = Record[Idx++];
FD->IsPure = Record[Idx++];
FD->HasInheritedPrototype = Record[Idx++];
FD->HasWrittenPrototype = Record[Idx++];
FD->IsDeleted = Record[Idx++];
FD->IsTrivial = Record[Idx++];
FD->IsDefaulted = Record[Idx++];
FD->IsExplicitlyDefaulted = Record[Idx++];
FD->HasImplicitReturnZero = Record[Idx++];
FD->IsConstexpr = Record[Idx++];
FD->HasSkippedBody = Record[Idx++];
FD->IsLateTemplateParsed = Record[Idx++];
FD->setCachedLinkage(Linkage(Record[Idx++]));
FD->EndRangeLoc = ReadSourceLocation(Record, Idx);
switch ((FunctionDecl::TemplatedKind)Record[Idx++]) {
case FunctionDecl::TK_NonTemplate:
mergeRedeclarable(FD, Redecl);
break;
case FunctionDecl::TK_FunctionTemplate:
// Merged when we merge the template.
FD->setDescribedFunctionTemplate(ReadDeclAs<FunctionTemplateDecl>(Record,
Idx));
break;
case FunctionDecl::TK_MemberSpecialization: {
FunctionDecl *InstFD = ReadDeclAs<FunctionDecl>(Record, Idx);
TemplateSpecializationKind TSK = (TemplateSpecializationKind)Record[Idx++];
SourceLocation POI = ReadSourceLocation(Record, Idx);
FD->setInstantiationOfMemberFunction(Reader.getContext(), InstFD, TSK);
FD->getMemberSpecializationInfo()->setPointOfInstantiation(POI);
mergeRedeclarable(FD, Redecl);
break;
}
case FunctionDecl::TK_FunctionTemplateSpecialization: {
FunctionTemplateDecl *Template = ReadDeclAs<FunctionTemplateDecl>(Record,
Idx);
TemplateSpecializationKind TSK = (TemplateSpecializationKind)Record[Idx++];
// Template arguments.
SmallVector<TemplateArgument, 8> TemplArgs;
Reader.ReadTemplateArgumentList(TemplArgs, F, Record, Idx);
// Template args as written.
SmallVector<TemplateArgumentLoc, 8> TemplArgLocs;
SourceLocation LAngleLoc, RAngleLoc;
bool HasTemplateArgumentsAsWritten = Record[Idx++];
if (HasTemplateArgumentsAsWritten) {
unsigned NumTemplateArgLocs = Record[Idx++];
TemplArgLocs.reserve(NumTemplateArgLocs);
for (unsigned i=0; i != NumTemplateArgLocs; ++i)
TemplArgLocs.push_back(
Reader.ReadTemplateArgumentLoc(F, Record, Idx));
LAngleLoc = ReadSourceLocation(Record, Idx);
RAngleLoc = ReadSourceLocation(Record, Idx);
}
SourceLocation POI = ReadSourceLocation(Record, Idx);
ASTContext &C = Reader.getContext();
TemplateArgumentList *TemplArgList
= TemplateArgumentList::CreateCopy(C, TemplArgs.data(), TemplArgs.size());
TemplateArgumentListInfo TemplArgsInfo(LAngleLoc, RAngleLoc);
for (unsigned i=0, e = TemplArgLocs.size(); i != e; ++i)
TemplArgsInfo.addArgument(TemplArgLocs[i]);
FunctionTemplateSpecializationInfo *FTInfo
= FunctionTemplateSpecializationInfo::Create(C, FD, Template, TSK,
TemplArgList,
HasTemplateArgumentsAsWritten ? &TemplArgsInfo : 0,
POI);
FD->TemplateOrSpecialization = FTInfo;
if (FD->isCanonicalDecl()) { // if canonical add to template's set.
// The template that contains the specializations set. It's not safe to
// use getCanonicalDecl on Template since it may still be initializing.
FunctionTemplateDecl *CanonTemplate
= ReadDeclAs<FunctionTemplateDecl>(Record, Idx);
// Get the InsertPos by FindNodeOrInsertPos() instead of calling
// InsertNode(FTInfo) directly to avoid the getASTContext() call in
// FunctionTemplateSpecializationInfo's Profile().
// We avoid getASTContext because a decl in the parent hierarchy may
// be initializing.
llvm::FoldingSetNodeID ID;
FunctionTemplateSpecializationInfo::Profile(ID, TemplArgs.data(),
TemplArgs.size(), C);
void *InsertPos = 0;
FunctionTemplateDecl::Common *CommonPtr = CanonTemplate->getCommonPtr();
CommonPtr->Specializations.FindNodeOrInsertPos(ID, InsertPos);
if (InsertPos)
CommonPtr->Specializations.InsertNode(FTInfo, InsertPos);
else {
assert(Reader.getContext().getLangOpts().Modules &&
"already deserialized this template specialization");
// FIXME: This specialization is a redeclaration of one from another
// module. Merge it.
}
}
break;
}
case FunctionDecl::TK_DependentFunctionTemplateSpecialization: {
// Templates.
UnresolvedSet<8> TemplDecls;
unsigned NumTemplates = Record[Idx++];
while (NumTemplates--)
TemplDecls.addDecl(ReadDeclAs<NamedDecl>(Record, Idx));
// Templates args.
TemplateArgumentListInfo TemplArgs;
unsigned NumArgs = Record[Idx++];
while (NumArgs--)
TemplArgs.addArgument(Reader.ReadTemplateArgumentLoc(F, Record, Idx));
TemplArgs.setLAngleLoc(ReadSourceLocation(Record, Idx));
TemplArgs.setRAngleLoc(ReadSourceLocation(Record, Idx));
FD->setDependentTemplateSpecialization(Reader.getContext(),
TemplDecls, TemplArgs);
// FIXME: Merging.
break;
}
}
// Read in the parameters.
unsigned NumParams = Record[Idx++];
SmallVector<ParmVarDecl *, 16> Params;
Params.reserve(NumParams);
for (unsigned I = 0; I != NumParams; ++I)
Params.push_back(ReadDeclAs<ParmVarDecl>(Record, Idx));
FD->setParams(Reader.getContext(), Params);
}
void ASTDeclReader::VisitObjCMethodDecl(ObjCMethodDecl *MD) {
VisitNamedDecl(MD);
if (Record[Idx++]) {
// Load the body on-demand. Most clients won't care, because method
// definitions rarely show up in headers.
Reader.PendingBodies[MD] = GetCurrentCursorOffset();
HasPendingBody = true;
MD->setSelfDecl(ReadDeclAs<ImplicitParamDecl>(Record, Idx));
MD->setCmdDecl(ReadDeclAs<ImplicitParamDecl>(Record, Idx));
}
MD->setInstanceMethod(Record[Idx++]);
MD->setVariadic(Record[Idx++]);
MD->setPropertyAccessor(Record[Idx++]);
MD->setDefined(Record[Idx++]);
MD->IsOverriding = Record[Idx++];
MD->HasSkippedBody = Record[Idx++];
MD->IsRedeclaration = Record[Idx++];
MD->HasRedeclaration = Record[Idx++];
if (MD->HasRedeclaration)
Reader.getContext().setObjCMethodRedeclaration(MD,
ReadDeclAs<ObjCMethodDecl>(Record, Idx));
MD->setDeclImplementation((ObjCMethodDecl::ImplementationControl)Record[Idx++]);
MD->setObjCDeclQualifier((Decl::ObjCDeclQualifier)Record[Idx++]);
MD->SetRelatedResultType(Record[Idx++]);
MD->setReturnType(Reader.readType(F, Record, Idx));
MD->setReturnTypeSourceInfo(GetTypeSourceInfo(Record, Idx));
MD->DeclEndLoc = ReadSourceLocation(Record, Idx);
unsigned NumParams = Record[Idx++];
SmallVector<ParmVarDecl *, 16> Params;
Params.reserve(NumParams);
for (unsigned I = 0; I != NumParams; ++I)
Params.push_back(ReadDeclAs<ParmVarDecl>(Record, Idx));
MD->SelLocsKind = Record[Idx++];
unsigned NumStoredSelLocs = Record[Idx++];
SmallVector<SourceLocation, 16> SelLocs;
SelLocs.reserve(NumStoredSelLocs);
for (unsigned i = 0; i != NumStoredSelLocs; ++i)
SelLocs.push_back(ReadSourceLocation(Record, Idx));
MD->setParamsAndSelLocs(Reader.getContext(), Params, SelLocs);
}
void ASTDeclReader::VisitObjCContainerDecl(ObjCContainerDecl *CD) {
VisitNamedDecl(CD);
CD->setAtStartLoc(ReadSourceLocation(Record, Idx));
CD->setAtEndRange(ReadSourceRange(Record, Idx));
}
void ASTDeclReader::VisitObjCInterfaceDecl(ObjCInterfaceDecl *ID) {
RedeclarableResult Redecl = VisitRedeclarable(ID);
VisitObjCContainerDecl(ID);
TypeIDForTypeDecl = Reader.getGlobalTypeID(F, Record[Idx++]);
mergeRedeclarable(ID, Redecl);
if (Record[Idx++]) {
// Read the definition.
ID->allocateDefinitionData();
// Set the definition data of the canonical declaration, so other
// redeclarations will see it.
ID->getCanonicalDecl()->Data = ID->Data;
ObjCInterfaceDecl::DefinitionData &Data = ID->data();
// Read the superclass.
Data.SuperClass = ReadDeclAs<ObjCInterfaceDecl>(Record, Idx);
Data.SuperClassLoc = ReadSourceLocation(Record, Idx);
Data.EndLoc = ReadSourceLocation(Record, Idx);
Data.HasDesignatedInitializers = Record[Idx++];
// Read the directly referenced protocols and their SourceLocations.
unsigned NumProtocols = Record[Idx++];
SmallVector<ObjCProtocolDecl *, 16> Protocols;
Protocols.reserve(NumProtocols);
for (unsigned I = 0; I != NumProtocols; ++I)
Protocols.push_back(ReadDeclAs<ObjCProtocolDecl>(Record, Idx));
SmallVector<SourceLocation, 16> ProtoLocs;
ProtoLocs.reserve(NumProtocols);
for (unsigned I = 0; I != NumProtocols; ++I)
ProtoLocs.push_back(ReadSourceLocation(Record, Idx));
ID->setProtocolList(Protocols.data(), NumProtocols, ProtoLocs.data(),
Reader.getContext());
// Read the transitive closure of protocols referenced by this class.
NumProtocols = Record[Idx++];
Protocols.clear();
Protocols.reserve(NumProtocols);
for (unsigned I = 0; I != NumProtocols; ++I)
Protocols.push_back(ReadDeclAs<ObjCProtocolDecl>(Record, Idx));
ID->data().AllReferencedProtocols.set(Protocols.data(), NumProtocols,
Reader.getContext());
// We will rebuild this list lazily.
ID->setIvarList(0);
// Note that we have deserialized a definition.
Reader.PendingDefinitions.insert(ID);
// Note that we've loaded this Objective-C class.
Reader.ObjCClassesLoaded.push_back(ID);
} else {
ID->Data = ID->getCanonicalDecl()->Data;
}
}
void ASTDeclReader::VisitObjCIvarDecl(ObjCIvarDecl *IVD) {
VisitFieldDecl(IVD);
IVD->setAccessControl((ObjCIvarDecl::AccessControl)Record[Idx++]);
// This field will be built lazily.
IVD->setNextIvar(0);
bool synth = Record[Idx++];
IVD->setSynthesize(synth);
}
void ASTDeclReader::VisitObjCProtocolDecl(ObjCProtocolDecl *PD) {
RedeclarableResult Redecl = VisitRedeclarable(PD);
VisitObjCContainerDecl(PD);
mergeRedeclarable(PD, Redecl);
if (Record[Idx++]) {
// Read the definition.
PD->allocateDefinitionData();
// Set the definition data of the canonical declaration, so other
// redeclarations will see it.
PD->getCanonicalDecl()->Data = PD->Data;
unsigned NumProtoRefs = Record[Idx++];
SmallVector<ObjCProtocolDecl *, 16> ProtoRefs;
ProtoRefs.reserve(NumProtoRefs);
for (unsigned I = 0; I != NumProtoRefs; ++I)
ProtoRefs.push_back(ReadDeclAs<ObjCProtocolDecl>(Record, Idx));
SmallVector<SourceLocation, 16> ProtoLocs;
ProtoLocs.reserve(NumProtoRefs);
for (unsigned I = 0; I != NumProtoRefs; ++I)
ProtoLocs.push_back(ReadSourceLocation(Record, Idx));
PD->setProtocolList(ProtoRefs.data(), NumProtoRefs, ProtoLocs.data(),
Reader.getContext());
// Note that we have deserialized a definition.
Reader.PendingDefinitions.insert(PD);
} else {
PD->Data = PD->getCanonicalDecl()->Data;
}
}
void ASTDeclReader::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *FD) {
VisitFieldDecl(FD);
}
void ASTDeclReader::VisitObjCCategoryDecl(ObjCCategoryDecl *CD) {
VisitObjCContainerDecl(CD);
CD->setCategoryNameLoc(ReadSourceLocation(Record, Idx));
CD->setIvarLBraceLoc(ReadSourceLocation(Record, Idx));
CD->setIvarRBraceLoc(ReadSourceLocation(Record, Idx));
// Note that this category has been deserialized. We do this before
// deserializing the interface declaration, so that it will consider this
/// category.
Reader.CategoriesDeserialized.insert(CD);
CD->ClassInterface = ReadDeclAs<ObjCInterfaceDecl>(Record, Idx);
unsigned NumProtoRefs = Record[Idx++];
SmallVector<ObjCProtocolDecl *, 16> ProtoRefs;
ProtoRefs.reserve(NumProtoRefs);
for (unsigned I = 0; I != NumProtoRefs; ++I)
ProtoRefs.push_back(ReadDeclAs<ObjCProtocolDecl>(Record, Idx));
SmallVector<SourceLocation, 16> ProtoLocs;
ProtoLocs.reserve(NumProtoRefs);
for (unsigned I = 0; I != NumProtoRefs; ++I)
ProtoLocs.push_back(ReadSourceLocation(Record, Idx));
CD->setProtocolList(ProtoRefs.data(), NumProtoRefs, ProtoLocs.data(),
Reader.getContext());
}
void ASTDeclReader::VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *CAD) {
VisitNamedDecl(CAD);
CAD->setClassInterface(ReadDeclAs<ObjCInterfaceDecl>(Record, Idx));
}
void ASTDeclReader::VisitObjCPropertyDecl(ObjCPropertyDecl *D) {
VisitNamedDecl(D);
D->setAtLoc(ReadSourceLocation(Record, Idx));
D->setLParenLoc(ReadSourceLocation(Record, Idx));
D->setType(GetTypeSourceInfo(Record, Idx));
// FIXME: stable encoding
D->setPropertyAttributes(
(ObjCPropertyDecl::PropertyAttributeKind)Record[Idx++]);
D->setPropertyAttributesAsWritten(
(ObjCPropertyDecl::PropertyAttributeKind)Record[Idx++]);
// FIXME: stable encoding
D->setPropertyImplementation(
(ObjCPropertyDecl::PropertyControl)Record[Idx++]);
D->setGetterName(Reader.ReadDeclarationName(F,Record, Idx).getObjCSelector());
D->setSetterName(Reader.ReadDeclarationName(F,Record, Idx).getObjCSelector());
D->setGetterMethodDecl(ReadDeclAs<ObjCMethodDecl>(Record, Idx));
D->setSetterMethodDecl(ReadDeclAs<ObjCMethodDecl>(Record, Idx));
D->setPropertyIvarDecl(ReadDeclAs<ObjCIvarDecl>(Record, Idx));
}
void ASTDeclReader::VisitObjCImplDecl(ObjCImplDecl *D) {
VisitObjCContainerDecl(D);
D->setClassInterface(ReadDeclAs<ObjCInterfaceDecl>(Record, Idx));
}
void ASTDeclReader::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) {
VisitObjCImplDecl(D);
D->setIdentifier(Reader.GetIdentifierInfo(F, Record, Idx));
D->CategoryNameLoc = ReadSourceLocation(Record, Idx);
}
void ASTDeclReader::VisitObjCImplementationDecl(ObjCImplementationDecl *D) {
VisitObjCImplDecl(D);
D->setSuperClass(ReadDeclAs<ObjCInterfaceDecl>(Record, Idx));
D->SuperLoc = ReadSourceLocation(Record, Idx);
D->setIvarLBraceLoc(ReadSourceLocation(Record, Idx));
D->setIvarRBraceLoc(ReadSourceLocation(Record, Idx));
D->setHasNonZeroConstructors(Record[Idx++]);
D->setHasDestructors(Record[Idx++]);
std::tie(D->IvarInitializers, D->NumIvarInitializers) =
Reader.ReadCXXCtorInitializers(F, Record, Idx);
}
void ASTDeclReader::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D) {
VisitDecl(D);
D->setAtLoc(ReadSourceLocation(Record, Idx));
D->setPropertyDecl(ReadDeclAs<ObjCPropertyDecl>(Record, Idx));
D->PropertyIvarDecl = ReadDeclAs<ObjCIvarDecl>(Record, Idx);
D->IvarLoc = ReadSourceLocation(Record, Idx);
D->setGetterCXXConstructor(Reader.ReadExpr(F));
D->setSetterCXXAssignment(Reader.ReadExpr(F));
}
void ASTDeclReader::VisitFieldDecl(FieldDecl *FD) {
VisitDeclaratorDecl(FD);
FD->Mutable = Record[Idx++];
if (int BitWidthOrInitializer = Record[Idx++]) {
FD->InitializerOrBitWidth.setInt(BitWidthOrInitializer - 1);
FD->InitializerOrBitWidth.setPointer(Reader.ReadExpr(F));
}
if (!FD->getDeclName()) {
if (FieldDecl *Tmpl = ReadDeclAs<FieldDecl>(Record, Idx))
Reader.getContext().setInstantiatedFromUnnamedFieldDecl(FD, Tmpl);
}
mergeMergeable(FD);
}
void ASTDeclReader::VisitMSPropertyDecl(MSPropertyDecl *PD) {
VisitDeclaratorDecl(PD);
PD->GetterId = Reader.GetIdentifierInfo(F, Record, Idx);
PD->SetterId = Reader.GetIdentifierInfo(F, Record, Idx);
}
void ASTDeclReader::VisitIndirectFieldDecl(IndirectFieldDecl *FD) {
VisitValueDecl(FD);
FD->ChainingSize = Record[Idx++];
assert(FD->ChainingSize >= 2 && "Anonymous chaining must be >= 2");
FD->Chaining = new (Reader.getContext())NamedDecl*[FD->ChainingSize];
for (unsigned I = 0; I != FD->ChainingSize; ++I)
FD->Chaining[I] = ReadDeclAs<NamedDecl>(Record, Idx);
}
ASTDeclReader::RedeclarableResult ASTDeclReader::VisitVarDeclImpl(VarDecl *VD) {
RedeclarableResult Redecl = VisitRedeclarable(VD);
VisitDeclaratorDecl(VD);
VD->VarDeclBits.SClass = (StorageClass)Record[Idx++];
VD->VarDeclBits.TSCSpec = Record[Idx++];
VD->VarDeclBits.InitStyle = Record[Idx++];
VD->VarDeclBits.ExceptionVar = Record[Idx++];
VD->VarDeclBits.NRVOVariable = Record[Idx++];
VD->VarDeclBits.CXXForRangeDecl = Record[Idx++];
VD->VarDeclBits.ARCPseudoStrong = Record[Idx++];
VD->VarDeclBits.IsConstexpr = Record[Idx++];
VD->VarDeclBits.IsInitCapture = Record[Idx++];
VD->VarDeclBits.PreviousDeclInSameBlockScope = Record[Idx++];
Linkage VarLinkage = Linkage(Record[Idx++]);
VD->setCachedLinkage(VarLinkage);
// Reconstruct the one piece of the IdentifierNamespace that we need.
if (VD->getStorageClass() == SC_Extern && VarLinkage != NoLinkage &&
VD->getLexicalDeclContext()->isFunctionOrMethod())
VD->setLocalExternDecl();
if (uint64_t Val = Record[Idx++]) {
VD->setInit(Reader.ReadExpr(F));
if (Val > 1) {
EvaluatedStmt *Eval = VD->ensureEvaluatedStmt();
Eval->CheckedICE = true;
Eval->IsICE = Val == 3;
}
}
enum VarKind {
VarNotTemplate = 0, VarTemplate, StaticDataMemberSpecialization
};
switch ((VarKind)Record[Idx++]) {
case VarNotTemplate:
// Only true variables (not parameters or implicit parameters) can be merged
if (VD->getKind() != Decl::ParmVar && VD->getKind() != Decl::ImplicitParam)
mergeRedeclarable(VD, Redecl);
break;
case VarTemplate:
// Merged when we merge the template.
VD->setDescribedVarTemplate(ReadDeclAs<VarTemplateDecl>(Record, Idx));
break;
case StaticDataMemberSpecialization: { // HasMemberSpecializationInfo.
VarDecl *Tmpl = ReadDeclAs<VarDecl>(Record, Idx);
TemplateSpecializationKind TSK = (TemplateSpecializationKind)Record[Idx++];
SourceLocation POI = ReadSourceLocation(Record, Idx);
Reader.getContext().setInstantiatedFromStaticDataMember(VD, Tmpl, TSK,POI);
mergeRedeclarable(VD, Redecl);
break;
}
}
return Redecl;
}
void ASTDeclReader::VisitImplicitParamDecl(ImplicitParamDecl *PD) {
VisitVarDecl(PD);
}
void ASTDeclReader::VisitParmVarDecl(ParmVarDecl *PD) {
VisitVarDecl(PD);
unsigned isObjCMethodParam = Record[Idx++];
unsigned scopeDepth = Record[Idx++];
unsigned scopeIndex = Record[Idx++];
unsigned declQualifier = Record[Idx++];
if (isObjCMethodParam) {
assert(scopeDepth == 0);
PD->setObjCMethodScopeInfo(scopeIndex);
PD->ParmVarDeclBits.ScopeDepthOrObjCQuals = declQualifier;
} else {
PD->setScopeInfo(scopeDepth, scopeIndex);
}
PD->ParmVarDeclBits.IsKNRPromoted = Record[Idx++];
PD->ParmVarDeclBits.HasInheritedDefaultArg = Record[Idx++];
if (Record[Idx++]) // hasUninstantiatedDefaultArg.
PD->setUninstantiatedDefaultArg(Reader.ReadExpr(F));
// FIXME: If this is a redeclaration of a function from another module, handle
// inheritance of default arguments.
}
void ASTDeclReader::VisitFileScopeAsmDecl(FileScopeAsmDecl *AD) {
VisitDecl(AD);
AD->setAsmString(cast<StringLiteral>(Reader.ReadExpr(F)));
AD->setRParenLoc(ReadSourceLocation(Record, Idx));
}
void ASTDeclReader::VisitBlockDecl(BlockDecl *BD) {
VisitDecl(BD);
BD->setBody(cast_or_null<CompoundStmt>(Reader.ReadStmt(F)));
BD->setSignatureAsWritten(GetTypeSourceInfo(Record, Idx));
unsigned NumParams = Record[Idx++];
SmallVector<ParmVarDecl *, 16> Params;
Params.reserve(NumParams);
for (unsigned I = 0; I != NumParams; ++I)
Params.push_back(ReadDeclAs<ParmVarDecl>(Record, Idx));
BD->setParams(Params);
BD->setIsVariadic(Record[Idx++]);
BD->setBlockMissingReturnType(Record[Idx++]);
BD->setIsConversionFromLambda(Record[Idx++]);
bool capturesCXXThis = Record[Idx++];
unsigned numCaptures = Record[Idx++];
SmallVector<BlockDecl::Capture, 16> captures;
captures.reserve(numCaptures);
for (unsigned i = 0; i != numCaptures; ++i) {
VarDecl *decl = ReadDeclAs<VarDecl>(Record, Idx);
unsigned flags = Record[Idx++];
bool byRef = (flags & 1);
bool nested = (flags & 2);
Expr *copyExpr = ((flags & 4) ? Reader.ReadExpr(F) : 0);
captures.push_back(BlockDecl::Capture(decl, byRef, nested, copyExpr));
}
BD->setCaptures(Reader.getContext(), captures.begin(),
captures.end(), capturesCXXThis);
}
void ASTDeclReader::VisitCapturedDecl(CapturedDecl *CD) {
VisitDecl(CD);
// Body is set by VisitCapturedStmt.
for (unsigned i = 0; i < CD->NumParams; ++i)
CD->setParam(i, ReadDeclAs<ImplicitParamDecl>(Record, Idx));
}
void ASTDeclReader::VisitLinkageSpecDecl(LinkageSpecDecl *D) {
VisitDecl(D);
D->setLanguage((LinkageSpecDecl::LanguageIDs)Record[Idx++]);
D->setExternLoc(ReadSourceLocation(Record, Idx));
D->setRBraceLoc(ReadSourceLocation(Record, Idx));
}
void ASTDeclReader::VisitLabelDecl(LabelDecl *D) {
VisitNamedDecl(D);
D->setLocStart(ReadSourceLocation(Record, Idx));
}
void ASTDeclReader::VisitNamespaceDecl(NamespaceDecl *D) {
RedeclarableResult Redecl = VisitRedeclarable(D);
VisitNamedDecl(D);
D->setInline(Record[Idx++]);
D->LocStart = ReadSourceLocation(Record, Idx);
D->RBraceLoc = ReadSourceLocation(Record, Idx);
// FIXME: At the point of this call, D->getCanonicalDecl() returns 0.
mergeRedeclarable(D, Redecl);
if (Redecl.getFirstID() == ThisDeclID) {
// Each module has its own anonymous namespace, which is disjoint from
// any other module's anonymous namespaces, so don't attach the anonymous
// namespace at all.
NamespaceDecl *Anon = ReadDeclAs<NamespaceDecl>(Record, Idx);
if (F.Kind != MK_Module)
D->setAnonymousNamespace(Anon);
} else {
// Link this namespace back to the first declaration, which has already
// been deserialized.
D->AnonOrFirstNamespaceAndInline.setPointer(D->getFirstDecl());
}
}
void ASTDeclReader::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) {
VisitNamedDecl(D);
D->NamespaceLoc = ReadSourceLocation(Record, Idx);
D->IdentLoc = ReadSourceLocation(Record, Idx);
D->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
D->Namespace = ReadDeclAs<NamedDecl>(Record, Idx);
}
void ASTDeclReader::VisitUsingDecl(UsingDecl *D) {
VisitNamedDecl(D);
D->setUsingLoc(ReadSourceLocation(Record, Idx));
D->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
ReadDeclarationNameLoc(D->DNLoc, D->getDeclName(), Record, Idx);
D->FirstUsingShadow.setPointer(ReadDeclAs<UsingShadowDecl>(Record, Idx));
D->setTypename(Record[Idx++]);
if (NamedDecl *Pattern = ReadDeclAs<NamedDecl>(Record, Idx))
Reader.getContext().setInstantiatedFromUsingDecl(D, Pattern);
}
void ASTDeclReader::VisitUsingShadowDecl(UsingShadowDecl *D) {
RedeclarableResult Redecl = VisitRedeclarable(D);
VisitNamedDecl(D);
D->setTargetDecl(ReadDeclAs<NamedDecl>(Record, Idx));
D->UsingOrNextShadow = ReadDeclAs<NamedDecl>(Record, Idx);
UsingShadowDecl *Pattern = ReadDeclAs<UsingShadowDecl>(Record, Idx);
if (Pattern)
Reader.getContext().setInstantiatedFromUsingShadowDecl(D, Pattern);
mergeRedeclarable(D, Redecl);
}
void ASTDeclReader::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) {
VisitNamedDecl(D);
D->UsingLoc = ReadSourceLocation(Record, Idx);
D->NamespaceLoc = ReadSourceLocation(Record, Idx);
D->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
D->NominatedNamespace = ReadDeclAs<NamedDecl>(Record, Idx);
D->CommonAncestor = ReadDeclAs<DeclContext>(Record, Idx);
}
void ASTDeclReader::VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) {
VisitValueDecl(D);
D->setUsingLoc(ReadSourceLocation(Record, Idx));
D->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
ReadDeclarationNameLoc(D->DNLoc, D->getDeclName(), Record, Idx);
}
void ASTDeclReader::VisitUnresolvedUsingTypenameDecl(
UnresolvedUsingTypenameDecl *D) {
VisitTypeDecl(D);
D->TypenameLocation = ReadSourceLocation(Record, Idx);
D->QualifierLoc = Reader.ReadNestedNameSpecifierLoc(F, Record, Idx);
}
void ASTDeclReader::ReadCXXDefinitionData(
struct CXXRecordDecl::DefinitionData &Data,
const RecordData &Record, unsigned &Idx) {
// Note: the caller has deserialized the IsLambda bit already.
Data.UserDeclaredConstructor = Record[Idx++];
Data.UserDeclaredSpecialMembers = Record[Idx++];
Data.Aggregate = Record[Idx++];
Data.PlainOldData = Record[Idx++];
Data.Empty = Record[Idx++];
Data.Polymorphic = Record[Idx++];
Data.Abstract = Record[Idx++];
Data.IsStandardLayout = Record[Idx++];
Data.HasNoNonEmptyBases = Record[Idx++];
Data.HasPrivateFields = Record[Idx++];
Data.HasProtectedFields = Record[Idx++];
Data.HasPublicFields = Record[Idx++];
Data.HasMutableFields = Record[Idx++];
Data.HasVariantMembers = Record[Idx++];
Data.HasOnlyCMembers = Record[Idx++];
Data.HasInClassInitializer = Record[Idx++];
Data.HasUninitializedReferenceMember = Record[Idx++];
Data.NeedOverloadResolutionForMoveConstructor = Record[Idx++];
Data.NeedOverloadResolutionForMoveAssignment = Record[Idx++];
Data.NeedOverloadResolutionForDestructor = Record[Idx++];
Data.DefaultedMoveConstructorIsDeleted = Record[Idx++];
Data.DefaultedMoveAssignmentIsDeleted = Record[Idx++];
Data.DefaultedDestructorIsDeleted = Record[Idx++];
Data.HasTrivialSpecialMembers = Record[Idx++];
Data.DeclaredNonTrivialSpecialMembers = Record[Idx++];
Data.HasIrrelevantDestructor = Record[Idx++];
Data.HasConstexprNonCopyMoveConstructor = Record[Idx++];
Data.DefaultedDefaultConstructorIsConstexpr = Record[Idx++];
Data.HasConstexprDefaultConstructor = Record[Idx++];
Data.HasNonLiteralTypeFieldsOrBases = Record[Idx++];
Data.ComputedVisibleConversions = Record[Idx++];
Data.UserProvidedDefaultConstructor = Record[Idx++];
Data.DeclaredSpecialMembers = Record[Idx++];
Data.ImplicitCopyConstructorHasConstParam = Record[Idx++];
Data.ImplicitCopyAssignmentHasConstParam = Record[Idx++];
Data.HasDeclaredCopyConstructorWithConstParam = Record[Idx++];
Data.HasDeclaredCopyAssignmentWithConstParam = Record[Idx++];
Data.NumBases = Record[Idx++];
if (Data.NumBases)
Data.Bases = Reader.readCXXBaseSpecifiers(F, Record, Idx);
Data.NumVBases = Record[Idx++];
if (Data.NumVBases)
Data.VBases = Reader.readCXXBaseSpecifiers(F, Record, Idx);
Reader.ReadUnresolvedSet(F, Data.Conversions, Record, Idx);
Reader.ReadUnresolvedSet(F, Data.VisibleConversions, Record, Idx);
assert(Data.Definition && "Data.Definition should be already set!");
Data.FirstFriend = ReadDeclID(Record, Idx);
if (Data.IsLambda) {
typedef LambdaExpr::Capture Capture;
CXXRecordDecl::LambdaDefinitionData &Lambda
= static_cast<CXXRecordDecl::LambdaDefinitionData &>(Data);
Lambda.Dependent = Record[Idx++];
Lambda.IsGenericLambda = Record[Idx++];
Lambda.CaptureDefault = Record[Idx++];
Lambda.NumCaptures = Record[Idx++];
Lambda.NumExplicitCaptures = Record[Idx++];
Lambda.ManglingNumber = Record[Idx++];
Lambda.ContextDecl = ReadDecl(Record, Idx);
Lambda.Captures
= (Capture*)Reader.Context.Allocate(sizeof(Capture)*Lambda.NumCaptures);
Capture *ToCapture = Lambda.Captures;
Lambda.MethodTyInfo = GetTypeSourceInfo(Record, Idx);
for (unsigned I = 0, N = Lambda.NumCaptures; I != N; ++I) {
SourceLocation Loc = ReadSourceLocation(Record, Idx);
bool IsImplicit = Record[Idx++];
LambdaCaptureKind Kind = static_cast<LambdaCaptureKind>(Record[Idx++]);
switch (Kind) {
case LCK_This:
*ToCapture++ = Capture(Loc, IsImplicit, Kind, 0, SourceLocation());
break;
case LCK_ByCopy:
case LCK_ByRef:
VarDecl *Var = ReadDeclAs<VarDecl>(Record, Idx);
SourceLocation EllipsisLoc = ReadSourceLocation(Record, Idx);
*ToCapture++ = Capture(Loc, IsImplicit, Kind, Var, EllipsisLoc);
break;
}
}
}
}
void ASTDeclReader::MergeDefinitionData(
CXXRecordDecl *D, struct CXXRecordDecl::DefinitionData &MergeDD) {
assert(D->DefinitionData && "merging class definition into non-definition");
auto &DD = *D->DefinitionData;
// If the new definition has new special members, let the name lookup
// code know that it needs to look in the new definition too.
if ((MergeDD.DeclaredSpecialMembers & ~DD.DeclaredSpecialMembers) &&
DD.Definition != MergeDD.Definition) {
Reader.MergedLookups[DD.Definition].push_back(MergeDD.Definition);
DD.Definition->setHasExternalVisibleStorage();
}
// FIXME: Move this out into a .def file?
// FIXME: Issue a diagnostic on a mismatched MATCH_FIELD, rather than
// asserting; this can happen in the case of an ODR violation.
bool DetectedOdrViolation = false;
#define OR_FIELD(Field) DD.Field |= MergeDD.Field;
#define MATCH_FIELD(Field) \
DetectedOdrViolation |= DD.Field != MergeDD.Field; \
OR_FIELD(Field)
MATCH_FIELD(UserDeclaredConstructor)
MATCH_FIELD(UserDeclaredSpecialMembers)
MATCH_FIELD(Aggregate)
MATCH_FIELD(PlainOldData)
MATCH_FIELD(Empty)
MATCH_FIELD(Polymorphic)
MATCH_FIELD(Abstract)
MATCH_FIELD(IsStandardLayout)
MATCH_FIELD(HasNoNonEmptyBases)
MATCH_FIELD(HasPrivateFields)
MATCH_FIELD(HasProtectedFields)
MATCH_FIELD(HasPublicFields)
MATCH_FIELD(HasMutableFields)
MATCH_FIELD(HasVariantMembers)
MATCH_FIELD(HasOnlyCMembers)
MATCH_FIELD(HasInClassInitializer)
MATCH_FIELD(HasUninitializedReferenceMember)
MATCH_FIELD(NeedOverloadResolutionForMoveConstructor)
MATCH_FIELD(NeedOverloadResolutionForMoveAssignment)
MATCH_FIELD(NeedOverloadResolutionForDestructor)
MATCH_FIELD(DefaultedMoveConstructorIsDeleted)
MATCH_FIELD(DefaultedMoveAssignmentIsDeleted)
MATCH_FIELD(DefaultedDestructorIsDeleted)
OR_FIELD(HasTrivialSpecialMembers)
OR_FIELD(DeclaredNonTrivialSpecialMembers)
MATCH_FIELD(HasIrrelevantDestructor)
OR_FIELD(HasConstexprNonCopyMoveConstructor)
MATCH_FIELD(DefaultedDefaultConstructorIsConstexpr)
OR_FIELD(HasConstexprDefaultConstructor)
MATCH_FIELD(HasNonLiteralTypeFieldsOrBases)
// ComputedVisibleConversions is handled below.
MATCH_FIELD(UserProvidedDefaultConstructor)
OR_FIELD(DeclaredSpecialMembers)
MATCH_FIELD(ImplicitCopyConstructorHasConstParam)
MATCH_FIELD(ImplicitCopyAssignmentHasConstParam)
OR_FIELD(HasDeclaredCopyConstructorWithConstParam)
OR_FIELD(HasDeclaredCopyAssignmentWithConstParam)
MATCH_FIELD(IsLambda)
#undef OR_FIELD
#undef MATCH_FIELD
if (DD.NumBases != MergeDD.NumBases || DD.NumVBases != MergeDD.NumVBases)
DetectedOdrViolation = true;
// FIXME: Issue a diagnostic if the base classes don't match when we come
// to lazily load them.
// FIXME: Issue a diagnostic if the list of conversion functions doesn't
// match when we come to lazily load them.
if (MergeDD.ComputedVisibleConversions && !DD.ComputedVisibleConversions) {
DD.VisibleConversions = std::move(MergeDD.VisibleConversions);
DD.ComputedVisibleConversions = true;
}
// FIXME: Issue a diagnostic if FirstFriend doesn't match when we come to
// lazily load it.
if (DD.IsLambda) {
// FIXME: ODR-checking for merging lambdas (this happens, for instance,
// when they occur within the body of a function template specialization).
}
if (DetectedOdrViolation)
Reader.PendingOdrMergeFailures[DD.Definition].push_back(MergeDD.Definition);
}
void ASTDeclReader::ReadCXXRecordDefinition(CXXRecordDecl *D) {
struct CXXRecordDecl::DefinitionData *DD;
ASTContext &C = Reader.getContext();
// Determine whether this is a lambda closure type, so that we can
// allocate the appropriate DefinitionData structure.
bool IsLambda = Record[Idx++];
if (IsLambda)
DD = new (C) CXXRecordDecl::LambdaDefinitionData(D, 0, false, false,
LCD_None);
else
DD = new (C) struct CXXRecordDecl::DefinitionData(D);
ReadCXXDefinitionData(*DD, Record, Idx);
// If we're reading an update record, we might already have a definition for
// this record. If so, just merge into it.
if (D->DefinitionData) {
MergeDefinitionData(D, *DD);
return;
}
// Propagate the DefinitionData pointer to the canonical declaration, so
// that all other deserialized declarations will see it.
CXXRecordDecl *Canon = D->getCanonicalDecl();
if (Canon == D) {
D->DefinitionData = DD;
D->IsCompleteDefinition = true;
} else if (!Canon->DefinitionData) {
Canon->DefinitionData = D->DefinitionData = DD;
D->IsCompleteDefinition = true;
// Note that we have deserialized a definition. Any declarations
// deserialized before this one will be be given the DefinitionData
// pointer at the end.
Reader.PendingDefinitions.insert(D);
} else {
// We have already deserialized a definition of this record. This
// definition is no longer really a definition. Note that the pre-existing
// definition is the *real* definition.
Reader.MergedDeclContexts.insert(
std::make_pair(D, Canon->DefinitionData->Definition));
D->DefinitionData = D->getCanonicalDecl()->DefinitionData;
D->IsCompleteDefinition = false;
MergeDefinitionData(D, *DD);
}
}
ASTDeclReader::RedeclarableResult
ASTDeclReader::VisitCXXRecordDeclImpl(CXXRecordDecl *D) {
RedeclarableResult Redecl = VisitRecordDeclImpl(D);
ASTContext &C = Reader.getContext();
enum CXXRecKind {
CXXRecNotTemplate = 0, CXXRecTemplate, CXXRecMemberSpecialization
};
switch ((CXXRecKind)Record[Idx++]) {
case CXXRecNotTemplate:
mergeRedeclarable(D, Redecl);
break;
case CXXRecTemplate: {
// Merged when we merge the template.
ClassTemplateDecl *Template = ReadDeclAs<ClassTemplateDecl>(Record, Idx);
D->TemplateOrInstantiation = Template;
if (!Template->getTemplatedDecl()) {
// We've not actually loaded the ClassTemplateDecl yet, because we're
// currently being loaded as its pattern. Rely on it to set up our
// TypeForDecl (see VisitClassTemplateDecl).
//
// Beware: we do not yet know our canonical declaration, and may still
// get merged once the surrounding class template has got off the ground.
TypeIDForTypeDecl = 0;
}
break;
}
case CXXRecMemberSpecialization: {
CXXRecordDecl *RD = ReadDeclAs<CXXRecordDecl>(Record, Idx);
TemplateSpecializationKind TSK = (TemplateSpecializationKind)Record[Idx++];
SourceLocation POI = ReadSourceLocation(Record, Idx);
MemberSpecializationInfo *MSI = new (C) MemberSpecializationInfo(RD, TSK);
MSI->setPointOfInstantiation(POI);
D->TemplateOrInstantiation = MSI;
mergeRedeclarable(D, Redecl);
break;
}
}
bool WasDefinition = Record[Idx++];
if (WasDefinition)
ReadCXXRecordDefinition(D);
else
// Propagate DefinitionData pointer from the canonical declaration.
D->DefinitionData = D->getCanonicalDecl()->DefinitionData;
// Lazily load the key function to avoid deserializing every method so we can
// compute it.
if (WasDefinition) {
DeclID KeyFn = ReadDeclID(Record, Idx);
if (KeyFn && D->IsCompleteDefinition)
C.KeyFunctions[D] = KeyFn;
}
return Redecl;
}
void ASTDeclReader::VisitCXXMethodDecl(CXXMethodDecl *D) {
VisitFunctionDecl(D);
unsigned NumOverridenMethods = Record[Idx++];
while (NumOverridenMethods--) {
// Avoid invariant checking of CXXMethodDecl::addOverriddenMethod,
// MD may be initializing.
if (CXXMethodDecl *MD = ReadDeclAs<CXXMethodDecl>(Record, Idx))
Reader.getContext().addOverriddenMethod(D, MD);
}
}
void ASTDeclReader::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
VisitCXXMethodDecl(D);
if (auto *CD = ReadDeclAs<CXXConstructorDecl>(Record, Idx))
D->setInheritedConstructor(CD);
D->IsExplicitSpecified = Record[Idx++];
// FIXME: We should defer loading this until we need the constructor's body.
std::tie(D->CtorInitializers, D->NumCtorInitializers) =
Reader.ReadCXXCtorInitializers(F, Record, Idx);
}
void ASTDeclReader::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
VisitCXXMethodDecl(D);
D->OperatorDelete = ReadDeclAs<FunctionDecl>(Record, Idx);
}
void ASTDeclReader::VisitCXXConversionDecl(CXXConversionDecl *D) {
VisitCXXMethodDecl(D);
D->IsExplicitSpecified = Record[Idx++];
}
void ASTDeclReader::VisitImportDecl(ImportDecl *D) {
VisitDecl(D);
D->ImportedAndComplete.setPointer(readModule(Record, Idx));
D->ImportedAndComplete.setInt(Record[Idx++]);
SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(D + 1);
for (unsigned I = 0, N = Record.back(); I != N; ++I)
StoredLocs[I] = ReadSourceLocation(Record, Idx);
++Idx; // The number of stored source locations.
}
void ASTDeclReader::VisitAccessSpecDecl(AccessSpecDecl *D) {
VisitDecl(D);
D->setColonLoc(ReadSourceLocation(Record, Idx));
}
void ASTDeclReader::VisitFriendDecl(FriendDecl *D) {
VisitDecl(D);
if (Record[Idx++]) // hasFriendDecl
D->Friend = ReadDeclAs<NamedDecl>(Record, Idx);
else
D->Friend = GetTypeSourceInfo(Record, Idx);
for (unsigned i = 0; i != D->NumTPLists; ++i)
D->getTPLists()[i] = Reader.ReadTemplateParameterList(F, Record, Idx);
D->NextFriend = ReadDeclID(Record, Idx);
D->UnsupportedFriend = (Record[Idx++] != 0);
D->FriendLoc = ReadSourceLocation(Record, Idx);
}
void ASTDeclReader::VisitFriendTemplateDecl(FriendTemplateDecl *D) {
VisitDecl(D);
unsigned NumParams = Record[Idx++];
D->NumParams = NumParams;
D->Params = new TemplateParameterList*[NumParams];
for (unsigned i = 0; i != NumParams; ++i)
D->Params[i] = Reader.ReadTemplateParameterList(F, Record, Idx);
if (Record[Idx++]) // HasFriendDecl
D->Friend = ReadDeclAs<NamedDecl>(Record, Idx);
else
D->Friend = GetTypeSourceInfo(Record, Idx);
D->FriendLoc = ReadSourceLocation(Record, Idx);
}
DeclID ASTDeclReader::VisitTemplateDecl(TemplateDecl *D) {
VisitNamedDecl(D);
DeclID PatternID = ReadDeclID(Record, Idx);
NamedDecl *TemplatedDecl = cast_or_null<NamedDecl>(Reader.GetDecl(PatternID));
TemplateParameterList* TemplateParams
= Reader.ReadTemplateParameterList(F, Record, Idx);
D->init(TemplatedDecl, TemplateParams);
// FIXME: If this is a redeclaration of a template from another module, handle
// inheritance of default template arguments.
return PatternID;
}
ASTDeclReader::RedeclarableResult
ASTDeclReader::VisitRedeclarableTemplateDecl(RedeclarableTemplateDecl *D) {
RedeclarableResult Redecl = VisitRedeclarable(D);
// Make sure we've allocated the Common pointer first. We do this before
// VisitTemplateDecl so that getCommonPtr() can be used during initialization.
RedeclarableTemplateDecl *CanonD = D->getCanonicalDecl();
if (!CanonD->Common) {
CanonD->Common = CanonD->newCommon(Reader.getContext());
Reader.PendingDefinitions.insert(CanonD);
}
D->Common = CanonD->Common;
// If this is the first declaration of the template, fill in the information
// for the 'common' pointer.
if (ThisDeclID == Redecl.getFirstID()) {
if (RedeclarableTemplateDecl *RTD
= ReadDeclAs<RedeclarableTemplateDecl>(Record, Idx)) {
assert(RTD->getKind() == D->getKind() &&
"InstantiatedFromMemberTemplate kind mismatch");
D->setInstantiatedFromMemberTemplate(RTD);
if (Record[Idx++])
D->setMemberSpecialization();
}
}
DeclID PatternID = VisitTemplateDecl(D);
D->IdentifierNamespace = Record[Idx++];
mergeRedeclarable(D, Redecl, PatternID);
// If we merged the template with a prior declaration chain, merge the common
// pointer.
// FIXME: Actually merge here, don't just overwrite.
D->Common = D->getCanonicalDecl()->Common;
return Redecl;
}
void ASTDeclReader::VisitClassTemplateDecl(ClassTemplateDecl *D) {
RedeclarableResult Redecl = VisitRedeclarableTemplateDecl(D);
if (ThisDeclID == Redecl.getFirstID()) {
// This ClassTemplateDecl owns a CommonPtr; read it to keep track of all of
// the specializations.
SmallVector<serialization::DeclID, 2> SpecIDs;
SpecIDs.push_back(0);
// Specializations.
unsigned Size = Record[Idx++];
SpecIDs[0] += Size;
for (unsigned I = 0; I != Size; ++I)
SpecIDs.push_back(ReadDeclID(Record, Idx));
// Partial specializations.
Size = Record[Idx++];
SpecIDs[0] += Size;
for (unsigned I = 0; I != Size; ++I)
SpecIDs.push_back(ReadDeclID(Record, Idx));
ClassTemplateDecl::Common *CommonPtr = D->getCommonPtr();
if (SpecIDs[0]) {
typedef serialization::DeclID DeclID;
// FIXME: Append specializations!
CommonPtr->LazySpecializations
= new (Reader.getContext()) DeclID [SpecIDs.size()];
memcpy(CommonPtr->LazySpecializations, SpecIDs.data(),
SpecIDs.size() * sizeof(DeclID));
}
CommonPtr->InjectedClassNameType = Reader.readType(F, Record, Idx);
}
if (D->getTemplatedDecl()->TemplateOrInstantiation) {
// We were loaded before our templated declaration was. We've not set up
// its corresponding type yet (see VisitCXXRecordDeclImpl), so reconstruct
// it now.
Reader.Context.getInjectedClassNameType(
D->getTemplatedDecl(), D->getCommonPtr()->InjectedClassNameType);
}
}
/// TODO: Unify with ClassTemplateDecl version?
/// May require unifying ClassTemplateDecl and
/// VarTemplateDecl beyond TemplateDecl...
void ASTDeclReader::VisitVarTemplateDecl(VarTemplateDecl *D) {
RedeclarableResult Redecl = VisitRedeclarableTemplateDecl(D);
if (ThisDeclID == Redecl.getFirstID()) {
// This VarTemplateDecl owns a CommonPtr; read it to keep track of all of
// the specializations.
SmallVector<serialization::DeclID, 2> SpecIDs;
SpecIDs.push_back(0);
// Specializations.
unsigned Size = Record[Idx++];
SpecIDs[0] += Size;
for (unsigned I = 0; I != Size; ++I)
SpecIDs.push_back(ReadDeclID(Record, Idx));
// Partial specializations.
Size = Record[Idx++];
SpecIDs[0] += Size;
for (unsigned I = 0; I != Size; ++I)
SpecIDs.push_back(ReadDeclID(Record, Idx));
VarTemplateDecl::Common *CommonPtr = D->getCommonPtr();
if (SpecIDs[0]) {
typedef serialization::DeclID DeclID;
// FIXME: Append specializations!
CommonPtr->LazySpecializations =
new (Reader.getContext()) DeclID[SpecIDs.size()];
memcpy(CommonPtr->LazySpecializations, SpecIDs.data(),
SpecIDs.size() * sizeof(DeclID));
}
}
}
ASTDeclReader::RedeclarableResult
ASTDeclReader::VisitClassTemplateSpecializationDeclImpl(
ClassTemplateSpecializationDecl *D) {
RedeclarableResult Redecl = VisitCXXRecordDeclImpl(D);
ASTContext &C = Reader.getContext();
if (Decl *InstD = ReadDecl(Record, Idx)) {
if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(InstD)) {
D->SpecializedTemplate = CTD;
} else {
SmallVector<TemplateArgument, 8> TemplArgs;
Reader.ReadTemplateArgumentList(TemplArgs, F, Record, Idx);
TemplateArgumentList *ArgList
= TemplateArgumentList::CreateCopy(C, TemplArgs.data(),
TemplArgs.size());
ClassTemplateSpecializationDecl::SpecializedPartialSpecialization *PS
= new (C) ClassTemplateSpecializationDecl::
SpecializedPartialSpecialization();
PS->PartialSpecialization
= cast<ClassTemplatePartialSpecializationDecl>(InstD);
PS->TemplateArgs = ArgList;
D->SpecializedTemplate = PS;
}
}
SmallVector<TemplateArgument, 8> TemplArgs;
Reader.ReadTemplateArgumentList(TemplArgs, F, Record, Idx);
D->TemplateArgs = TemplateArgumentList::CreateCopy(C, TemplArgs.data(),
TemplArgs.size());
D->PointOfInstantiation = ReadSourceLocation(Record, Idx);
D->SpecializationKind = (TemplateSpecializationKind)Record[Idx++];
bool writtenAsCanonicalDecl = Record[Idx++];
if (writtenAsCanonicalDecl) {
ClassTemplateDecl *CanonPattern = ReadDeclAs<ClassTemplateDecl>(Record,Idx);
if (D->isCanonicalDecl()) { // It's kept in the folding set.
// Set this as, or find, the canonical declaration for this specialization
ClassTemplateSpecializationDecl *CanonSpec;
if (ClassTemplatePartialSpecializationDecl *Partial =
dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) {
CanonSpec = CanonPattern->getCommonPtr()->PartialSpecializations
.GetOrInsertNode(Partial);
} else {
CanonSpec =
CanonPattern->getCommonPtr()->Specializations.GetOrInsertNode(D);
}
// If there was already a canonical specialization, merge into it.
if (CanonSpec != D) {
mergeRedeclarable<TagDecl>(D, CanonSpec, Redecl);
// This declaration might be a definition. Merge with any existing
// definition.
if (D->DefinitionData) {
if (!CanonSpec->DefinitionData) {
CanonSpec->DefinitionData = D->DefinitionData;
} else {
MergeDefinitionData(CanonSpec, *D->DefinitionData);
Reader.PendingDefinitions.erase(D);
Reader.MergedDeclContexts.insert(
std::make_pair(D, CanonSpec->DefinitionData->Definition));
D->IsCompleteDefinition = false;
D->DefinitionData = CanonSpec->DefinitionData;
}
}
}
}
}
// Explicit info.
if (TypeSourceInfo *TyInfo = GetTypeSourceInfo(Record, Idx)) {
ClassTemplateSpecializationDecl::ExplicitSpecializationInfo *ExplicitInfo
= new (C) ClassTemplateSpecializationDecl::ExplicitSpecializationInfo;
ExplicitInfo->TypeAsWritten = TyInfo;
ExplicitInfo->ExternLoc = ReadSourceLocation(Record, Idx);
ExplicitInfo->TemplateKeywordLoc = ReadSourceLocation(Record, Idx);
D->ExplicitInfo = ExplicitInfo;
}
return Redecl;
}
void ASTDeclReader::VisitClassTemplatePartialSpecializationDecl(
ClassTemplatePartialSpecializationDecl *D) {
RedeclarableResult Redecl = VisitClassTemplateSpecializationDeclImpl(D);
D->TemplateParams = Reader.ReadTemplateParameterList(F, Record, Idx);
D->ArgsAsWritten = Reader.ReadASTTemplateArgumentListInfo(F, Record, Idx);
// These are read/set from/to the first declaration.
if (ThisDeclID == Redecl.getFirstID()) {
D->InstantiatedFromMember.setPointer(
ReadDeclAs<ClassTemplatePartialSpecializationDecl>(Record, Idx));
D->InstantiatedFromMember.setInt(Record[Idx++]);
}
}
void ASTDeclReader::VisitClassScopeFunctionSpecializationDecl(
ClassScopeFunctionSpecializationDecl *D) {
VisitDecl(D);
D->Specialization = ReadDeclAs<CXXMethodDecl>(Record, Idx);
}
void ASTDeclReader::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) {
RedeclarableResult Redecl = VisitRedeclarableTemplateDecl(D);
if (ThisDeclID == Redecl.getFirstID()) {
// This FunctionTemplateDecl owns a CommonPtr; read it.
// Read the function specialization declaration IDs. The specializations
// themselves will be loaded if they're needed.
if (unsigned NumSpecs = Record[Idx++]) {
// FIXME: Append specializations!
FunctionTemplateDecl::Common *CommonPtr = D->getCommonPtr();
CommonPtr->LazySpecializations = new (Reader.getContext())
serialization::DeclID[NumSpecs + 1];
CommonPtr->LazySpecializations[0] = NumSpecs;
for (unsigned I = 0; I != NumSpecs; ++I)
CommonPtr->LazySpecializations[I + 1] = ReadDeclID(Record, Idx);
}
}
}
/// TODO: Unify with ClassTemplateSpecializationDecl version?
/// May require unifying ClassTemplate(Partial)SpecializationDecl and
/// VarTemplate(Partial)SpecializationDecl with a new data
/// structure Template(Partial)SpecializationDecl, and
/// using Template(Partial)SpecializationDecl as input type.
ASTDeclReader::RedeclarableResult
ASTDeclReader::VisitVarTemplateSpecializationDeclImpl(
VarTemplateSpecializationDecl *D) {
RedeclarableResult Redecl = VisitVarDeclImpl(D);
ASTContext &C = Reader.getContext();
if (Decl *InstD = ReadDecl(Record, Idx)) {
if (VarTemplateDecl *VTD = dyn_cast<VarTemplateDecl>(InstD)) {
D->SpecializedTemplate = VTD;
} else {
SmallVector<TemplateArgument, 8> TemplArgs;
Reader.ReadTemplateArgumentList(TemplArgs, F, Record, Idx);
TemplateArgumentList *ArgList = TemplateArgumentList::CreateCopy(
C, TemplArgs.data(), TemplArgs.size());
VarTemplateSpecializationDecl::SpecializedPartialSpecialization *PS =
new (C)
VarTemplateSpecializationDecl::SpecializedPartialSpecialization();
PS->PartialSpecialization =
cast<VarTemplatePartialSpecializationDecl>(InstD);
PS->TemplateArgs = ArgList;
D->SpecializedTemplate = PS;
}
}
// Explicit info.
if (TypeSourceInfo *TyInfo = GetTypeSourceInfo(Record, Idx)) {
VarTemplateSpecializationDecl::ExplicitSpecializationInfo *ExplicitInfo =
new (C) VarTemplateSpecializationDecl::ExplicitSpecializationInfo;
ExplicitInfo->TypeAsWritten = TyInfo;
ExplicitInfo->ExternLoc = ReadSourceLocation(Record, Idx);
ExplicitInfo->TemplateKeywordLoc = ReadSourceLocation(Record, Idx);
D->ExplicitInfo = ExplicitInfo;
}
SmallVector<TemplateArgument, 8> TemplArgs;
Reader.ReadTemplateArgumentList(TemplArgs, F, Record, Idx);
D->TemplateArgs =
TemplateArgumentList::CreateCopy(C, TemplArgs.data(), TemplArgs.size());
D->PointOfInstantiation = ReadSourceLocation(Record, Idx);
D->SpecializationKind = (TemplateSpecializationKind)Record[Idx++];
bool writtenAsCanonicalDecl = Record[Idx++];
if (writtenAsCanonicalDecl) {
VarTemplateDecl *CanonPattern = ReadDeclAs<VarTemplateDecl>(Record, Idx);
if (D->isCanonicalDecl()) { // It's kept in the folding set.
if (VarTemplatePartialSpecializationDecl *Partial =
dyn_cast<VarTemplatePartialSpecializationDecl>(D)) {
CanonPattern->getCommonPtr()->PartialSpecializations
.GetOrInsertNode(Partial);
} else {
CanonPattern->getCommonPtr()->Specializations.GetOrInsertNode(D);
}
}
}
return Redecl;
}
/// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
/// May require unifying ClassTemplate(Partial)SpecializationDecl and
/// VarTemplate(Partial)SpecializationDecl with a new data
/// structure Template(Partial)SpecializationDecl, and
/// using Template(Partial)SpecializationDecl as input type.
void ASTDeclReader::VisitVarTemplatePartialSpecializationDecl(
VarTemplatePartialSpecializationDecl *D) {
RedeclarableResult Redecl = VisitVarTemplateSpecializationDeclImpl(D);
D->TemplateParams = Reader.ReadTemplateParameterList(F, Record, Idx);
D->ArgsAsWritten = Reader.ReadASTTemplateArgumentListInfo(F, Record, Idx);
// These are read/set from/to the first declaration.
if (ThisDeclID == Redecl.getFirstID()) {
D->InstantiatedFromMember.setPointer(
ReadDeclAs<VarTemplatePartialSpecializationDecl>(Record, Idx));
D->InstantiatedFromMember.setInt(Record[Idx++]);
}
}
void ASTDeclReader::VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D) {
VisitTypeDecl(D);
D->setDeclaredWithTypename(Record[Idx++]);
bool Inherited = Record[Idx++];
TypeSourceInfo *DefArg = GetTypeSourceInfo(Record, Idx);
D->setDefaultArgument(DefArg, Inherited);
}
void ASTDeclReader::VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
VisitDeclaratorDecl(D);
// TemplateParmPosition.
D->setDepth(Record[Idx++]);
D->setPosition(Record[Idx++]);
if (D->isExpandedParameterPack()) {
void **Data = reinterpret_cast<void **>(D + 1);
for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) {
Data[2*I] = Reader.readType(F, Record, Idx).getAsOpaquePtr();
Data[2*I + 1] = GetTypeSourceInfo(Record, Idx);
}
} else {
// Rest of NonTypeTemplateParmDecl.
D->ParameterPack = Record[Idx++];
if (Record[Idx++]) {
Expr *DefArg = Reader.ReadExpr(F);
bool Inherited = Record[Idx++];
D->setDefaultArgument(DefArg, Inherited);
}
}
}
void ASTDeclReader::VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D) {
VisitTemplateDecl(D);
// TemplateParmPosition.
D->setDepth(Record[Idx++]);
D->setPosition(Record[Idx++]);
if (D->isExpandedParameterPack()) {
void **Data = reinterpret_cast<void **>(D + 1);
for (unsigned I = 0, N = D->getNumExpansionTemplateParameters();
I != N; ++I)
Data[I] = Reader.ReadTemplateParameterList(F, Record, Idx);
} else {
// Rest of TemplateTemplateParmDecl.
TemplateArgumentLoc Arg = Reader.ReadTemplateArgumentLoc(F, Record, Idx);
bool IsInherited = Record[Idx++];
D->setDefaultArgument(Arg, IsInherited);
D->ParameterPack = Record[Idx++];
}
}
void ASTDeclReader::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) {
VisitRedeclarableTemplateDecl(D);
}
void ASTDeclReader::VisitStaticAssertDecl(StaticAssertDecl *D) {
VisitDecl(D);
D->AssertExprAndFailed.setPointer(Reader.ReadExpr(F));
D->AssertExprAndFailed.setInt(Record[Idx++]);
D->Message = cast<StringLiteral>(Reader.ReadExpr(F));
D->RParenLoc = ReadSourceLocation(Record, Idx);
}
void ASTDeclReader::VisitEmptyDecl(EmptyDecl *D) {
VisitDecl(D);
}
std::pair<uint64_t, uint64_t>
ASTDeclReader::VisitDeclContext(DeclContext *DC) {
uint64_t LexicalOffset = Record[Idx++];
uint64_t VisibleOffset = Record[Idx++];
return std::make_pair(LexicalOffset, VisibleOffset);
}
template <typename T>
ASTDeclReader::RedeclarableResult
ASTDeclReader::VisitRedeclarable(Redeclarable<T> *D) {
DeclID FirstDeclID = ReadDeclID(Record, Idx);
// 0 indicates that this declaration was the only declaration of its entity,
// and is used for space optimization.
if (FirstDeclID == 0)
FirstDeclID = ThisDeclID;
T *FirstDecl = cast_or_null<T>(Reader.GetDecl(FirstDeclID));
if (FirstDecl != D) {
// We delay loading of the redeclaration chain to avoid deeply nested calls.
// We temporarily set the first (canonical) declaration as the previous one
// which is the one that matters and mark the real previous DeclID to be
// loaded & attached later on.
D->RedeclLink = Redeclarable<T>::PreviousDeclLink(FirstDecl);
}
// Note that this declaration has been deserialized.
Reader.RedeclsDeserialized.insert(static_cast<T *>(D));
// The result structure takes care to note that we need to load the
// other declaration chains for this ID.
return RedeclarableResult(Reader, FirstDeclID,
static_cast<T *>(D)->getKind());
}
/// \brief Attempts to merge the given declaration (D) with another declaration
/// of the same entity.
template<typename T>
void ASTDeclReader::mergeRedeclarable(Redeclarable<T> *D,
RedeclarableResult &Redecl,
DeclID TemplatePatternID) {
// If modules are not available, there is no reason to perform this merge.
if (!Reader.getContext().getLangOpts().Modules)
return;
if (FindExistingResult ExistingRes = findExisting(static_cast<T*>(D)))
if (T *Existing = ExistingRes)
mergeRedeclarable(D, Existing, Redecl, TemplatePatternID);
}
/// \brief "Cast" to type T, asserting if we don't have an implicit conversion.
/// We use this to put code in a template that will only be valid for certain
/// instantiations.
template<typename T> static T assert_cast(T t) { return t; }
template<typename T> static T assert_cast(...) {
llvm_unreachable("bad assert_cast");
}
/// \brief Merge together the pattern declarations from two template
/// declarations.
void ASTDeclReader::mergeTemplatePattern(RedeclarableTemplateDecl *D,
RedeclarableTemplateDecl *Existing,
DeclID DsID) {
auto *DPattern = D->getTemplatedDecl();
auto *ExistingPattern = Existing->getTemplatedDecl();
RedeclarableResult Result(Reader, DsID, DPattern->getKind());
if (auto *DClass = dyn_cast<CXXRecordDecl>(DPattern))
// FIXME: Merge definitions here, if both declarations had definitions.
return mergeRedeclarable(DClass, cast<TagDecl>(ExistingPattern),
Result);
if (auto *DFunction = dyn_cast<FunctionDecl>(DPattern))
return mergeRedeclarable(DFunction, cast<FunctionDecl>(ExistingPattern),
Result);
if (auto *DVar = dyn_cast<VarDecl>(DPattern))
return mergeRedeclarable(DVar, cast<VarDecl>(ExistingPattern), Result);
llvm_unreachable("merged an unknown kind of redeclarable template");
}
/// \brief Attempts to merge the given declaration (D) with another declaration
/// of the same entity.
template<typename T>
void ASTDeclReader::mergeRedeclarable(Redeclarable<T> *DBase, T *Existing,
RedeclarableResult &Redecl,
DeclID TemplatePatternID) {
T *D = static_cast<T*>(DBase);
T *ExistingCanon = Existing->getCanonicalDecl();
T *DCanon = D->getCanonicalDecl();
if (ExistingCanon != DCanon) {
// Have our redeclaration link point back at the canonical declaration
// of the existing declaration, so that this declaration has the
// appropriate canonical declaration.
D->RedeclLink = Redeclarable<T>::PreviousDeclLink(ExistingCanon);
// When we merge a namespace, update its pointer to the first namespace.
if (auto *Namespace = dyn_cast<NamespaceDecl>(D))
Namespace->AnonOrFirstNamespaceAndInline.setPointer(
assert_cast<NamespaceDecl*>(ExistingCanon));
// When we merge a template, merge its pattern.
if (auto *DTemplate = dyn_cast<RedeclarableTemplateDecl>(D))
mergeTemplatePattern(
DTemplate, assert_cast<RedeclarableTemplateDecl*>(ExistingCanon),
TemplatePatternID);
// Don't introduce DCanon into the set of pending declaration chains.
Redecl.suppress();
// Introduce ExistingCanon into the set of pending declaration chains,
// if in fact it came from a module file.
if (ExistingCanon->isFromASTFile()) {
GlobalDeclID ExistingCanonID = ExistingCanon->getGlobalID();
assert(ExistingCanonID && "Unrecorded canonical declaration ID?");
if (Reader.PendingDeclChainsKnown.insert(ExistingCanonID))
Reader.PendingDeclChains.push_back(ExistingCanonID);
}
// If this declaration was the canonical declaration, make a note of
// that. We accept the linear algorithm here because the number of
// unique canonical declarations of an entity should always be tiny.
if (DCanon == D) {
SmallVectorImpl<DeclID> &Merged = Reader.MergedDecls[ExistingCanon];
if (std::find(Merged.begin(), Merged.end(), Redecl.getFirstID())
== Merged.end())
Merged.push_back(Redecl.getFirstID());
// If ExistingCanon did not come from a module file, introduce the
// first declaration that *does* come from a module file to the
// set of pending declaration chains, so that we merge this
// declaration.
if (!ExistingCanon->isFromASTFile() &&
Reader.PendingDeclChainsKnown.insert(Redecl.getFirstID()))
Reader.PendingDeclChains.push_back(Merged[0]);
}
}
}
/// \brief Attempts to merge the given declaration (D) with another declaration
/// of the same entity, for the case where the entity is not actually
/// redeclarable. This happens, for instance, when merging the fields of
/// identical class definitions from two different modules.
template<typename T>
void ASTDeclReader::mergeMergeable(Mergeable<T> *D) {
// If modules are not available, there is no reason to perform this merge.
if (!Reader.getContext().getLangOpts().Modules)
return;
// ODR-based merging is only performed in C++. In C, identically-named things
// in different translation units are not redeclarations (but may still have
// compatible types).
if (!Reader.getContext().getLangOpts().CPlusPlus)
return;
if (FindExistingResult ExistingRes = findExisting(static_cast<T*>(D)))
if (T *Existing = ExistingRes)
Reader.Context.setPrimaryMergedDecl(static_cast<T*>(D),
Existing->getCanonicalDecl());
}
void ASTDeclReader::VisitOMPThreadPrivateDecl(OMPThreadPrivateDecl *D) {
VisitDecl(D);
unsigned NumVars = D->varlist_size();
SmallVector<Expr *, 16> Vars;
Vars.reserve(NumVars);
for (unsigned i = 0; i != NumVars; ++i) {
Vars.push_back(Reader.ReadExpr(F));
}
D->setVars(Vars);
}
//===----------------------------------------------------------------------===//
// Attribute Reading
//===----------------------------------------------------------------------===//
/// \brief Reads attributes from the current stream position.
void ASTReader::ReadAttributes(ModuleFile &F, AttrVec &Attrs,
const RecordData &Record, unsigned &Idx) {
for (unsigned i = 0, e = Record[Idx++]; i != e; ++i) {
Attr *New = 0;
attr::Kind Kind = (attr::Kind)Record[Idx++];
SourceRange Range = ReadSourceRange(F, Record, Idx);
#include "clang/Serialization/AttrPCHRead.inc"
assert(New && "Unable to decode attribute?");
Attrs.push_back(New);
}
}
//===----------------------------------------------------------------------===//
// ASTReader Implementation
//===----------------------------------------------------------------------===//
/// \brief Note that we have loaded the declaration with the given
/// Index.
///
/// This routine notes that this declaration has already been loaded,
/// so that future GetDecl calls will return this declaration rather
/// than trying to load a new declaration.
inline void ASTReader::LoadedDecl(unsigned Index, Decl *D) {
assert(!DeclsLoaded[Index] && "Decl loaded twice?");
DeclsLoaded[Index] = D;
}
/// \brief Determine whether the consumer will be interested in seeing
/// this declaration (via HandleTopLevelDecl).
///
/// This routine should return true for anything that might affect
/// code generation, e.g., inline function definitions, Objective-C
/// declarations with metadata, etc.
static bool isConsumerInterestedIn(Decl *D, bool HasBody) {
// An ObjCMethodDecl is never considered as "interesting" because its
// implementation container always is.
if (isa<FileScopeAsmDecl>(D) ||
isa<ObjCProtocolDecl>(D) ||
isa<ObjCImplDecl>(D) ||
isa<ImportDecl>(D))
return true;
if (VarDecl *Var = dyn_cast<VarDecl>(D))
return Var->isFileVarDecl() &&
Var->isThisDeclarationADefinition() == VarDecl::Definition;
if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D))
return Func->doesThisDeclarationHaveABody() || HasBody;
return false;
}
/// \brief Get the correct cursor and offset for loading a declaration.
ASTReader::RecordLocation
ASTReader::DeclCursorForID(DeclID ID, unsigned &RawLocation) {
// See if there's an override.
DeclReplacementMap::iterator It = ReplacedDecls.find(ID);
if (It != ReplacedDecls.end()) {
RawLocation = It->second.RawLoc;
return RecordLocation(It->second.Mod, It->second.Offset);
}
GlobalDeclMapType::iterator I = GlobalDeclMap.find(ID);
assert(I != GlobalDeclMap.end() && "Corrupted global declaration map");
ModuleFile *M = I->second;
const DeclOffset &
DOffs = M->DeclOffsets[ID - M->BaseDeclID - NUM_PREDEF_DECL_IDS];
RawLocation = DOffs.Loc;
return RecordLocation(M, DOffs.BitOffset);
}
ASTReader::RecordLocation ASTReader::getLocalBitOffset(uint64_t GlobalOffset) {
ContinuousRangeMap<uint64_t, ModuleFile*, 4>::iterator I
= GlobalBitOffsetsMap.find(GlobalOffset);
assert(I != GlobalBitOffsetsMap.end() && "Corrupted global bit offsets map");
return RecordLocation(I->second, GlobalOffset - I->second->GlobalBitOffset);
}
uint64_t ASTReader::getGlobalBitOffset(ModuleFile &M, uint32_t LocalOffset) {
return LocalOffset + M.GlobalBitOffset;
}
static bool isSameTemplateParameterList(const TemplateParameterList *X,
const TemplateParameterList *Y);
/// \brief Determine whether two template parameters are similar enough
/// that they may be used in declarations of the same template.
static bool isSameTemplateParameter(const NamedDecl *X,
const NamedDecl *Y) {
if (X->getKind() != Y->getKind())
return false;
if (const TemplateTypeParmDecl *TX = dyn_cast<TemplateTypeParmDecl>(X)) {
const TemplateTypeParmDecl *TY = cast<TemplateTypeParmDecl>(Y);
return TX->isParameterPack() == TY->isParameterPack();
}
if (const NonTypeTemplateParmDecl *TX = dyn_cast<NonTypeTemplateParmDecl>(X)) {
const NonTypeTemplateParmDecl *TY = cast<NonTypeTemplateParmDecl>(Y);
return TX->isParameterPack() == TY->isParameterPack() &&
TX->getASTContext().hasSameType(TX->getType(), TY->getType());
}
const TemplateTemplateParmDecl *TX = cast<TemplateTemplateParmDecl>(X);
const TemplateTemplateParmDecl *TY = cast<TemplateTemplateParmDecl>(Y);
return TX->isParameterPack() == TY->isParameterPack() &&
isSameTemplateParameterList(TX->getTemplateParameters(),
TY->getTemplateParameters());
}
/// \brief Determine whether two template parameter lists are similar enough
/// that they may be used in declarations of the same template.
static bool isSameTemplateParameterList(const TemplateParameterList *X,
const TemplateParameterList *Y) {
if (X->size() != Y->size())
return false;
for (unsigned I = 0, N = X->size(); I != N; ++I)
if (!isSameTemplateParameter(X->getParam(I), Y->getParam(I)))
return false;
return true;
}
/// \brief Determine whether the two declarations refer to the same entity.
static bool isSameEntity(NamedDecl *X, NamedDecl *Y) {
assert(X->getDeclName() == Y->getDeclName() && "Declaration name mismatch!");
if (X == Y)
return true;
// Must be in the same context.
if (!X->getDeclContext()->getRedeclContext()->Equals(
Y->getDeclContext()->getRedeclContext()))
return false;
// Two typedefs refer to the same entity if they have the same underlying
// type.
if (TypedefNameDecl *TypedefX = dyn_cast<TypedefNameDecl>(X))
if (TypedefNameDecl *TypedefY = dyn_cast<TypedefNameDecl>(Y))
return X->getASTContext().hasSameType(TypedefX->getUnderlyingType(),
TypedefY->getUnderlyingType());
// Must have the same kind.
if (X->getKind() != Y->getKind())
return false;
// Objective-C classes and protocols with the same name always match.
if (isa<ObjCInterfaceDecl>(X) || isa<ObjCProtocolDecl>(X))
return true;
if (isa<ClassTemplateSpecializationDecl>(X)) {
// No need to handle these here: we merge them when adding them to the
// template.
return false;
}
// Compatible tags match.
if (TagDecl *TagX = dyn_cast<TagDecl>(X)) {
TagDecl *TagY = cast<TagDecl>(Y);
return (TagX->getTagKind() == TagY->getTagKind()) ||
((TagX->getTagKind() == TTK_Struct || TagX->getTagKind() == TTK_Class ||
TagX->getTagKind() == TTK_Interface) &&
(TagY->getTagKind() == TTK_Struct || TagY->getTagKind() == TTK_Class ||
TagY->getTagKind() == TTK_Interface));
}
// Functions with the same type and linkage match.
// FIXME: This needs to cope with function template specializations,
// merging of prototyped/non-prototyped functions, etc.
if (FunctionDecl *FuncX = dyn_cast<FunctionDecl>(X)) {
FunctionDecl *FuncY = cast<FunctionDecl>(Y);
return (FuncX->getLinkageInternal() == FuncY->getLinkageInternal()) &&
FuncX->getASTContext().hasSameType(FuncX->getType(), FuncY->getType());
}
// Variables with the same type and linkage match.
if (VarDecl *VarX = dyn_cast<VarDecl>(X)) {
VarDecl *VarY = cast<VarDecl>(Y);
return (VarX->getLinkageInternal() == VarY->getLinkageInternal()) &&
VarX->getASTContext().hasSameType(VarX->getType(), VarY->getType());
}
// Namespaces with the same name and inlinedness match.
if (NamespaceDecl *NamespaceX = dyn_cast<NamespaceDecl>(X)) {
NamespaceDecl *NamespaceY = cast<NamespaceDecl>(Y);
return NamespaceX->isInline() == NamespaceY->isInline();
}
// Identical template names and kinds match if their template parameter lists
// and patterns match.
if (TemplateDecl *TemplateX = dyn_cast<TemplateDecl>(X)) {
TemplateDecl *TemplateY = cast<TemplateDecl>(Y);
return isSameEntity(TemplateX->getTemplatedDecl(),
TemplateY->getTemplatedDecl()) &&
isSameTemplateParameterList(TemplateX->getTemplateParameters(),
TemplateY->getTemplateParameters());
}
// Fields with the same name and the same type match.
if (FieldDecl *FDX = dyn_cast<FieldDecl>(X)) {
FieldDecl *FDY = cast<FieldDecl>(Y);
// FIXME: Diagnose if the types don't match.
// FIXME: Also check the bitwidth is odr-equivalent, if any.
return X->getASTContext().hasSameType(FDX->getType(), FDY->getType());
}
// Enumerators with the same name match.
if (isa<EnumConstantDecl>(X))
// FIXME: Also check the value is odr-equivalent.
return true;
// Using shadow declarations with the same target match.
if (UsingShadowDecl *USX = dyn_cast<UsingShadowDecl>(X)) {
UsingShadowDecl *USY = cast<UsingShadowDecl>(Y);
return USX->getTargetDecl() == USY->getTargetDecl();
}
// FIXME: Many other cases to implement.
return false;
}
/// Find the context in which we should search for previous declarations when
/// looking for declarations to merge.
static DeclContext *getPrimaryContextForMerging(DeclContext *DC) {
if (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC))
return ND->getOriginalNamespace();
if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC))
return RD->getDefinition();
if (EnumDecl *ED = dyn_cast<EnumDecl>(DC))
return ED->getASTContext().getLangOpts().CPlusPlus? ED->getDefinition() : 0;
return 0;
}
ASTDeclReader::FindExistingResult::~FindExistingResult() {
if (!AddResult || Existing)
return;
DeclContext *DC = New->getDeclContext()->getRedeclContext();
if (DC->isTranslationUnit() && Reader.SemaObj) {
Reader.SemaObj->IdResolver.tryAddTopLevelDecl(New, New->getDeclName());
} else if (DeclContext *MergeDC = getPrimaryContextForMerging(DC)) {
// Add the declaration to its redeclaration context so later merging
// lookups will find it.
MergeDC->makeDeclVisibleInContextImpl(New, /*Internal*/true);
}
}
ASTDeclReader::FindExistingResult ASTDeclReader::findExisting(NamedDecl *D) {
DeclarationName Name = D->getDeclName();
if (!Name) {
// Don't bother trying to find unnamed declarations.
FindExistingResult Result(Reader, D, /*Existing=*/0);
Result.suppress();
return Result;
}
// FIXME: Bail out for non-canonical declarations. We will have performed any
// necessary merging already.
DeclContext *DC = D->getDeclContext()->getRedeclContext();
if (DC->isTranslationUnit() && Reader.SemaObj) {
IdentifierResolver &IdResolver = Reader.SemaObj->IdResolver;
// Temporarily consider the identifier to be up-to-date. We don't want to
// cause additional lookups here.
class UpToDateIdentifierRAII {
IdentifierInfo *II;
bool WasOutToDate;
public:
explicit UpToDateIdentifierRAII(IdentifierInfo *II)
: II(II), WasOutToDate(false)
{
if (II) {
WasOutToDate = II->isOutOfDate();
if (WasOutToDate)
II->setOutOfDate(false);
}
}
~UpToDateIdentifierRAII() {
if (WasOutToDate)
II->setOutOfDate(true);
}
} UpToDate(Name.getAsIdentifierInfo());
for (IdentifierResolver::iterator I = IdResolver.begin(Name),
IEnd = IdResolver.end();
I != IEnd; ++I) {
if (isSameEntity(*I, D))
return FindExistingResult(Reader, D, *I);
}
} else if (DeclContext *MergeDC = getPrimaryContextForMerging(DC)) {
DeclContext::lookup_result R = MergeDC->noload_lookup(Name);
for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
if (isSameEntity(*I, D))
return FindExistingResult(Reader, D, *I);
}
} else {
// Not in a mergeable context.
return FindExistingResult(Reader);
}
// If this declaration is from a merged context, make a note that we need to
// check that the canonical definition of that context contains the decl.
//
// FIXME: We should do something similar if we merge two definitions of the
// same template specialization into the same CXXRecordDecl.
if (Reader.MergedDeclContexts.count(D->getLexicalDeclContext()))
Reader.PendingOdrMergeChecks.push_back(D);
return FindExistingResult(Reader, D, /*Existing=*/0);
}
void ASTDeclReader::attachPreviousDecl(Decl *D, Decl *previous) {
assert(D && previous);
if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
TD->RedeclLink.setNext(cast<TagDecl>(previous));
} else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
FD->RedeclLink.setNext(cast<FunctionDecl>(previous));
} else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
VD->RedeclLink.setNext(cast<VarDecl>(previous));
} else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
TD->RedeclLink.setNext(cast<TypedefNameDecl>(previous));
} else if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) {
USD->RedeclLink.setNext(cast<UsingShadowDecl>(previous));
} else if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D)) {
ID->RedeclLink.setNext(cast<ObjCInterfaceDecl>(previous));
} else if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D)) {
PD->RedeclLink.setNext(cast<ObjCProtocolDecl>(previous));
} else if (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(D)) {
ND->RedeclLink.setNext(cast<NamespaceDecl>(previous));
} else {
RedeclarableTemplateDecl *TD = cast<RedeclarableTemplateDecl>(D);
TD->RedeclLink.setNext(cast<RedeclarableTemplateDecl>(previous));
}
// If the declaration was visible in one module, a redeclaration of it in
// another module remains visible even if it wouldn't be visible by itself.
//
// FIXME: In this case, the declaration should only be visible if a module
// that makes it visible has been imported.
D->IdentifierNamespace |=
previous->IdentifierNamespace &
(Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type);
}
void ASTDeclReader::attachLatestDecl(Decl *D, Decl *Latest) {
assert(D && Latest);
if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
TD->RedeclLink
= Redeclarable<TagDecl>::LatestDeclLink(cast<TagDecl>(Latest));
} else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
FD->RedeclLink
= Redeclarable<FunctionDecl>::LatestDeclLink(cast<FunctionDecl>(Latest));
} else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
VD->RedeclLink
= Redeclarable<VarDecl>::LatestDeclLink(cast<VarDecl>(Latest));
} else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
TD->RedeclLink
= Redeclarable<TypedefNameDecl>::LatestDeclLink(
cast<TypedefNameDecl>(Latest));
} else if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) {
USD->RedeclLink
= Redeclarable<UsingShadowDecl>::LatestDeclLink(
cast<UsingShadowDecl>(Latest));
} else if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D)) {
ID->RedeclLink
= Redeclarable<ObjCInterfaceDecl>::LatestDeclLink(
cast<ObjCInterfaceDecl>(Latest));
} else if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D)) {
PD->RedeclLink
= Redeclarable<ObjCProtocolDecl>::LatestDeclLink(
cast<ObjCProtocolDecl>(Latest));
} else if (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(D)) {
ND->RedeclLink
= Redeclarable<NamespaceDecl>::LatestDeclLink(
cast<NamespaceDecl>(Latest));
} else {
RedeclarableTemplateDecl *TD = cast<RedeclarableTemplateDecl>(D);
TD->RedeclLink
= Redeclarable<RedeclarableTemplateDecl>::LatestDeclLink(
cast<RedeclarableTemplateDecl>(Latest));
}
}
ASTReader::MergedDeclsMap::iterator
ASTReader::combineStoredMergedDecls(Decl *Canon, GlobalDeclID CanonID) {
// If we don't have any stored merged declarations, just look in the
// merged declarations set.
StoredMergedDeclsMap::iterator StoredPos = StoredMergedDecls.find(CanonID);
if (StoredPos == StoredMergedDecls.end())
return MergedDecls.find(Canon);
// Append the stored merged declarations to the merged declarations set.
MergedDeclsMap::iterator Pos = MergedDecls.find(Canon);
if (Pos == MergedDecls.end())
Pos = MergedDecls.insert(std::make_pair(Canon,
SmallVector<DeclID, 2>())).first;
Pos->second.append(StoredPos->second.begin(), StoredPos->second.end());
StoredMergedDecls.erase(StoredPos);
// Sort and uniquify the set of merged declarations.
llvm::array_pod_sort(Pos->second.begin(), Pos->second.end());
Pos->second.erase(std::unique(Pos->second.begin(), Pos->second.end()),
Pos->second.end());