| // BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines BugReporter, a utility class for generating |
| // PathDiagnostics. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ParentMap.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "clang/AST/StmtObjC.h" |
| #include "clang/Analysis/CFG.h" |
| #include "clang/Analysis/ProgramPoint.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" |
| #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/IntrusiveRefCntPtr.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <memory> |
| #include <queue> |
| |
| using namespace clang; |
| using namespace ento; |
| |
| #define DEBUG_TYPE "BugReporter" |
| |
| STATISTIC(MaxBugClassSize, |
| "The maximum number of bug reports in the same equivalence class"); |
| STATISTIC(MaxValidBugClassSize, |
| "The maximum number of bug reports in the same equivalence class " |
| "where at least one report is valid (not suppressed)"); |
| |
| BugReporterVisitor::~BugReporterVisitor() {} |
| |
| void BugReporterContext::anchor() {} |
| |
| //===----------------------------------------------------------------------===// |
| // Helper routines for walking the ExplodedGraph and fetching statements. |
| //===----------------------------------------------------------------------===// |
| |
| static const Stmt *GetPreviousStmt(const ExplodedNode *N) { |
| for (N = N->getFirstPred(); N; N = N->getFirstPred()) |
| if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) |
| return S; |
| |
| return 0; |
| } |
| |
| static inline const Stmt* |
| GetCurrentOrPreviousStmt(const ExplodedNode *N) { |
| if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) |
| return S; |
| |
| return GetPreviousStmt(N); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Diagnostic cleanup. |
| //===----------------------------------------------------------------------===// |
| |
| static PathDiagnosticEventPiece * |
| eventsDescribeSameCondition(PathDiagnosticEventPiece *X, |
| PathDiagnosticEventPiece *Y) { |
| // Prefer diagnostics that come from ConditionBRVisitor over |
| // those that came from TrackConstraintBRVisitor. |
| const void *tagPreferred = ConditionBRVisitor::getTag(); |
| const void *tagLesser = TrackConstraintBRVisitor::getTag(); |
| |
| if (X->getLocation() != Y->getLocation()) |
| return 0; |
| |
| if (X->getTag() == tagPreferred && Y->getTag() == tagLesser) |
| return X; |
| |
| if (Y->getTag() == tagPreferred && X->getTag() == tagLesser) |
| return Y; |
| |
| return 0; |
| } |
| |
| /// An optimization pass over PathPieces that removes redundant diagnostics |
| /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both |
| /// BugReporterVisitors use different methods to generate diagnostics, with |
| /// one capable of emitting diagnostics in some cases but not in others. This |
| /// can lead to redundant diagnostic pieces at the same point in a path. |
| static void removeRedundantMsgs(PathPieces &path) { |
| unsigned N = path.size(); |
| if (N < 2) |
| return; |
| // NOTE: this loop intentionally is not using an iterator. Instead, we |
| // are streaming the path and modifying it in place. This is done by |
| // grabbing the front, processing it, and if we decide to keep it append |
| // it to the end of the path. The entire path is processed in this way. |
| for (unsigned i = 0; i < N; ++i) { |
| IntrusiveRefCntPtr<PathDiagnosticPiece> piece(path.front()); |
| path.pop_front(); |
| |
| switch (piece->getKind()) { |
| case clang::ento::PathDiagnosticPiece::Call: |
| removeRedundantMsgs(cast<PathDiagnosticCallPiece>(piece)->path); |
| break; |
| case clang::ento::PathDiagnosticPiece::Macro: |
| removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(piece)->subPieces); |
| break; |
| case clang::ento::PathDiagnosticPiece::ControlFlow: |
| break; |
| case clang::ento::PathDiagnosticPiece::Event: { |
| if (i == N-1) |
| break; |
| |
| if (PathDiagnosticEventPiece *nextEvent = |
| dyn_cast<PathDiagnosticEventPiece>(path.front().getPtr())) { |
| PathDiagnosticEventPiece *event = |
| cast<PathDiagnosticEventPiece>(piece); |
| // Check to see if we should keep one of the two pieces. If we |
| // come up with a preference, record which piece to keep, and consume |
| // another piece from the path. |
| if (PathDiagnosticEventPiece *pieceToKeep = |
| eventsDescribeSameCondition(event, nextEvent)) { |
| piece = pieceToKeep; |
| path.pop_front(); |
| ++i; |
| } |
| } |
| break; |
| } |
| } |
| path.push_back(piece); |
| } |
| } |
| |
| /// A map from PathDiagnosticPiece to the LocationContext of the inlined |
| /// function call it represents. |
| typedef llvm::DenseMap<const PathPieces *, const LocationContext *> |
| LocationContextMap; |
| |
| /// Recursively scan through a path and prune out calls and macros pieces |
| /// that aren't needed. Return true if afterwards the path contains |
| /// "interesting stuff" which means it shouldn't be pruned from the parent path. |
| static bool removeUnneededCalls(PathPieces &pieces, BugReport *R, |
| LocationContextMap &LCM) { |
| bool containsSomethingInteresting = false; |
| const unsigned N = pieces.size(); |
| |
| for (unsigned i = 0 ; i < N ; ++i) { |
| // Remove the front piece from the path. If it is still something we |
| // want to keep once we are done, we will push it back on the end. |
| IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front()); |
| pieces.pop_front(); |
| |
| switch (piece->getKind()) { |
| case PathDiagnosticPiece::Call: { |
| PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece); |
| // Check if the location context is interesting. |
| assert(LCM.count(&call->path)); |
| if (R->isInteresting(LCM[&call->path])) { |
| containsSomethingInteresting = true; |
| break; |
| } |
| |
| if (!removeUnneededCalls(call->path, R, LCM)) |
| continue; |
| |
| containsSomethingInteresting = true; |
| break; |
| } |
| case PathDiagnosticPiece::Macro: { |
| PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece); |
| if (!removeUnneededCalls(macro->subPieces, R, LCM)) |
| continue; |
| containsSomethingInteresting = true; |
| break; |
| } |
| case PathDiagnosticPiece::Event: { |
| PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece); |
| |
| // We never throw away an event, but we do throw it away wholesale |
| // as part of a path if we throw the entire path away. |
| containsSomethingInteresting |= !event->isPrunable(); |
| break; |
| } |
| case PathDiagnosticPiece::ControlFlow: |
| break; |
| } |
| |
| pieces.push_back(piece); |
| } |
| |
| return containsSomethingInteresting; |
| } |
| |
| /// Returns true if the given decl has been implicitly given a body, either by |
| /// the analyzer or by the compiler proper. |
| static bool hasImplicitBody(const Decl *D) { |
| assert(D); |
| return D->isImplicit() || !D->hasBody(); |
| } |
| |
| /// Recursively scan through a path and make sure that all call pieces have |
| /// valid locations. |
| static void adjustCallLocations(PathPieces &Pieces, |
| PathDiagnosticLocation *LastCallLocation = 0) { |
| for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E; ++I) { |
| PathDiagnosticCallPiece *Call = dyn_cast<PathDiagnosticCallPiece>(*I); |
| |
| if (!Call) { |
| assert((*I)->getLocation().asLocation().isValid()); |
| continue; |
| } |
| |
| if (LastCallLocation) { |
| bool CallerIsImplicit = hasImplicitBody(Call->getCaller()); |
| if (CallerIsImplicit || !Call->callEnter.asLocation().isValid()) |
| Call->callEnter = *LastCallLocation; |
| if (CallerIsImplicit || !Call->callReturn.asLocation().isValid()) |
| Call->callReturn = *LastCallLocation; |
| } |
| |
| // Recursively clean out the subclass. Keep this call around if |
| // it contains any informative diagnostics. |
| PathDiagnosticLocation *ThisCallLocation; |
| if (Call->callEnterWithin.asLocation().isValid() && |
| !hasImplicitBody(Call->getCallee())) |
| ThisCallLocation = &Call->callEnterWithin; |
| else |
| ThisCallLocation = &Call->callEnter; |
| |
| assert(ThisCallLocation && "Outermost call has an invalid location"); |
| adjustCallLocations(Call->path, ThisCallLocation); |
| } |
| } |
| |
| /// Remove edges in and out of C++ default initializer expressions. These are |
| /// for fields that have in-class initializers, as opposed to being initialized |
| /// explicitly in a constructor or braced list. |
| static void removeEdgesToDefaultInitializers(PathPieces &Pieces) { |
| for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { |
| if (PathDiagnosticCallPiece *C = dyn_cast<PathDiagnosticCallPiece>(*I)) |
| removeEdgesToDefaultInitializers(C->path); |
| |
| if (PathDiagnosticMacroPiece *M = dyn_cast<PathDiagnosticMacroPiece>(*I)) |
| removeEdgesToDefaultInitializers(M->subPieces); |
| |
| if (PathDiagnosticControlFlowPiece *CF = |
| dyn_cast<PathDiagnosticControlFlowPiece>(*I)) { |
| const Stmt *Start = CF->getStartLocation().asStmt(); |
| const Stmt *End = CF->getEndLocation().asStmt(); |
| if (Start && isa<CXXDefaultInitExpr>(Start)) { |
| I = Pieces.erase(I); |
| continue; |
| } else if (End && isa<CXXDefaultInitExpr>(End)) { |
| PathPieces::iterator Next = std::next(I); |
| if (Next != E) { |
| if (PathDiagnosticControlFlowPiece *NextCF = |
| dyn_cast<PathDiagnosticControlFlowPiece>(*Next)) { |
| NextCF->setStartLocation(CF->getStartLocation()); |
| } |
| } |
| I = Pieces.erase(I); |
| continue; |
| } |
| } |
| |
| I++; |
| } |
| } |
| |
| /// Remove all pieces with invalid locations as these cannot be serialized. |
| /// We might have pieces with invalid locations as a result of inlining Body |
| /// Farm generated functions. |
| static void removePiecesWithInvalidLocations(PathPieces &Pieces) { |
| for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { |
| if (PathDiagnosticCallPiece *C = dyn_cast<PathDiagnosticCallPiece>(*I)) |
| removePiecesWithInvalidLocations(C->path); |
| |
| if (PathDiagnosticMacroPiece *M = dyn_cast<PathDiagnosticMacroPiece>(*I)) |
| removePiecesWithInvalidLocations(M->subPieces); |
| |
| if (!(*I)->getLocation().isValid() || |
| !(*I)->getLocation().asLocation().isValid()) { |
| I = Pieces.erase(I); |
| continue; |
| } |
| I++; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PathDiagnosticBuilder and its associated routines and helper objects. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class NodeMapClosure : public BugReport::NodeResolver { |
| InterExplodedGraphMap &M; |
| public: |
| NodeMapClosure(InterExplodedGraphMap &m) : M(m) {} |
| |
| const ExplodedNode *getOriginalNode(const ExplodedNode *N) override { |
| return M.lookup(N); |
| } |
| }; |
| |
| class PathDiagnosticBuilder : public BugReporterContext { |
| BugReport *R; |
| PathDiagnosticConsumer *PDC; |
| NodeMapClosure NMC; |
| public: |
| const LocationContext *LC; |
| |
| PathDiagnosticBuilder(GRBugReporter &br, |
| BugReport *r, InterExplodedGraphMap &Backmap, |
| PathDiagnosticConsumer *pdc) |
| : BugReporterContext(br), |
| R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext()) |
| {} |
| |
| PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N); |
| |
| PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os, |
| const ExplodedNode *N); |
| |
| BugReport *getBugReport() { return R; } |
| |
| Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); } |
| |
| ParentMap& getParentMap() { return LC->getParentMap(); } |
| |
| const Stmt *getParent(const Stmt *S) { |
| return getParentMap().getParent(S); |
| } |
| |
| NodeMapClosure& getNodeResolver() override { return NMC; } |
| |
| PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S); |
| |
| PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const { |
| return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive; |
| } |
| |
| bool supportsLogicalOpControlFlow() const { |
| return PDC ? PDC->supportsLogicalOpControlFlow() : true; |
| } |
| }; |
| } // end anonymous namespace |
| |
| PathDiagnosticLocation |
| PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) { |
| if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N)) |
| return PathDiagnosticLocation(S, getSourceManager(), LC); |
| |
| return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(), |
| getSourceManager()); |
| } |
| |
| PathDiagnosticLocation |
| PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os, |
| const ExplodedNode *N) { |
| |
| // Slow, but probably doesn't matter. |
| if (os.str().empty()) |
| os << ' '; |
| |
| const PathDiagnosticLocation &Loc = ExecutionContinues(N); |
| |
| if (Loc.asStmt()) |
| os << "Execution continues on line " |
| << getSourceManager().getExpansionLineNumber(Loc.asLocation()) |
| << '.'; |
| else { |
| os << "Execution jumps to the end of the "; |
| const Decl *D = N->getLocationContext()->getDecl(); |
| if (isa<ObjCMethodDecl>(D)) |
| os << "method"; |
| else if (isa<FunctionDecl>(D)) |
| os << "function"; |
| else { |
| assert(isa<BlockDecl>(D)); |
| os << "anonymous block"; |
| } |
| os << '.'; |
| } |
| |
| return Loc; |
| } |
| |
| static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) { |
| if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S))) |
| return PM.getParentIgnoreParens(S); |
| |
| const Stmt *Parent = PM.getParentIgnoreParens(S); |
| if (!Parent) |
| return 0; |
| |
| switch (Parent->getStmtClass()) { |
| case Stmt::ForStmtClass: |
| case Stmt::DoStmtClass: |
| case Stmt::WhileStmtClass: |
| case Stmt::ObjCForCollectionStmtClass: |
| case Stmt::CXXForRangeStmtClass: |
| return Parent; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static PathDiagnosticLocation |
| getEnclosingStmtLocation(const Stmt *S, SourceManager &SMgr, const ParentMap &P, |
| const LocationContext *LC, bool allowNestedContexts) { |
| if (!S) |
| return PathDiagnosticLocation(); |
| |
| while (const Stmt *Parent = getEnclosingParent(S, P)) { |
| switch (Parent->getStmtClass()) { |
| case Stmt::BinaryOperatorClass: { |
| const BinaryOperator *B = cast<BinaryOperator>(Parent); |
| if (B->isLogicalOp()) |
| return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC); |
| break; |
| } |
| case Stmt::CompoundStmtClass: |
| case Stmt::StmtExprClass: |
| return PathDiagnosticLocation(S, SMgr, LC); |
| case Stmt::ChooseExprClass: |
| // Similar to '?' if we are referring to condition, just have the edge |
| // point to the entire choose expression. |
| if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S) |
| return PathDiagnosticLocation(Parent, SMgr, LC); |
| else |
| return PathDiagnosticLocation(S, SMgr, LC); |
| case Stmt::BinaryConditionalOperatorClass: |
| case Stmt::ConditionalOperatorClass: |
| // For '?', if we are referring to condition, just have the edge point |
| // to the entire '?' expression. |
| if (allowNestedContexts || |
| cast<AbstractConditionalOperator>(Parent)->getCond() == S) |
| return PathDiagnosticLocation(Parent, SMgr, LC); |
| else |
| return PathDiagnosticLocation(S, SMgr, LC); |
| case Stmt::CXXForRangeStmtClass: |
| if (cast<CXXForRangeStmt>(Parent)->getBody() == S) |
| return PathDiagnosticLocation(S, SMgr, LC); |
| break; |
| case Stmt::DoStmtClass: |
| return PathDiagnosticLocation(S, SMgr, LC); |
| case Stmt::ForStmtClass: |
| if (cast<ForStmt>(Parent)->getBody() == S) |
| return PathDiagnosticLocation(S, SMgr, LC); |
| break; |
| case Stmt::IfStmtClass: |
| if (cast<IfStmt>(Parent)->getCond() != S) |
| return PathDiagnosticLocation(S, SMgr, LC); |
| break; |
| case Stmt::ObjCForCollectionStmtClass: |
| if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S) |
| return PathDiagnosticLocation(S, SMgr, LC); |
| break; |
| case Stmt::WhileStmtClass: |
| if (cast<WhileStmt>(Parent)->getCond() != S) |
| return PathDiagnosticLocation(S, SMgr, LC); |
| break; |
| default: |
| break; |
| } |
| |
| S = Parent; |
| } |
| |
| assert(S && "Cannot have null Stmt for PathDiagnosticLocation"); |
| |
| return PathDiagnosticLocation(S, SMgr, LC); |
| } |
| |
| PathDiagnosticLocation |
| PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) { |
| assert(S && "Null Stmt passed to getEnclosingStmtLocation"); |
| return ::getEnclosingStmtLocation(S, getSourceManager(), getParentMap(), LC, |
| /*allowNestedContexts=*/false); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // "Visitors only" path diagnostic generation algorithm. |
| //===----------------------------------------------------------------------===// |
| static bool GenerateVisitorsOnlyPathDiagnostic(PathDiagnostic &PD, |
| PathDiagnosticBuilder &PDB, |
| const ExplodedNode *N, |
| ArrayRef<BugReporterVisitor *> visitors) { |
| // All path generation skips the very first node (the error node). |
| // This is because there is special handling for the end-of-path note. |
| N = N->getFirstPred(); |
| if (!N) |
| return true; |
| |
| BugReport *R = PDB.getBugReport(); |
| while (const ExplodedNode *Pred = N->getFirstPred()) { |
| for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(), |
| E = visitors.end(); |
| I != E; ++I) { |
| // Visit all the node pairs, but throw the path pieces away. |
| PathDiagnosticPiece *Piece = (*I)->VisitNode(N, Pred, PDB, *R); |
| delete Piece; |
| } |
| |
| N = Pred; |
| } |
| |
| return R->isValid(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // "Minimal" path diagnostic generation algorithm. |
| //===----------------------------------------------------------------------===// |
| typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair; |
| typedef SmallVector<StackDiagPair, 6> StackDiagVector; |
| |
| static void updateStackPiecesWithMessage(PathDiagnosticPiece *P, |
| StackDiagVector &CallStack) { |
| // If the piece contains a special message, add it to all the call |
| // pieces on the active stack. |
| if (PathDiagnosticEventPiece *ep = |
| dyn_cast<PathDiagnosticEventPiece>(P)) { |
| |
| if (ep->hasCallStackHint()) |
| for (StackDiagVector::iterator I = CallStack.begin(), |
| E = CallStack.end(); I != E; ++I) { |
| PathDiagnosticCallPiece *CP = I->first; |
| const ExplodedNode *N = I->second; |
| std::string stackMsg = ep->getCallStackMessage(N); |
| |
| // The last message on the path to final bug is the most important |
| // one. Since we traverse the path backwards, do not add the message |
| // if one has been previously added. |
| if (!CP->hasCallStackMessage()) |
| CP->setCallStackMessage(stackMsg); |
| } |
| } |
| } |
| |
| static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM); |
| |
| static bool GenerateMinimalPathDiagnostic(PathDiagnostic& PD, |
| PathDiagnosticBuilder &PDB, |
| const ExplodedNode *N, |
| LocationContextMap &LCM, |
| ArrayRef<BugReporterVisitor *> visitors) { |
| |
| SourceManager& SMgr = PDB.getSourceManager(); |
| const LocationContext *LC = PDB.LC; |
| const ExplodedNode *NextNode = N->pred_empty() |
| ? NULL : *(N->pred_begin()); |
| |
| StackDiagVector CallStack; |
| |
| while (NextNode) { |
| N = NextNode; |
| PDB.LC = N->getLocationContext(); |
| NextNode = N->getFirstPred(); |
| |
| ProgramPoint P = N->getLocation(); |
| |
| do { |
| if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) { |
| PathDiagnosticCallPiece *C = |
| PathDiagnosticCallPiece::construct(N, *CE, SMgr); |
| // Record the mapping from call piece to LocationContext. |
| LCM[&C->path] = CE->getCalleeContext(); |
| PD.getActivePath().push_front(C); |
| PD.pushActivePath(&C->path); |
| CallStack.push_back(StackDiagPair(C, N)); |
| break; |
| } |
| |
| if (Optional<CallEnter> CE = P.getAs<CallEnter>()) { |
| // Flush all locations, and pop the active path. |
| bool VisitedEntireCall = PD.isWithinCall(); |
| PD.popActivePath(); |
| |
| // Either we just added a bunch of stuff to the top-level path, or |
| // we have a previous CallExitEnd. If the former, it means that the |
| // path terminated within a function call. We must then take the |
| // current contents of the active path and place it within |
| // a new PathDiagnosticCallPiece. |
| PathDiagnosticCallPiece *C; |
| if (VisitedEntireCall) { |
| C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front()); |
| } else { |
| const Decl *Caller = CE->getLocationContext()->getDecl(); |
| C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller); |
| // Record the mapping from call piece to LocationContext. |
| LCM[&C->path] = CE->getCalleeContext(); |
| } |
| |
| C->setCallee(*CE, SMgr); |
| if (!CallStack.empty()) { |
| assert(CallStack.back().first == C); |
| CallStack.pop_back(); |
| } |
| break; |
| } |
| |
| if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) { |
| const CFGBlock *Src = BE->getSrc(); |
| const CFGBlock *Dst = BE->getDst(); |
| const Stmt *T = Src->getTerminator(); |
| |
| if (!T) |
| break; |
| |
| PathDiagnosticLocation Start = |
| PathDiagnosticLocation::createBegin(T, SMgr, |
| N->getLocationContext()); |
| |
| switch (T->getStmtClass()) { |
| default: |
| break; |
| |
| case Stmt::GotoStmtClass: |
| case Stmt::IndirectGotoStmtClass: { |
| const Stmt *S = PathDiagnosticLocation::getNextStmt(N); |
| |
| if (!S) |
| break; |
| |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S); |
| |
| os << "Control jumps to line " |
| << End.asLocation().getExpansionLineNumber(); |
| PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( |
| Start, End, os.str())); |
| break; |
| } |
| |
| case Stmt::SwitchStmtClass: { |
| // Figure out what case arm we took. |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| |
| if (const Stmt *S = Dst->getLabel()) { |
| PathDiagnosticLocation End(S, SMgr, LC); |
| |
| switch (S->getStmtClass()) { |
| default: |
| os << "No cases match in the switch statement. " |
| "Control jumps to line " |
| << End.asLocation().getExpansionLineNumber(); |
| break; |
| case Stmt::DefaultStmtClass: |
| os << "Control jumps to the 'default' case at line " |
| << End.asLocation().getExpansionLineNumber(); |
| break; |
| |
| case Stmt::CaseStmtClass: { |
| os << "Control jumps to 'case "; |
| const CaseStmt *Case = cast<CaseStmt>(S); |
| const Expr *LHS = Case->getLHS()->IgnoreParenCasts(); |
| |
| // Determine if it is an enum. |
| bool GetRawInt = true; |
| |
| if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) { |
| // FIXME: Maybe this should be an assertion. Are there cases |
| // were it is not an EnumConstantDecl? |
| const EnumConstantDecl *D = |
| dyn_cast<EnumConstantDecl>(DR->getDecl()); |
| |
| if (D) { |
| GetRawInt = false; |
| os << *D; |
| } |
| } |
| |
| if (GetRawInt) |
| os << LHS->EvaluateKnownConstInt(PDB.getASTContext()); |
| |
| os << ":' at line " |
| << End.asLocation().getExpansionLineNumber(); |
| break; |
| } |
| } |
| PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( |
| Start, End, os.str())); |
| } |
| else { |
| os << "'Default' branch taken. "; |
| const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N); |
| PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( |
| Start, End, os.str())); |
| } |
| |
| break; |
| } |
| |
| case Stmt::BreakStmtClass: |
| case Stmt::ContinueStmtClass: { |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); |
| PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( |
| Start, End, os.str())); |
| break; |
| } |
| |
| // Determine control-flow for ternary '?'. |
| case Stmt::BinaryConditionalOperatorClass: |
| case Stmt::ConditionalOperatorClass: { |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| os << "'?' condition is "; |
| |
| if (*(Src->succ_begin()+1) == Dst) |
| os << "false"; |
| else |
| os << "true"; |
| |
| PathDiagnosticLocation End = PDB.ExecutionContinues(N); |
| |
| if (const Stmt *S = End.asStmt()) |
| End = PDB.getEnclosingStmtLocation(S); |
| |
| PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( |
| Start, End, os.str())); |
| break; |
| } |
| |
| // Determine control-flow for short-circuited '&&' and '||'. |
| case Stmt::BinaryOperatorClass: { |
| if (!PDB.supportsLogicalOpControlFlow()) |
| break; |
| |
| const BinaryOperator *B = cast<BinaryOperator>(T); |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| os << "Left side of '"; |
| |
| if (B->getOpcode() == BO_LAnd) { |
| os << "&&" << "' is "; |
| |
| if (*(Src->succ_begin()+1) == Dst) { |
| os << "false"; |
| PathDiagnosticLocation End(B->getLHS(), SMgr, LC); |
| PathDiagnosticLocation Start = |
| PathDiagnosticLocation::createOperatorLoc(B, SMgr); |
| PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( |
| Start, End, os.str())); |
| } |
| else { |
| os << "true"; |
| PathDiagnosticLocation Start(B->getLHS(), SMgr, LC); |
| PathDiagnosticLocation End = PDB.ExecutionContinues(N); |
| PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( |
| Start, End, os.str())); |
| } |
| } |
| else { |
| assert(B->getOpcode() == BO_LOr); |
| os << "||" << "' is "; |
| |
| if (*(Src->succ_begin()+1) == Dst) { |
| os << "false"; |
| PathDiagnosticLocation Start(B->getLHS(), SMgr, LC); |
| PathDiagnosticLocation End = PDB.ExecutionContinues(N); |
| PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( |
| Start, End, os.str())); |
| } |
| else { |
| os << "true"; |
| PathDiagnosticLocation End(B->getLHS(), SMgr, LC); |
| PathDiagnosticLocation Start = |
| PathDiagnosticLocation::createOperatorLoc(B, SMgr); |
| PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( |
| Start, End, os.str())); |
| } |
| } |
| |
| break; |
| } |
| |
| case Stmt::DoStmtClass: { |
| if (*(Src->succ_begin()) == Dst) { |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| |
| os << "Loop condition is true. "; |
| PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); |
| |
| if (const Stmt *S = End.asStmt()) |
| End = PDB.getEnclosingStmtLocation(S); |
| |
| PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( |
| Start, End, os.str())); |
| } |
| else { |
| PathDiagnosticLocation End = PDB.ExecutionContinues(N); |
| |
| if (const Stmt *S = End.asStmt()) |
| End = PDB.getEnclosingStmtLocation(S); |
| |
| PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( |
| Start, End, "Loop condition is false. Exiting loop")); |
| } |
| |
| break; |
| } |
| |
| case Stmt::WhileStmtClass: |
| case Stmt::ForStmtClass: { |
| if (*(Src->succ_begin()+1) == Dst) { |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| |
| os << "Loop condition is false. "; |
| PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); |
| if (const Stmt *S = End.asStmt()) |
| End = PDB.getEnclosingStmtLocation(S); |
| |
| PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( |
| Start, End, os.str())); |
| } |
| else { |
| PathDiagnosticLocation End = PDB.ExecutionContinues(N); |
| if (const Stmt *S = End.asStmt()) |
| End = PDB.getEnclosingStmtLocation(S); |
| |
| PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( |
| Start, End, "Loop condition is true. Entering loop body")); |
| } |
| |
| break; |
| } |
| |
| case Stmt::IfStmtClass: { |
| PathDiagnosticLocation End = PDB.ExecutionContinues(N); |
| |
| if (const Stmt *S = End.asStmt()) |
| End = PDB.getEnclosingStmtLocation(S); |
| |
| if (*(Src->succ_begin()+1) == Dst) |
| PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( |
| Start, End, "Taking false branch")); |
| else |
| PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( |
| Start, End, "Taking true branch")); |
| |
| break; |
| } |
| } |
| } |
| } while(0); |
| |
| if (NextNode) { |
| // Add diagnostic pieces from custom visitors. |
| BugReport *R = PDB.getBugReport(); |
| for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(), |
| E = visitors.end(); |
| I != E; ++I) { |
| if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) { |
| PD.getActivePath().push_front(p); |
| updateStackPiecesWithMessage(p, CallStack); |
| } |
| } |
| } |
| } |
| |
| if (!PDB.getBugReport()->isValid()) |
| return false; |
| |
| // After constructing the full PathDiagnostic, do a pass over it to compact |
| // PathDiagnosticPieces that occur within a macro. |
| CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager()); |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // "Extensive" PathDiagnostic generation. |
| //===----------------------------------------------------------------------===// |
| |
| static bool IsControlFlowExpr(const Stmt *S) { |
| const Expr *E = dyn_cast<Expr>(S); |
| |
| if (!E) |
| return false; |
| |
| E = E->IgnoreParenCasts(); |
| |
| if (isa<AbstractConditionalOperator>(E)) |
| return true; |
| |
| if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E)) |
| if (B->isLogicalOp()) |
| return true; |
| |
| return false; |
| } |
| |
| namespace { |
| class ContextLocation : public PathDiagnosticLocation { |
| bool IsDead; |
| public: |
| ContextLocation(const PathDiagnosticLocation &L, bool isdead = false) |
| : PathDiagnosticLocation(L), IsDead(isdead) {} |
| |
| void markDead() { IsDead = true; } |
| bool isDead() const { return IsDead; } |
| }; |
| |
| static PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L, |
| const LocationContext *LC, |
| bool firstCharOnly = false) { |
| if (const Stmt *S = L.asStmt()) { |
| const Stmt *Original = S; |
| while (1) { |
| // Adjust the location for some expressions that are best referenced |
| // by one of their subexpressions. |
| switch (S->getStmtClass()) { |
| default: |
| break; |
| case Stmt::ParenExprClass: |
| case Stmt::GenericSelectionExprClass: |
| S = cast<Expr>(S)->IgnoreParens(); |
| firstCharOnly = true; |
| continue; |
| case Stmt::BinaryConditionalOperatorClass: |
| case Stmt::ConditionalOperatorClass: |
| S = cast<AbstractConditionalOperator>(S)->getCond(); |
| firstCharOnly = true; |
| continue; |
| case Stmt::ChooseExprClass: |
| S = cast<ChooseExpr>(S)->getCond(); |
| firstCharOnly = true; |
| continue; |
| case Stmt::BinaryOperatorClass: |
| S = cast<BinaryOperator>(S)->getLHS(); |
| firstCharOnly = true; |
| continue; |
| } |
| |
| break; |
| } |
| |
| if (S != Original) |
| L = PathDiagnosticLocation(S, L.getManager(), LC); |
| } |
| |
| if (firstCharOnly) |
| L = PathDiagnosticLocation::createSingleLocation(L); |
| |
| return L; |
| } |
| |
| class EdgeBuilder { |
| std::vector<ContextLocation> CLocs; |
| typedef std::vector<ContextLocation>::iterator iterator; |
| PathDiagnostic &PD; |
| PathDiagnosticBuilder &PDB; |
| PathDiagnosticLocation PrevLoc; |
| |
| bool IsConsumedExpr(const PathDiagnosticLocation &L); |
| |
| bool containsLocation(const PathDiagnosticLocation &Container, |
| const PathDiagnosticLocation &Containee); |
| |
| PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L); |
| |
| |
| |
| void popLocation() { |
| if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) { |
| // For contexts, we only one the first character as the range. |
| rawAddEdge(cleanUpLocation(CLocs.back(), PDB.LC, true)); |
| } |
| CLocs.pop_back(); |
| } |
| |
| public: |
| EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb) |
| : PD(pd), PDB(pdb) { |
| |
| // If the PathDiagnostic already has pieces, add the enclosing statement |
| // of the first piece as a context as well. |
| if (!PD.path.empty()) { |
| PrevLoc = (*PD.path.begin())->getLocation(); |
| |
| if (const Stmt *S = PrevLoc.asStmt()) |
| addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt()); |
| } |
| } |
| |
| ~EdgeBuilder() { |
| while (!CLocs.empty()) popLocation(); |
| |
| // Finally, add an initial edge from the start location of the first |
| // statement (if it doesn't already exist). |
| PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin( |
| PDB.LC, |
| PDB.getSourceManager()); |
| if (L.isValid()) |
| rawAddEdge(L); |
| } |
| |
| void flushLocations() { |
| while (!CLocs.empty()) |
| popLocation(); |
| PrevLoc = PathDiagnosticLocation(); |
| } |
| |
| void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false, |
| bool IsPostJump = false); |
| |
| void rawAddEdge(PathDiagnosticLocation NewLoc); |
| |
| void addContext(const Stmt *S); |
| void addContext(const PathDiagnosticLocation &L); |
| void addExtendedContext(const Stmt *S); |
| }; |
| } // end anonymous namespace |
| |
| |
| PathDiagnosticLocation |
| EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) { |
| if (const Stmt *S = L.asStmt()) { |
| if (IsControlFlowExpr(S)) |
| return L; |
| |
| return PDB.getEnclosingStmtLocation(S); |
| } |
| |
| return L; |
| } |
| |
| bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container, |
| const PathDiagnosticLocation &Containee) { |
| |
| if (Container == Containee) |
| return true; |
| |
| if (Container.asDecl()) |
| return true; |
| |
| if (const Stmt *S = Containee.asStmt()) |
| if (const Stmt *ContainerS = Container.asStmt()) { |
| while (S) { |
| if (S == ContainerS) |
| return true; |
| S = PDB.getParent(S); |
| } |
| return false; |
| } |
| |
| // Less accurate: compare using source ranges. |
| SourceRange ContainerR = Container.asRange(); |
| SourceRange ContaineeR = Containee.asRange(); |
| |
| SourceManager &SM = PDB.getSourceManager(); |
| SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin()); |
| SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd()); |
| SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin()); |
| SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd()); |
| |
| unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg); |
| unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd); |
| unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg); |
| unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd); |
| |
| assert(ContainerBegLine <= ContainerEndLine); |
| assert(ContaineeBegLine <= ContaineeEndLine); |
| |
| return (ContainerBegLine <= ContaineeBegLine && |
| ContainerEndLine >= ContaineeEndLine && |
| (ContainerBegLine != ContaineeBegLine || |
| SM.getExpansionColumnNumber(ContainerRBeg) <= |
| SM.getExpansionColumnNumber(ContaineeRBeg)) && |
| (ContainerEndLine != ContaineeEndLine || |
| SM.getExpansionColumnNumber(ContainerREnd) >= |
| SM.getExpansionColumnNumber(ContaineeREnd))); |
| } |
| |
| void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) { |
| if (!PrevLoc.isValid()) { |
| PrevLoc = NewLoc; |
| return; |
| } |
| |
| const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc, PDB.LC); |
| const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc, PDB.LC); |
| |
| if (PrevLocClean.asLocation().isInvalid()) { |
| PrevLoc = NewLoc; |
| return; |
| } |
| |
| if (NewLocClean.asLocation() == PrevLocClean.asLocation()) |
| return; |
| |
| // FIXME: Ignore intra-macro edges for now. |
| if (NewLocClean.asLocation().getExpansionLoc() == |
| PrevLocClean.asLocation().getExpansionLoc()) |
| return; |
| |
| PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean)); |
| PrevLoc = NewLoc; |
| } |
| |
| void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd, |
| bool IsPostJump) { |
| |
| if (!alwaysAdd && NewLoc.asLocation().isMacroID()) |
| return; |
| |
| const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc); |
| |
| while (!CLocs.empty()) { |
| ContextLocation &TopContextLoc = CLocs.back(); |
| |
| // Is the top location context the same as the one for the new location? |
| if (TopContextLoc == CLoc) { |
| if (alwaysAdd) { |
| if (IsConsumedExpr(TopContextLoc)) |
| TopContextLoc.markDead(); |
| |
| rawAddEdge(NewLoc); |
| } |
| |
| if (IsPostJump) |
| TopContextLoc.markDead(); |
| return; |
| } |
| |
| if (containsLocation(TopContextLoc, CLoc)) { |
| if (alwaysAdd) { |
| rawAddEdge(NewLoc); |
| |
| if (IsConsumedExpr(CLoc)) { |
| CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/true)); |
| return; |
| } |
| } |
| |
| CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/IsPostJump)); |
| return; |
| } |
| |
| // Context does not contain the location. Flush it. |
| popLocation(); |
| } |
| |
| // If we reach here, there is no enclosing context. Just add the edge. |
| rawAddEdge(NewLoc); |
| } |
| |
| bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) { |
| if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt())) |
| return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X); |
| |
| return false; |
| } |
| |
| void EdgeBuilder::addExtendedContext(const Stmt *S) { |
| if (!S) |
| return; |
| |
| const Stmt *Parent = PDB.getParent(S); |
| while (Parent) { |
| if (isa<CompoundStmt>(Parent)) |
| Parent = PDB.getParent(Parent); |
| else |
| break; |
| } |
| |
| if (Parent) { |
| switch (Parent->getStmtClass()) { |
| case Stmt::DoStmtClass: |
| case Stmt::ObjCAtSynchronizedStmtClass: |
| addContext(Parent); |
| default: |
| break; |
| } |
| } |
| |
| addContext(S); |
| } |
| |
| void EdgeBuilder::addContext(const Stmt *S) { |
| if (!S) |
| return; |
| |
| PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC); |
| addContext(L); |
| } |
| |
| void EdgeBuilder::addContext(const PathDiagnosticLocation &L) { |
| while (!CLocs.empty()) { |
| const PathDiagnosticLocation &TopContextLoc = CLocs.back(); |
| |
| // Is the top location context the same as the one for the new location? |
| if (TopContextLoc == L) |
| return; |
| |
| if (containsLocation(TopContextLoc, L)) { |
| CLocs.push_back(L); |
| return; |
| } |
| |
| // Context does not contain the location. Flush it. |
| popLocation(); |
| } |
| |
| CLocs.push_back(L); |
| } |
| |
| // Cone-of-influence: support the reverse propagation of "interesting" symbols |
| // and values by tracing interesting calculations backwards through evaluated |
| // expressions along a path. This is probably overly complicated, but the idea |
| // is that if an expression computed an "interesting" value, the child |
| // expressions are are also likely to be "interesting" as well (which then |
| // propagates to the values they in turn compute). This reverse propagation |
| // is needed to track interesting correlations across function call boundaries, |
| // where formal arguments bind to actual arguments, etc. This is also needed |
| // because the constraint solver sometimes simplifies certain symbolic values |
| // into constants when appropriate, and this complicates reasoning about |
| // interesting values. |
| typedef llvm::DenseSet<const Expr *> InterestingExprs; |
| |
| static void reversePropagateIntererstingSymbols(BugReport &R, |
| InterestingExprs &IE, |
| const ProgramState *State, |
| const Expr *Ex, |
| const LocationContext *LCtx) { |
| SVal V = State->getSVal(Ex, LCtx); |
| if (!(R.isInteresting(V) || IE.count(Ex))) |
| return; |
| |
| switch (Ex->getStmtClass()) { |
| default: |
| if (!isa<CastExpr>(Ex)) |
| break; |
| // Fall through. |
| case Stmt::BinaryOperatorClass: |
| case Stmt::UnaryOperatorClass: { |
| for (Stmt::const_child_iterator CI = Ex->child_begin(), |
| CE = Ex->child_end(); |
| CI != CE; ++CI) { |
| if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) { |
| IE.insert(child); |
| SVal ChildV = State->getSVal(child, LCtx); |
| R.markInteresting(ChildV); |
| } |
| } |
| break; |
| } |
| } |
| |
| R.markInteresting(V); |
| } |
| |
| static void reversePropagateInterestingSymbols(BugReport &R, |
| InterestingExprs &IE, |
| const ProgramState *State, |
| const LocationContext *CalleeCtx, |
| const LocationContext *CallerCtx) |
| { |
| // FIXME: Handle non-CallExpr-based CallEvents. |
| const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame(); |
| const Stmt *CallSite = Callee->getCallSite(); |
| if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) { |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) { |
| FunctionDecl::param_const_iterator PI = FD->param_begin(), |
| PE = FD->param_end(); |
| CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end(); |
| for (; AI != AE && PI != PE; ++AI, ++PI) { |
| if (const Expr *ArgE = *AI) { |
| if (const ParmVarDecl *PD = *PI) { |
| Loc LV = State->getLValue(PD, CalleeCtx); |
| if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV))) |
| IE.insert(ArgE); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Functions for determining if a loop was executed 0 times. |
| //===----------------------------------------------------------------------===// |
| |
| static bool isLoop(const Stmt *Term) { |
| switch (Term->getStmtClass()) { |
| case Stmt::ForStmtClass: |
| case Stmt::WhileStmtClass: |
| case Stmt::ObjCForCollectionStmtClass: |
| case Stmt::CXXForRangeStmtClass: |
| return true; |
| default: |
| // Note that we intentionally do not include do..while here. |
| return false; |
| } |
| } |
| |
| static bool isJumpToFalseBranch(const BlockEdge *BE) { |
| const CFGBlock *Src = BE->getSrc(); |
| assert(Src->succ_size() == 2); |
| return (*(Src->succ_begin()+1) == BE->getDst()); |
| } |
| |
| /// Return true if the terminator is a loop and the destination is the |
| /// false branch. |
| static bool isLoopJumpPastBody(const Stmt *Term, const BlockEdge *BE) { |
| if (!isLoop(Term)) |
| return false; |
| |
| // Did we take the false branch? |
| return isJumpToFalseBranch(BE); |
| } |
| |
| static bool isContainedByStmt(ParentMap &PM, const Stmt *S, const Stmt *SubS) { |
| while (SubS) { |
| if (SubS == S) |
| return true; |
| SubS = PM.getParent(SubS); |
| } |
| return false; |
| } |
| |
| static const Stmt *getStmtBeforeCond(ParentMap &PM, const Stmt *Term, |
| const ExplodedNode *N) { |
| while (N) { |
| Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>(); |
| if (SP) { |
| const Stmt *S = SP->getStmt(); |
| if (!isContainedByStmt(PM, Term, S)) |
| return S; |
| } |
| N = N->getFirstPred(); |
| } |
| return 0; |
| } |
| |
| static bool isInLoopBody(ParentMap &PM, const Stmt *S, const Stmt *Term) { |
| const Stmt *LoopBody = 0; |
| switch (Term->getStmtClass()) { |
| case Stmt::CXXForRangeStmtClass: { |
| const CXXForRangeStmt *FR = cast<CXXForRangeStmt>(Term); |
| if (isContainedByStmt(PM, FR->getInc(), S)) |
| return true; |
| if (isContainedByStmt(PM, FR->getLoopVarStmt(), S)) |
| return true; |
| LoopBody = FR->getBody(); |
| break; |
| } |
| case Stmt::ForStmtClass: { |
| const ForStmt *FS = cast<ForStmt>(Term); |
| if (isContainedByStmt(PM, FS->getInc(), S)) |
| return true; |
| LoopBody = FS->getBody(); |
| break; |
| } |
| case Stmt::ObjCForCollectionStmtClass: { |
| const ObjCForCollectionStmt *FC = cast<ObjCForCollectionStmt>(Term); |
| LoopBody = FC->getBody(); |
| break; |
| } |
| case Stmt::WhileStmtClass: |
| LoopBody = cast<WhileStmt>(Term)->getBody(); |
| break; |
| default: |
| return false; |
| } |
| return isContainedByStmt(PM, LoopBody, S); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top-level logic for generating extensive path diagnostics. |
| //===----------------------------------------------------------------------===// |
| |
| static bool GenerateExtensivePathDiagnostic(PathDiagnostic& PD, |
| PathDiagnosticBuilder &PDB, |
| const ExplodedNode *N, |
| LocationContextMap &LCM, |
| ArrayRef<BugReporterVisitor *> visitors) { |
| EdgeBuilder EB(PD, PDB); |
| const SourceManager& SM = PDB.getSourceManager(); |
| StackDiagVector CallStack; |
| InterestingExprs IE; |
| |
| const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin()); |
| while (NextNode) { |
| N = NextNode; |
| NextNode = N->getFirstPred(); |
| ProgramPoint P = N->getLocation(); |
| |
| do { |
| if (Optional<PostStmt> PS = P.getAs<PostStmt>()) { |
| if (const Expr *Ex = PS->getStmtAs<Expr>()) |
| reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, |
| N->getState().getPtr(), Ex, |
| N->getLocationContext()); |
| } |
| |
| if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) { |
| const Stmt *S = CE->getCalleeContext()->getCallSite(); |
| if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) { |
| reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, |
| N->getState().getPtr(), Ex, |
| N->getLocationContext()); |
| } |
| |
| PathDiagnosticCallPiece *C = |
| PathDiagnosticCallPiece::construct(N, *CE, SM); |
| LCM[&C->path] = CE->getCalleeContext(); |
| |
| EB.addEdge(C->callReturn, /*AlwaysAdd=*/true, /*IsPostJump=*/true); |
| EB.flushLocations(); |
| |
| PD.getActivePath().push_front(C); |
| PD.pushActivePath(&C->path); |
| CallStack.push_back(StackDiagPair(C, N)); |
| break; |
| } |
| |
| // Pop the call hierarchy if we are done walking the contents |
| // of a function call. |
| if (Optional<CallEnter> CE = P.getAs<CallEnter>()) { |
| // Add an edge to the start of the function. |
| const Decl *D = CE->getCalleeContext()->getDecl(); |
| PathDiagnosticLocation pos = |
| PathDiagnosticLocation::createBegin(D, SM); |
| EB.addEdge(pos); |
| |
| // Flush all locations, and pop the active path. |
| bool VisitedEntireCall = PD.isWithinCall(); |
| EB.flushLocations(); |
| PD.popActivePath(); |
| PDB.LC = N->getLocationContext(); |
| |
| // Either we just added a bunch of stuff to the top-level path, or |
| // we have a previous CallExitEnd. If the former, it means that the |
| // path terminated within a function call. We must then take the |
| // current contents of the active path and place it within |
| // a new PathDiagnosticCallPiece. |
| PathDiagnosticCallPiece *C; |
| if (VisitedEntireCall) { |
| C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front()); |
| } else { |
| const Decl *Caller = CE->getLocationContext()->getDecl(); |
| C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller); |
| LCM[&C->path] = CE->getCalleeContext(); |
| } |
| |
| C->setCallee(*CE, SM); |
| EB.addContext(C->getLocation()); |
| |
| if (!CallStack.empty()) { |
| assert(CallStack.back().first == C); |
| CallStack.pop_back(); |
| } |
| break; |
| } |
| |
| // Note that is important that we update the LocationContext |
| // after looking at CallExits. CallExit basically adds an |
| // edge in the *caller*, so we don't want to update the LocationContext |
| // too soon. |
| PDB.LC = N->getLocationContext(); |
| |
| // Block edges. |
| if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) { |
| // Does this represent entering a call? If so, look at propagating |
| // interesting symbols across call boundaries. |
| if (NextNode) { |
| const LocationContext *CallerCtx = NextNode->getLocationContext(); |
| const LocationContext *CalleeCtx = PDB.LC; |
| if (CallerCtx != CalleeCtx) { |
| reversePropagateInterestingSymbols(*PDB.getBugReport(), IE, |
| N->getState().getPtr(), |
| CalleeCtx, CallerCtx); |
| } |
| } |
| |
| // Are we jumping to the head of a loop? Add a special diagnostic. |
| if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) { |
| PathDiagnosticLocation L(Loop, SM, PDB.LC); |
| const CompoundStmt *CS = NULL; |
| |
| if (const ForStmt *FS = dyn_cast<ForStmt>(Loop)) |
| CS = dyn_cast<CompoundStmt>(FS->getBody()); |
| else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop)) |
| CS = dyn_cast<CompoundStmt>(WS->getBody()); |
| |
| PathDiagnosticEventPiece *p = |
| new PathDiagnosticEventPiece(L, |
| "Looping back to the head of the loop"); |
| p->setPrunable(true); |
| |
| EB.addEdge(p->getLocation(), true); |
| PD.getActivePath().push_front(p); |
| |
| if (CS) { |
| PathDiagnosticLocation BL = |
| PathDiagnosticLocation::createEndBrace(CS, SM); |
| EB.addEdge(BL); |
| } |
| } |
| |
| const CFGBlock *BSrc = BE->getSrc(); |
| ParentMap &PM = PDB.getParentMap(); |
| |
| if (const Stmt *Term = BSrc->getTerminator()) { |
| // Are we jumping past the loop body without ever executing the |
| // loop (because the condition was false)? |
| if (isLoopJumpPastBody(Term, &*BE) && |
| !isInLoopBody(PM, |
| getStmtBeforeCond(PM, |
| BSrc->getTerminatorCondition(), |
| N), |
| Term)) { |
| PathDiagnosticLocation L(Term, SM, PDB.LC); |
| PathDiagnosticEventPiece *PE = |
| new PathDiagnosticEventPiece(L, "Loop body executed 0 times"); |
| PE->setPrunable(true); |
| |
| EB.addEdge(PE->getLocation(), true); |
| PD.getActivePath().push_front(PE); |
| } |
| |
| // In any case, add the terminator as the current statement |
| // context for control edges. |
| EB.addContext(Term); |
| } |
| |
| break; |
| } |
| |
| if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) { |
| Optional<CFGElement> First = BE->getFirstElement(); |
| if (Optional<CFGStmt> S = First ? First->getAs<CFGStmt>() : None) { |
| const Stmt *stmt = S->getStmt(); |
| if (IsControlFlowExpr(stmt)) { |
| // Add the proper context for '&&', '||', and '?'. |
| EB.addContext(stmt); |
| } |
| else |
| EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt()); |
| } |
| |
| break; |
| } |
| |
| |
| } while (0); |
| |
| if (!NextNode) |
| continue; |
| |
| // Add pieces from custom visitors. |
| BugReport *R = PDB.getBugReport(); |
| for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(), |
| E = visitors.end(); |
| I != E; ++I) { |
| if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) { |
| const PathDiagnosticLocation &Loc = p->getLocation(); |
| EB.addEdge(Loc, true); |
| PD.getActivePath().push_front(p); |
| updateStackPiecesWithMessage(p, CallStack); |
| |
| if (const Stmt *S = Loc.asStmt()) |
| EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt()); |
| } |
| } |
| } |
| |
| return PDB.getBugReport()->isValid(); |
| } |
| |
| /// \brief Adds a sanitized control-flow diagnostic edge to a path. |
| static void addEdgeToPath(PathPieces &path, |
| PathDiagnosticLocation &PrevLoc, |
| PathDiagnosticLocation NewLoc, |
| const LocationContext *LC) { |
| if (!NewLoc.isValid()) |
| return; |
| |
| SourceLocation NewLocL = NewLoc.asLocation(); |
| if (NewLocL.isInvalid()) |
| return; |
| |
| if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) { |
| PrevLoc = NewLoc; |
| return; |
| } |
| |
| // Ignore self-edges, which occur when there are multiple nodes at the same |
| // statement. |
| if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt()) |
| return; |
| |
| path.push_front(new PathDiagnosticControlFlowPiece(NewLoc, |
| PrevLoc)); |
| PrevLoc = NewLoc; |
| } |
| |
| /// A customized wrapper for CFGBlock::getTerminatorCondition() |
| /// which returns the element for ObjCForCollectionStmts. |
| static const Stmt *getTerminatorCondition(const CFGBlock *B) { |
| const Stmt *S = B->getTerminatorCondition(); |
| if (const ObjCForCollectionStmt *FS = |
| dyn_cast_or_null<ObjCForCollectionStmt>(S)) |
| return FS->getElement(); |
| return S; |
| } |
| |
| static const char StrEnteringLoop[] = "Entering loop body"; |
| static const char StrLoopBodyZero[] = "Loop body executed 0 times"; |
| static const char StrLoopRangeEmpty[] = |
| "Loop body skipped when range is empty"; |
| static const char StrLoopCollectionEmpty[] = |
| "Loop body skipped when collection is empty"; |
| |
| static bool |
| GenerateAlternateExtensivePathDiagnostic(PathDiagnostic& PD, |
| PathDiagnosticBuilder &PDB, |
| const ExplodedNode *N, |
| LocationContextMap &LCM, |
| ArrayRef<BugReporterVisitor *> visitors) { |
| |
| BugReport *report = PDB.getBugReport(); |
| const SourceManager& SM = PDB.getSourceManager(); |
| StackDiagVector CallStack; |
| InterestingExprs IE; |
| |
| PathDiagnosticLocation PrevLoc = PD.getLocation(); |
| |
| const ExplodedNode *NextNode = N->getFirstPred(); |
| while (NextNode) { |
| N = NextNode; |
| NextNode = N->getFirstPred(); |
| ProgramPoint P = N->getLocation(); |
| |
| do { |
| // Have we encountered an entrance to a call? It may be |
| // the case that we have not encountered a matching |
| // call exit before this point. This means that the path |
| // terminated within the call itself. |
| if (Optional<CallEnter> CE = P.getAs<CallEnter>()) { |
| // Add an edge to the start of the function. |
| const StackFrameContext *CalleeLC = CE->getCalleeContext(); |
| const Decl *D = CalleeLC->getDecl(); |
| addEdgeToPath(PD.getActivePath(), PrevLoc, |
| PathDiagnosticLocation::createBegin(D, SM), |
| CalleeLC); |
| |
| // Did we visit an entire call? |
| bool VisitedEntireCall = PD.isWithinCall(); |
| PD.popActivePath(); |
| |
| PathDiagnosticCallPiece *C; |
| if (VisitedEntireCall) { |
| PathDiagnosticPiece *P = PD.getActivePath().front().getPtr(); |
| C = cast<PathDiagnosticCallPiece>(P); |
| } else { |
| const Decl *Caller = CE->getLocationContext()->getDecl(); |
| C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller); |
| |
| // Since we just transferred the path over to the call piece, |
| // reset the mapping from active to location context. |
| assert(PD.getActivePath().size() == 1 && |
| PD.getActivePath().front() == C); |
| LCM[&PD.getActivePath()] = 0; |
| |
| // Record the location context mapping for the path within |
| // the call. |
| assert(LCM[&C->path] == 0 || |
| LCM[&C->path] == CE->getCalleeContext()); |
| LCM[&C->path] = CE->getCalleeContext(); |
| |
| // If this is the first item in the active path, record |
| // the new mapping from active path to location context. |
| const LocationContext *&NewLC = LCM[&PD.getActivePath()]; |
| if (!NewLC) |
| NewLC = N->getLocationContext(); |
| |
| PDB.LC = NewLC; |
| } |
| C->setCallee(*CE, SM); |
| |
| // Update the previous location in the active path. |
| PrevLoc = C->getLocation(); |
| |
| if (!CallStack.empty()) { |
| assert(CallStack.back().first == C); |
| CallStack.pop_back(); |
| } |
| break; |
| } |
| |
| // Query the location context here and the previous location |
| // as processing CallEnter may change the active path. |
| PDB.LC = N->getLocationContext(); |
| |
| // Record the mapping from the active path to the location |
| // context. |
| assert(!LCM[&PD.getActivePath()] || |
| LCM[&PD.getActivePath()] == PDB.LC); |
| LCM[&PD.getActivePath()] = PDB.LC; |
| |
| // Have we encountered an exit from a function call? |
| if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) { |
| const Stmt *S = CE->getCalleeContext()->getCallSite(); |
| // Propagate the interesting symbols accordingly. |
| if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) { |
| reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, |
| N->getState().getPtr(), Ex, |
| N->getLocationContext()); |
| } |
| |
| // We are descending into a call (backwards). Construct |
| // a new call piece to contain the path pieces for that call. |
| PathDiagnosticCallPiece *C = |
| PathDiagnosticCallPiece::construct(N, *CE, SM); |
| |
| // Record the location context for this call piece. |
| LCM[&C->path] = CE->getCalleeContext(); |
| |
| // Add the edge to the return site. |
| addEdgeToPath(PD.getActivePath(), PrevLoc, C->callReturn, PDB.LC); |
| PD.getActivePath().push_front(C); |
| PrevLoc.invalidate(); |
| |
| // Make the contents of the call the active path for now. |
| PD.pushActivePath(&C->path); |
| CallStack.push_back(StackDiagPair(C, N)); |
| break; |
| } |
| |
| if (Optional<PostStmt> PS = P.getAs<PostStmt>()) { |
| // For expressions, make sure we propagate the |
| // interesting symbols correctly. |
| if (const Expr *Ex = PS->getStmtAs<Expr>()) |
| reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, |
| N->getState().getPtr(), Ex, |
| N->getLocationContext()); |
| |
| // Add an edge. If this is an ObjCForCollectionStmt do |
| // not add an edge here as it appears in the CFG both |
| // as a terminator and as a terminator condition. |
| if (!isa<ObjCForCollectionStmt>(PS->getStmt())) { |
| PathDiagnosticLocation L = |
| PathDiagnosticLocation(PS->getStmt(), SM, PDB.LC); |
| addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC); |
| } |
| break; |
| } |
| |
| // Block edges. |
| if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) { |
| // Does this represent entering a call? If so, look at propagating |
| // interesting symbols across call boundaries. |
| if (NextNode) { |
| const LocationContext *CallerCtx = NextNode->getLocationContext(); |
| const LocationContext *CalleeCtx = PDB.LC; |
| if (CallerCtx != CalleeCtx) { |
| reversePropagateInterestingSymbols(*PDB.getBugReport(), IE, |
| N->getState().getPtr(), |
| CalleeCtx, CallerCtx); |
| } |
| } |
| |
| // Are we jumping to the head of a loop? Add a special diagnostic. |
| if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) { |
| PathDiagnosticLocation L(Loop, SM, PDB.LC); |
| const Stmt *Body = NULL; |
| |
| if (const ForStmt *FS = dyn_cast<ForStmt>(Loop)) |
| Body = FS->getBody(); |
| else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop)) |
| Body = WS->getBody(); |
| else if (const ObjCForCollectionStmt *OFS = |
| dyn_cast<ObjCForCollectionStmt>(Loop)) { |
| Body = OFS->getBody(); |
| } else if (const CXXForRangeStmt *FRS = |
| dyn_cast<CXXForRangeStmt>(Loop)) { |
| Body = FRS->getBody(); |
| } |
| // do-while statements are explicitly excluded here |
| |
| PathDiagnosticEventPiece *p = |
| new PathDiagnosticEventPiece(L, "Looping back to the head " |
| "of the loop"); |
| p->setPrunable(true); |
| |
| addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC); |
| PD.getActivePath().push_front(p); |
| |
| if (const CompoundStmt *CS = dyn_cast_or_null<CompoundStmt>(Body)) { |
| addEdgeToPath(PD.getActivePath(), PrevLoc, |
| PathDiagnosticLocation::createEndBrace(CS, SM), |
| PDB.LC); |
| } |
| } |
| |
| const CFGBlock *BSrc = BE->getSrc(); |
| ParentMap &PM = PDB.getParentMap(); |
| |
| if (const Stmt *Term = BSrc->getTerminator()) { |
| // Are we jumping past the loop body without ever executing the |
| // loop (because the condition was false)? |
| if (isLoop(Term)) { |
| const Stmt *TermCond = getTerminatorCondition(BSrc); |
| bool IsInLoopBody = |
| isInLoopBody(PM, getStmtBeforeCond(PM, TermCond, N), Term); |
| |
| const char *str = 0; |
| |
| if (isJumpToFalseBranch(&*BE)) { |
| if (!IsInLoopBody) { |
| if (isa<ObjCForCollectionStmt>(Term)) { |
| str = StrLoopCollectionEmpty; |
| } else if (isa<CXXForRangeStmt>(Term)) { |
| str = StrLoopRangeEmpty; |
| } else { |
| str = StrLoopBodyZero; |
| } |
| } |
| } else { |
| str = StrEnteringLoop; |
| } |
| |
| if (str) { |
| PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, PDB.LC); |
| PathDiagnosticEventPiece *PE = |
| new PathDiagnosticEventPiece(L, str); |
| PE->setPrunable(true); |
| addEdgeToPath(PD.getActivePath(), PrevLoc, |
| PE->getLocation(), PDB.LC); |
| PD.getActivePath().push_front(PE); |
| } |
| } else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) || |
| isa<GotoStmt>(Term)) { |
| PathDiagnosticLocation L(Term, SM, PDB.LC); |
| addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC); |
| } |
| } |
| break; |
| } |
| } while (0); |
| |
| if (!NextNode) |
| continue; |
| |
| // Add pieces from custom visitors. |
| for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(), |
| E = visitors.end(); |
| I != E; ++I) { |
| if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *report)) { |
| addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC); |
| PD.getActivePath().push_front(p); |
| updateStackPiecesWithMessage(p, CallStack); |
| } |
| } |
| } |
| |
| // Add an edge to the start of the function. |
| // We'll prune it out later, but it helps make diagnostics more uniform. |
| const StackFrameContext *CalleeLC = PDB.LC->getCurrentStackFrame(); |
| const Decl *D = CalleeLC->getDecl(); |
| addEdgeToPath(PD.getActivePath(), PrevLoc, |
| PathDiagnosticLocation::createBegin(D, SM), |
| CalleeLC); |
| |
| return report->isValid(); |
| } |
| |
| static const Stmt *getLocStmt(PathDiagnosticLocation L) { |
| if (!L.isValid()) |
| return 0; |
| return L.asStmt(); |
| } |
| |
| static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) { |
| if (!S) |
| return 0; |
| |
| while (true) { |
| S = PM.getParentIgnoreParens(S); |
| |
| if (!S) |
| break; |
| |
| if (isa<ExprWithCleanups>(S) || |
| isa<CXXBindTemporaryExpr>(S) || |
| isa<SubstNonTypeTemplateParmExpr>(S)) |
| continue; |
| |
| break; |
| } |
| |
| return S; |
| } |
| |
| static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) { |
| switch (S->getStmtClass()) { |
| case Stmt::BinaryOperatorClass: { |
| const BinaryOperator *BO = cast<BinaryOperator>(S); |
| if (!BO->isLogicalOp()) |
| return false; |
| return BO->getLHS() == Cond || BO->getRHS() == Cond; |
| } |
| case Stmt::IfStmtClass: |
| return cast<IfStmt>(S)->getCond() == Cond; |
| case Stmt::ForStmtClass: |
| return cast<ForStmt>(S)->getCond() == Cond; |
| case Stmt::WhileStmtClass: |
| return cast<WhileStmt>(S)->getCond() == Cond; |
| case Stmt::DoStmtClass: |
| return cast<DoStmt>(S)->getCond() == Cond; |
| case Stmt::ChooseExprClass: |
| return cast<ChooseExpr>(S)->getCond() == Cond; |
| case Stmt::IndirectGotoStmtClass: |
| return cast<IndirectGotoStmt>(S)->getTarget() == Cond; |
| case Stmt::SwitchStmtClass: |
| return cast<SwitchStmt>(S)->getCond() == Cond; |
| case Stmt::BinaryConditionalOperatorClass: |
| return cast<BinaryConditionalOperator>(S)->getCond() == Cond; |
| case Stmt::ConditionalOperatorClass: { |
| const ConditionalOperator *CO = cast<ConditionalOperator>(S); |
| return CO->getCond() == Cond || |
| CO->getLHS() == Cond || |
| CO->getRHS() == Cond; |
| } |
| case Stmt::ObjCForCollectionStmtClass: |
| return cast<ObjCForCollectionStmt>(S)->getElement() == Cond; |
| case Stmt::CXXForRangeStmtClass: { |
| const CXXForRangeStmt *FRS = cast<CXXForRangeStmt>(S); |
| return FRS->getCond() == Cond || FRS->getRangeInit() == Cond; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) { |
| if (const ForStmt *FS = dyn_cast<ForStmt>(FL)) |
| return FS->getInc() == S || FS->getInit() == S; |
| if (const CXXForRangeStmt *FRS = dyn_cast<CXXForRangeStmt>(FL)) |
| return FRS->getInc() == S || FRS->getRangeStmt() == S || |
| FRS->getLoopVarStmt() || FRS->getRangeInit() == S; |
| return false; |
| } |
| |
| typedef llvm::DenseSet<const PathDiagnosticCallPiece *> |
| OptimizedCallsSet; |
| |
| /// Adds synthetic edges from top-level statements to their subexpressions. |
| /// |
| /// This avoids a "swoosh" effect, where an edge from a top-level statement A |
| /// points to a sub-expression B.1 that's not at the start of B. In these cases, |
| /// we'd like to see an edge from A to B, then another one from B to B.1. |
| static void addContextEdges(PathPieces &pieces, SourceManager &SM, |
| const ParentMap &PM, const LocationContext *LCtx) { |
| PathPieces::iterator Prev = pieces.end(); |
| for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E; |
| Prev = I, ++I) { |
| PathDiagnosticControlFlowPiece *Piece = |
| dyn_cast<PathDiagnosticControlFlowPiece>(*I); |
| |
| if (!Piece) |
| continue; |
| |
| PathDiagnosticLocation SrcLoc = Piece->getStartLocation(); |
| SmallVector<PathDiagnosticLocation, 4> SrcContexts; |
| |
| PathDiagnosticLocation NextSrcContext = SrcLoc; |
| const Stmt *InnerStmt = 0; |
| while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) { |
| SrcContexts.push_back(NextSrcContext); |
| InnerStmt = NextSrcContext.asStmt(); |
| NextSrcContext = getEnclosingStmtLocation(InnerStmt, SM, PM, LCtx, |
| /*allowNested=*/true); |
| } |
| |
| // Repeatedly split the edge as necessary. |
| // This is important for nested logical expressions (||, &&, ?:) where we |
| // want to show all the levels of context. |
| while (true) { |
| const Stmt *Dst = getLocStmt(Piece->getEndLocation()); |
| |
| // We are looking at an edge. Is the destination within a larger |
| // expression? |
| PathDiagnosticLocation DstContext = |
| getEnclosingStmtLocation(Dst, SM, PM, LCtx, /*allowNested=*/true); |
| if (!DstContext.isValid() || DstContext.asStmt() == Dst) |
| break; |
| |
| // If the source is in the same context, we're already good. |
| if (std::find(SrcContexts.begin(), SrcContexts.end(), DstContext) != |
| SrcContexts.end()) |
| break; |
| |
| // Update the subexpression node to point to the context edge. |
| Piece->setStartLocation(DstContext); |
| |
| // Try to extend the previous edge if it's at the same level as the source |
| // context. |
| if (Prev != E) { |
| PathDiagnosticControlFlowPiece *PrevPiece = |
| dyn_cast<PathDiagnosticControlFlowPiece>(*Prev); |
| |
| if (PrevPiece) { |
| if (const Stmt *PrevSrc = getLocStmt(PrevPiece->getStartLocation())) { |
| const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM); |
| if (PrevSrcParent == getStmtParent(getLocStmt(DstContext), PM)) { |
| PrevPiece->setEndLocation(DstContext); |
| break; |
| } |
| } |
| } |
| } |
| |
| // Otherwise, split the current edge into a context edge and a |
| // subexpression edge. Note that the context statement may itself have |
| // context. |
| Piece = new PathDiagnosticControlFlowPiece(SrcLoc, DstContext); |
| I = pieces.insert(I, Piece); |
| } |
| } |
| } |
| |
| /// \brief Move edges from a branch condition to a branch target |
| /// when the condition is simple. |
| /// |
| /// This restructures some of the work of addContextEdges. That function |
| /// creates edges this may destroy, but they work together to create a more |
| /// aesthetically set of edges around branches. After the call to |
| /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from |
| /// the branch to the branch condition, and (3) an edge from the branch |
| /// condition to the branch target. We keep (1), but may wish to remove (2) |
| /// and move the source of (3) to the branch if the branch condition is simple. |
| /// |
| static void simplifySimpleBranches(PathPieces &pieces) { |
| for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) { |
| |
| PathDiagnosticControlFlowPiece *PieceI = |
| dyn_cast<PathDiagnosticControlFlowPiece>(*I); |
| |
| if (!PieceI) |
| continue; |
| |
| const Stmt *s1Start = getLocStmt(PieceI->getStartLocation()); |
| const Stmt *s1End = getLocStmt(PieceI->getEndLocation()); |
| |
| if (!s1Start || !s1End) |
| continue; |
| |
| PathPieces::iterator NextI = I; ++NextI; |
| if (NextI == E) |
| break; |
| |
| PathDiagnosticControlFlowPiece *PieceNextI = 0; |
| |
| while (true) { |
| if (NextI == E) |
| break; |
| |
| PathDiagnosticEventPiece *EV = dyn_cast<PathDiagnosticEventPiece>(*NextI); |
| if (EV) { |
| StringRef S = EV->getString(); |
| if (S == StrEnteringLoop || S == StrLoopBodyZero || |
| S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) { |
| ++NextI; |
| continue; |
| } |
| break; |
| } |
| |
| PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(*NextI); |
| break; |
| } |
| |
| if (!PieceNextI) |
| continue; |
| |
| const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation()); |
| const Stmt *s2End = getLocStmt(PieceNextI->getEndLocation()); |
| |
| if (!s2Start || !s2End || s1End != s2Start) |
| continue; |
| |
| // We only perform this transformation for specific branch kinds. |
| // We don't want to do this for do..while, for example. |
| if (!(isa<ForStmt>(s1Start) || isa<WhileStmt>(s1Start) || |
| isa<IfStmt>(s1Start) || isa<ObjCForCollectionStmt>(s1Start) || |
| isa<CXXForRangeStmt>(s1Start))) |
| continue; |
| |
| // Is s1End the branch condition? |
| if (!isConditionForTerminator(s1Start, s1End)) |
| continue; |
| |
| // Perform the hoisting by eliminating (2) and changing the start |
| // location of (3). |
| PieceNextI->setStartLocation(PieceI->getStartLocation()); |
| I = pieces.erase(I); |
| } |
| } |
| |
| /// Returns the number of bytes in the given (character-based) SourceRange. |
| /// |
| /// If the locations in the range are not on the same line, returns None. |
| /// |
| /// Note that this does not do a precise user-visible character or column count. |
| static Optional<size_t> getLengthOnSingleLine(SourceManager &SM, |
| SourceRange Range) { |
| SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()), |
| SM.getExpansionRange(Range.getEnd()).second); |
| |
| FileID FID = SM.getFileID(ExpansionRange.getBegin()); |
| if (FID != SM.getFileID(ExpansionRange.getEnd())) |
| return None; |
| |
| bool Invalid; |
| const llvm::MemoryBuffer *Buffer = SM.getBuffer(FID, &Invalid); |
| if (Invalid) |
| return None; |
| |
| unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin()); |
| unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd()); |
| StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset); |
| |
| // We're searching the raw bytes of the buffer here, which might include |
| // escaped newlines and such. That's okay; we're trying to decide whether the |
| // SourceRange is covering a large or small amount of space in the user's |
| // editor. |
| if (Snippet.find_first_of("\r\n") != StringRef::npos) |
| return None; |
| |
| // This isn't Unicode-aware, but it doesn't need to be. |
| return Snippet.size(); |
| } |
| |
| /// \sa getLengthOnSingleLine(SourceManager, SourceRange) |
| static Optional<size_t> getLengthOnSingleLine(SourceManager &SM, |
| const Stmt *S) { |
| return getLengthOnSingleLine(SM, S->getSourceRange()); |
| } |
| |
| /// Eliminate two-edge cycles created by addContextEdges(). |
| /// |
| /// Once all the context edges are in place, there are plenty of cases where |
| /// there's a single edge from a top-level statement to a subexpression, |
| /// followed by a single path note, and then a reverse edge to get back out to |
| /// the top level. If the statement is simple enough, the subexpression edges |
| /// just add noise and make it harder to understand what's going on. |
| /// |
| /// This function only removes edges in pairs, because removing only one edge |
| /// might leave other edges dangling. |
| /// |
| /// This will not remove edges in more complicated situations: |
| /// - if there is more than one "hop" leading to or from a subexpression. |
| /// - if there is an inlined call between the edges instead of a single event. |
| /// - if the whole statement is large enough that having subexpression arrows |
| /// might be helpful. |
| static void removeContextCycles(PathPieces &Path, SourceManager &SM, |
| ParentMap &PM) { |
| for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) { |
| // Pattern match the current piece and its successor. |
| PathDiagnosticControlFlowPiece *PieceI = |
| dyn_cast<PathDiagnosticControlFlowPiece>(*I); |
| |
| if (!PieceI) { |
| ++I; |
| continue; |
| } |
| |
| const Stmt *s1Start = getLocStmt(PieceI->getStartLocation()); |
| const Stmt *s1End = getLocStmt(PieceI->getEndLocation()); |
| |
| PathPieces::iterator NextI = I; ++NextI; |
| if (NextI == E) |
| break; |
| |
| PathDiagnosticControlFlowPiece *PieceNextI = |
| dyn_cast<PathDiagnosticControlFlowPiece>(*NextI); |
| |
| if (!PieceNextI) { |
| if (isa<PathDiagnosticEventPiece>(*NextI)) { |
| ++NextI; |
| if (NextI == E) |
| break; |
| PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(*NextI); |
| } |
| |
| if (!PieceNextI) { |
| ++I; |
| continue; |
| } |
| } |
| |
| const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation()); |
| const Stmt *s2End = getLocStmt(PieceNextI->getEndLocation()); |
| |
| if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) { |
| const size_t MAX_SHORT_LINE_LENGTH = 80; |
| Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start); |
| if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) { |
| Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start); |
| if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) { |
| Path.erase(I); |
| I = Path.erase(NextI); |
| continue; |
| } |
| } |
| } |
| |
| ++I; |
| } |
| } |
| |
| /// \brief Return true if X is contained by Y. |
| static bool lexicalContains(ParentMap &PM, |
| const Stmt *X, |
| const Stmt *Y) { |
| while (X) { |
| if (X == Y) |
| return true; |
| X = PM.getParent(X); |
| } |
| return false; |
| } |
| |
| // Remove short edges on the same line less than 3 columns in difference. |
| static void removePunyEdges(PathPieces &path, |
| SourceManager &SM, |
| ParentMap &PM) { |
| |
| bool erased = false; |
| |
| for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; |
| erased ? I : ++I) { |
| |
| erased = false; |
| |
| PathDiagnosticControlFlowPiece *PieceI = |
| dyn_cast<PathDiagnosticControlFlowPiece>(*I); |
| |
| if (!PieceI) |
| continue; |
| |
| const Stmt *start = getLocStmt(PieceI->getStartLocation()); |
| const Stmt *end = getLocStmt(PieceI->getEndLocation()); |
| |
| if (!start || !end) |
| continue; |
| |
| const Stmt *endParent = PM.getParent(end); |
| if (!endParent) |
| continue; |
| |
| if (isConditionForTerminator(end, endParent)) |
| continue; |
| |
| SourceLocation FirstLoc = start->getLocStart(); |
| SourceLocation SecondLoc = end->getLocStart(); |
| |
| if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc)) |
| continue; |
| if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc)) |
| std::swap(SecondLoc, FirstLoc); |
| |
| SourceRange EdgeRange(FirstLoc, SecondLoc); |
| Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange); |
| |
| // If the statements are on different lines, continue. |
| if (!ByteWidth) |
| continue; |
| |
| const size_t MAX_PUNY_EDGE_LENGTH = 2; |
| if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) { |
| // FIXME: There are enough /bytes/ between the endpoints of the edge, but |
| // there might not be enough /columns/. A proper user-visible column count |
| // is probably too expensive, though. |
| I = path.erase(I); |
| erased = true; |
| continue; |
| } |
| } |
| } |
| |
| static void removeIdenticalEvents(PathPieces &path) { |
| for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) { |
| PathDiagnosticEventPiece *PieceI = |
| dyn_cast<PathDiagnosticEventPiece>(*I); |
| |
| if (!PieceI) |
| continue; |
| |
| PathPieces::iterator NextI = I; ++NextI; |
| if (NextI == E) |
| return; |
| |
| PathDiagnosticEventPiece *PieceNextI = |
| dyn_cast<PathDiagnosticEventPiece>(*NextI); |
| |
| if (!PieceNextI) |
| continue; |
| |
| // Erase the second piece if it has the same exact message text. |
| if (PieceI->getString() == PieceNextI->getString()) { |
| path.erase(NextI); |
| } |
| } |
| } |
| |
| static bool optimizeEdges(PathPieces &path, SourceManager &SM, |
| OptimizedCallsSet &OCS, |
| LocationContextMap &LCM) { |
| bool hasChanges = false; |
| const LocationContext *LC = LCM[&path]; |
| assert(LC); |
| ParentMap &PM = LC->getParentMap(); |
| |
| for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) { |
| // Optimize subpaths. |
| if (PathDiagnosticCallPiece *CallI = dyn_cast<PathDiagnosticCallPiece>(*I)){ |
| // Record the fact that a call has been optimized so we only do the |
| // effort once. |
| if (!OCS.count(CallI)) { |
| while (optimizeEdges(CallI->path, SM, OCS, LCM)) {} |
| OCS.insert(CallI); |
| } |
| ++I; |
| continue; |
| } |
| |
| // Pattern match the current piece and its successor. |
| PathDiagnosticControlFlowPiece *PieceI = |
| dyn_cast<PathDiagnosticControlFlowPiece>(*I); |
| |
| if (!PieceI) { |
| ++I; |
| continue; |
| } |
| |
| const Stmt *s1Start = getLocStmt(PieceI->getStartLocation()); |
| const Stmt *s1End = getLocStmt(PieceI->getEndLocation()); |
| const Stmt *level1 = getStmtParent(s1Start, PM); |
| const Stmt *level2 = getStmtParent(s1End, PM); |
| |
| PathPieces::iterator NextI = I; ++NextI; |
| if (NextI == E) |
| break; |
| |
| PathDiagnosticControlFlowPiece *PieceNextI = |
| dyn_cast<PathDiagnosticControlFlowPiece>(*NextI); |
| |
| if (!PieceNextI) { |
| ++I; |
| continue; |
| } |
| |
| const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation()); |
| const Stmt *s2End = getLocStmt(PieceNextI->getEndLocation()); |
| const Stmt *level3 = getStmtParent(s2Start, PM); |
| const Stmt *level4 = getStmtParent(s2End, PM); |
| |
| // Rule I. |
| // |
| // If we have two consecutive control edges whose end/begin locations |
| // are at the same level (e.g. statements or top-level expressions within |
| // a compound statement, or siblings share a single ancestor expression), |
| // then merge them if they have no interesting intermediate event. |
| // |
| // For example: |
| // |
| // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common |
| // parent is '1'. Here 'x.y.z' represents the hierarchy of statements. |
| // |
| // NOTE: this will be limited later in cases where we add barriers |
| // to prevent this optimization. |
| // |
| if (level1 && level1 == level2 && level1 == level3 && level1 == level4) { |
| PieceI->setEndLocation(PieceNextI->getEndLocation()); |
| path.erase(NextI); |
| hasChanges = true; |
| continue; |
| } |
| |
| // Rule II. |
| // |
| // Eliminate edges between subexpressions and parent expressions |
| // when the subexpression is consumed. |
| // |
| // NOTE: this will be limited later in cases where we add barriers |
| // to prevent this optimization. |
| // |
| if (s1End && s1End == s2Start && level2) { |
| bool removeEdge = false; |
| // Remove edges into the increment or initialization of a |
| // loop that have no interleaving event. This means that |
| // they aren't interesting. |
| if (isIncrementOrInitInForLoop(s1End, level2)) |
| removeEdge = true; |
| // Next only consider edges that are not anchored on |
| // the condition of a terminator. This are intermediate edges |
| // that we might want to trim. |
| else if (!isConditionForTerminator(level2, s1End)) { |
| // Trim edges on expressions that are consumed by |
| // the parent expression. |
| if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) { |
| removeEdge = true; |
| } |
| // Trim edges where a lexical containment doesn't exist. |
| // For example: |
| // |
| // X -> Y -> Z |
| // |
| // If 'Z' lexically contains Y (it is an ancestor) and |
| // 'X' does not lexically contain Y (it is a descendant OR |
| // it has no lexical relationship at all) then trim. |
| // |
| // This can eliminate edges where we dive into a subexpression |
| // and then pop back out, etc. |
| else if (s1Start && s2End && |
| lexicalContains(PM, s2Start, s2End) && |
| !lexicalContains(PM, s1End, s1Start)) { |
| removeEdge = true; |
| } |
| // Trim edges from a subexpression back to the top level if the |
| // subexpression is on a different line. |
| // |
| // A.1 -> A -> B |
| // becomes |
| // A.1 -> B |
| // |
| // These edges just look ugly and don't usually add anything. |
| else if (s1Start && s2End && |
| lexicalContains(PM, s1Start, s1End)) { |
| SourceRange EdgeRange(PieceI->getEndLocation().asLocation(), |
| PieceI->getStartLocation().asLocation()); |
| if (!getLengthOnSingleLine(SM, EdgeRange).hasValue()) |
| removeEdge = true; |
| } |
| } |
| |
| if (removeEdge) { |
| PieceI->setEndLocation(PieceNextI->getEndLocation()); |
| path.erase(NextI); |
| hasChanges = true; |
| continue; |
| } |
| } |
| |
| // Optimize edges for ObjC fast-enumeration loops. |
| // |
| // (X -> collection) -> (collection -> element) |
| // |
| // becomes: |
| // |
| // (X -> element) |
| if (s1End == s2Start) { |
| const ObjCForCollectionStmt *FS = |
| dyn_cast_or_null<ObjCForCollectionStmt>(level3); |
| if (FS && FS->getCollection()->IgnoreParens() == s2Start && |
| s2End == FS->getElement()) { |
| PieceI->setEndLocation(PieceNextI->getEndLocation()); |
| path.erase(NextI); |
| hasChanges = true; |
| continue; |
| } |
| } |
| |
| // No changes at this index? Move to the next one. |
| ++I; |
| } |
| |
| if (!hasChanges) { |
| // Adjust edges into subexpressions to make them more uniform |
| // and aesthetically pleasing. |
| addContextEdges(path, SM, PM, LC); |
| // Remove "cyclical" edges that include one or more context edges. |
| removeContextCycles(path, SM, PM); |
| // Hoist edges originating from branch conditions to branches |
| // for simple branches. |
| simplifySimpleBranches(path); |
| // Remove any puny edges left over after primary optimization pass. |
| removePunyEdges(path, SM, PM); |
| // Remove identical events. |
| removeIdenticalEvents(path); |
| } |
| |
| return hasChanges; |
| } |
| |
| /// Drop the very first edge in a path, which should be a function entry edge. |
| /// |
| /// If the first edge is not a function entry edge (say, because the first |
| /// statement had an invalid source location), this function does nothing. |
| // FIXME: We should just generate invalid edges anyway and have the optimizer |
| // deal with them. |
| static void dropFunctionEntryEdge(PathPieces &Path, |
| LocationContextMap &LCM, |
| SourceManager &SM) { |
| const PathDiagnosticControlFlowPiece *FirstEdge = |
| dyn_cast<PathDiagnosticControlFlowPiece>(Path.front()); |
| if (!FirstEdge) |
| return; |
| |
| const Decl *D = LCM[&Path]->getDecl(); |
| PathDiagnosticLocation EntryLoc = PathDiagnosticLocation::createBegin(D, SM); |
| if (FirstEdge->getStartLocation() != EntryLoc) |
| return; |
| |
| Path.pop_front(); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Methods for BugType and subclasses. |
| //===----------------------------------------------------------------------===// |
| void BugType::anchor() { } |
| |
| void BugType::FlushReports(BugReporter &BR) {} |
| |
| void BuiltinBug::anchor() {} |
| |
| //===----------------------------------------------------------------------===// |
| // Methods for BugReport and subclasses. |
| //===----------------------------------------------------------------------===// |
| |
| void BugReport::NodeResolver::anchor() {} |
| |
| void BugReport::addVisitor(BugReporterVisitor* visitor) { |
| if (!visitor) |
| return; |
| |
| llvm::FoldingSetNodeID ID; |
| visitor->Profile(ID); |
| void *InsertPos; |
| |
| if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) { |
| delete visitor; |
| return; |
| } |
| |
| CallbacksSet.InsertNode(visitor, InsertPos); |
| Callbacks.push_back(visitor); |
| ++ConfigurationChangeToken; |
| } |
| |
| BugReport::~BugReport() { |
| for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) { |
| delete *I; |
| } |
| while (!interestingSymbols.empty()) { |
| popInterestingSymbolsAndRegions(); |
| } |
| } |
| |
| const Decl *BugReport::getDeclWithIssue() const { |
| if (DeclWithIssue) |
| return DeclWithIssue; |
| |
| const ExplodedNode *N = getErrorNode(); |
| if (!N) |
| return 0; |
| |
| const LocationContext *LC = N->getLocationContext(); |
| return LC->getCurrentStackFrame()->getDecl(); |
| } |
| |
| void BugReport::Profile(llvm::FoldingSetNodeID& hash) const { |
| hash.AddPointer(&BT); |
| hash.AddString(Description); |
| PathDiagnosticLocation UL = getUniqueingLocation(); |
| if (UL.isValid()) { |
| UL.Profile(hash); |
| } else if (Location.isValid()) { |
| Location.Profile(hash); |
| } else { |
| assert(ErrorNode); |
| hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode)); |
| } |
| |
| for (SmallVectorImpl<SourceRange>::const_iterator I = |
| Ranges.begin(), E = Ranges.end(); I != E; ++I) { |
| const SourceRange range = *I; |
| if (!range.isValid()) |
| continue; |
| hash.AddInteger(range.getBegin().getRawEncoding()); |
| hash.AddInteger(range.getEnd().getRawEncoding()); |
| } |
| } |
| |
| void BugReport::markInteresting(SymbolRef sym) { |
| if (!sym) |
| return; |
| |
| // If the symbol wasn't already in our set, note a configuration change. |
| if (getInterestingSymbols().insert(sym).second) |
| ++ConfigurationChangeToken; |
| |
| if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym)) |
| getInterestingRegions().insert(meta->getRegion()); |
| } |
| |
| void BugReport::markInteresting(const MemRegion *R) { |
| if (!R) |
| return; |
| |
| // If the base region wasn't already in our set, note a configuration change. |
| R = R->getBaseRegion(); |
| if (getInterestingRegions().insert(R).second) |
| ++ConfigurationChangeToken; |
| |
| if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) |
| getInterestingSymbols().insert(SR->getSymbol()); |
| } |
| |
| void BugReport::markInteresting(SVal V) { |
| markInteresting(V.getAsRegion()); |
| markInteresting(V.getAsSymbol()); |
| } |
| |
| void BugReport::markInteresting(const LocationContext *LC) { |
| if (!LC) |
| return; |
| InterestingLocationContexts.insert(LC); |
| } |
| |
| bool BugReport::isInteresting(SVal V) { |
| return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol()); |
| } |
| |
| bool BugReport::isInteresting(SymbolRef sym) { |
| if (!sym) |
| return false; |
| // We don't currently consider metadata symbols to be interesting |
| // even if we know their region is interesting. Is that correct behavior? |
| return getInterestingSymbols().count(sym); |
| } |
| |
| bool BugReport::isInteresting(const MemRegion *R) { |
| if (!R) |
| return false; |
| R = R->getBaseRegion(); |
| bool b = getInterestingRegions().count(R); |
| if (b) |
| return true; |
| if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) |
| return getInterestingSymbols().count(SR->getSymbol()); |
| return false; |
| } |
| |
| bool BugReport::isInteresting(const LocationContext *LC) { |
| if (!LC) |
| return false; |
| return InterestingLocationContexts.count(LC); |
| } |
| |
| void BugReport::lazyInitializeInterestingSets() { |
| if (interestingSymbols.empty()) { |
| interestingSymbols.push_back(new Symbols()); |
| interestingRegions.push_back(new Regions()); |
| } |
| } |
| |
| BugReport::Symbols &BugReport::getInterestingSymbols() { |
| lazyInitializeInterestingSets(); |
| return *interestingSymbols.back(); |
| } |
| |
| BugReport::Regions &BugReport::getInterestingRegions() { |
| lazyInitializeInterestingSets(); |
| return *interestingRegions.back(); |
| } |
| |
| void BugReport::pushInterestingSymbolsAndRegions() { |
| interestingSymbols.push_back(new Symbols(getInterestingSymbols())); |
| interestingRegions.push_back(new Regions(getInterestingRegions())); |
| } |
| |
| void BugReport::popInterestingSymbolsAndRegions() { |
| delete interestingSymbols.pop_back_val(); |
| delete interestingRegions.pop_back_val(); |
| } |
| |
| const Stmt *BugReport::getStmt() const { |
| if (!ErrorNode) |
| return 0; |
| |
| ProgramPoint ProgP = ErrorNode->getLocation(); |
| const Stmt *S = NULL; |
| |
| if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) { |
| CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit(); |
| if (BE->getBlock() == &Exit) |
| S = GetPreviousStmt(ErrorNode); |
| } |
| if (!S) |
| S = PathDiagnosticLocation::getStmt(ErrorNode); |
| |
| return S; |
| } |
| |
| std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator> |
| BugReport::getRanges() { |
| // If no custom ranges, add the range of the statement corresponding to |
| // the error node. |
| if (Ranges.empty()) { |
| if (const Expr *E = dyn_cast_or_null<Expr>(getStmt())) |
| addRange(E->getSourceRange()); |
| else |
| return std::make_pair(ranges_iterator(), ranges_iterator()); |
| } |
| |
| // User-specified absence of range info. |
| if (Ranges.size() == 1 && !Ranges.begin()->isValid()) |
| return std::make_pair(ranges_iterator(), ranges_iterator()); |
| |
| return std::make_pair(Ranges.begin(), Ranges.end()); |
| } |
| |
| PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const { |
| if (ErrorNode) { |
| assert(!Location.isValid() && |
| "Either Location or ErrorNode should be specified but not both."); |
| return PathDiagnosticLocation::createEndOfPath(ErrorNode, SM); |
| } |
| |
| assert(Location.isValid()); |
| return Location; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Methods for BugReporter and subclasses. |
| //===----------------------------------------------------------------------===// |
| |
| BugReportEquivClass::~BugReportEquivClass() { } |
| GRBugReporter::~GRBugReporter() { } |
| BugReporterData::~BugReporterData() {} |
| |
| ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); } |
| |
| ProgramStateManager& |
| GRBugReporter::getStateManager() { return Eng.getStateManager(); } |
| |
| BugReporter::~BugReporter() { |
| FlushReports(); |
| |
| // Free the bug reports we are tracking. |
| typedef std::vector<BugReportEquivClass *> ContTy; |
| for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end(); |
| I != E; ++I) { |
| delete *I; |
| } |
| } |
| |
| void BugReporter::FlushReports() { |
| if (BugTypes.isEmpty()) |
| return; |
| |
| // First flush the warnings for each BugType. This may end up creating new |
| // warnings and new BugTypes. |
| // FIXME: Only NSErrorChecker needs BugType's FlushReports. |
| // Turn NSErrorChecker into a proper checker and remove this. |
| SmallVector<const BugType*, 16> bugTypes; |
| for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I) |
| bugTypes.push_back(*I); |
| for (SmallVectorImpl<const BugType *>::iterator |
| I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I) |
| const_cast<BugType*>(*I)->FlushReports(*this); |
| |
| // We need to flush reports in deterministic order to ensure the order |
| // of the reports is consistent between runs. |
| typedef std::vector<BugReportEquivClass *> ContVecTy; |
| for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end(); |
| EI != EE; ++EI){ |
| BugReportEquivClass& EQ = **EI; |
| FlushReport(EQ); |
| } |
| |
| // BugReporter owns and deletes only BugTypes created implicitly through |
| // EmitBasicReport. |
| // FIXME: There are leaks from checkers that assume that the BugTypes they |
| // create will be destroyed by the BugReporter. |
| llvm::DeleteContainerSeconds(StrBugTypes); |
| |
| // Remove all references to the BugType objects. |
| BugTypes = F.getEmptySet(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PathDiagnostics generation. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// A wrapper around a report graph, which contains only a single path, and its |
| /// node maps. |
| |