blob: f9f7904cb3a06edbdd3fd2cbc3246253f30a66bd [file] [log] [blame]
//===--- TargetInfo.h - Expose information about the target -----*- C++ -*-===//
// The LLVM Compiler Infrastructure
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
/// \file
/// \brief Defines the clang::TargetInfo interface.
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TargetCXXABI.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/Basic/VersionTuple.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/DataTypes.h"
#include <cassert>
#include <string>
#include <vector>
namespace llvm {
struct fltSemantics;
namespace clang {
class DiagnosticsEngine;
class LangOptions;
class MacroBuilder;
class SourceLocation;
class SourceManager;
namespace Builtin { struct Info; }
/// \brief Exposes information about the current target.
class TargetInfo : public RefCountedBase<TargetInfo> {
IntrusiveRefCntPtr<TargetOptions> TargetOpts;
llvm::Triple Triple;
// Target values set by the ctor of the actual target implementation. Default
// values are specified by the TargetInfo constructor.
bool BigEndian;
bool TLSSupported;
bool NoAsmVariants; // True if {|} are normal characters.
unsigned char PointerWidth, PointerAlign;
unsigned char BoolWidth, BoolAlign;
unsigned char IntWidth, IntAlign;
unsigned char HalfWidth, HalfAlign;
unsigned char FloatWidth, FloatAlign;
unsigned char DoubleWidth, DoubleAlign;
unsigned char LongDoubleWidth, LongDoubleAlign;
unsigned char LargeArrayMinWidth, LargeArrayAlign;
unsigned char LongWidth, LongAlign;
unsigned char LongLongWidth, LongLongAlign;
unsigned char SuitableAlign;
unsigned char MinGlobalAlign;
unsigned char MaxAtomicPromoteWidth, MaxAtomicInlineWidth;
unsigned short MaxVectorAlign;
const char *DescriptionString;
const char *UserLabelPrefix;
const char *MCountName;
const llvm::fltSemantics *HalfFormat, *FloatFormat, *DoubleFormat,
unsigned char RegParmMax, SSERegParmMax;
const LangAS::Map *AddrSpaceMap;
mutable StringRef PlatformName;
mutable VersionTuple PlatformMinVersion;
unsigned HasAlignMac68kSupport : 1;
unsigned RealTypeUsesObjCFPRet : 3;
unsigned ComplexLongDoubleUsesFP2Ret : 1;
// TargetInfo Constructor. Default initializes all fields.
TargetInfo(const llvm::Triple &T);
/// \brief Construct a target for the given options.
/// \param Opts - The options to use to initialize the target. The target may
/// modify the options to canonicalize the target feature information to match
/// what the backend expects.
static TargetInfo* CreateTargetInfo(DiagnosticsEngine &Diags,
TargetOptions *Opts);
virtual ~TargetInfo();
/// \brief Retrieve the target options.
TargetOptions &getTargetOpts() const {
assert(TargetOpts && "Missing target options");
return *TargetOpts;
void setTargetOpts(TargetOptions *TargetOpts) {
this->TargetOpts = TargetOpts;
///===---- Target Data Type Query Methods -------------------------------===//
enum IntType {
NoInt = 0,
enum RealType {
NoFloat = 255,
Float = 0,
/// \brief The different kinds of __builtin_va_list types defined by
/// the target implementation.
enum BuiltinVaListKind {
/// typedef char* __builtin_va_list;
CharPtrBuiltinVaList = 0,
/// typedef void* __builtin_va_list;
/// __builtin_va_list as defind by the AArch64 ABI
/// __builtin_va_list as defined by the PNaCl ABI:
/// __builtin_va_list as defined by the Power ABI:
/// /resources/downloads/Power-Arch-32-bit-ABI-supp-1.0-Embedded.pdf
/// __builtin_va_list as defined by the x86-64 ABI:
/// __builtin_va_list as defined by ARM AAPCS ABI
// /help/topic/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf
// typedef struct __va_list_tag
// {
// long __gpr;
// long __fpr;
// void *__overflow_arg_area;
// void *__reg_save_area;
// } va_list[1];
IntType SizeType, IntMaxType, UIntMaxType, PtrDiffType, IntPtrType, WCharType,
WIntType, Char16Type, Char32Type, Int64Type, SigAtomicType,
/// \brief Whether Objective-C's built-in boolean type should be signed char.
/// Otherwise, when this flag is not set, the normal built-in boolean type is
/// used.
unsigned UseSignedCharForObjCBool : 1;
/// Control whether the alignment of bit-field types is respected when laying
/// out structures. If true, then the alignment of the bit-field type will be
/// used to (a) impact the alignment of the containing structure, and (b)
/// ensure that the individual bit-field will not straddle an alignment
/// boundary.
unsigned UseBitFieldTypeAlignment : 1;
/// \brief Whether zero length bitfields (e.g., int : 0;) force alignment of
/// the next bitfield.
/// If the alignment of the zero length bitfield is greater than the member
/// that follows it, `bar', `bar' will be aligned as the type of the
/// zero-length bitfield.
unsigned UseZeroLengthBitfieldAlignment : 1;
/// If non-zero, specifies a fixed alignment value for bitfields that follow
/// zero length bitfield, regardless of the zero length bitfield type.
unsigned ZeroLengthBitfieldBoundary;
/// \brief Specify if mangling based on address space map should be used or
/// not for language specific address spaces
bool UseAddrSpaceMapMangling;
IntType getSizeType() const { return SizeType; }
IntType getIntMaxType() const { return IntMaxType; }
IntType getUIntMaxType() const { return UIntMaxType; }
IntType getPtrDiffType(unsigned AddrSpace) const {
return AddrSpace == 0 ? PtrDiffType : getPtrDiffTypeV(AddrSpace);
IntType getIntPtrType() const { return IntPtrType; }
IntType getWCharType() const { return WCharType; }
IntType getWIntType() const { return WIntType; }
IntType getChar16Type() const { return Char16Type; }
IntType getChar32Type() const { return Char32Type; }
IntType getInt64Type() const { return Int64Type; }
IntType getSigAtomicType() const { return SigAtomicType; }
IntType getProcessIDType() const { return ProcessIDType; }
/// \brief Return the width (in bits) of the specified integer type enum.
/// For example, SignedInt -> getIntWidth().
unsigned getTypeWidth(IntType T) const;
/// \brief Return integer type with specified width.
IntType getIntTypeByWidth(unsigned BitWidth, bool IsSigned) const;
/// \brief Return floating point type with specified width.
RealType getRealTypeByWidth(unsigned BitWidth) const;
/// \brief Return the alignment (in bits) of the specified integer type enum.
/// For example, SignedInt -> getIntAlign().
unsigned getTypeAlign(IntType T) const;
/// \brief Returns true if the type is signed; false otherwise.
static bool isTypeSigned(IntType T);
/// \brief Return the width of pointers on this target, for the
/// specified address space.
uint64_t getPointerWidth(unsigned AddrSpace) const {
return AddrSpace == 0 ? PointerWidth : getPointerWidthV(AddrSpace);
uint64_t getPointerAlign(unsigned AddrSpace) const {
return AddrSpace == 0 ? PointerAlign : getPointerAlignV(AddrSpace);
/// \brief Return the size of '_Bool' and C++ 'bool' for this target, in bits.
unsigned getBoolWidth() const { return BoolWidth; }
/// \brief Return the alignment of '_Bool' and C++ 'bool' for this target.
unsigned getBoolAlign() const { return BoolAlign; }
unsigned getCharWidth() const { return 8; } // FIXME
unsigned getCharAlign() const { return 8; } // FIXME
/// \brief Return the size of 'signed short' and 'unsigned short' for this
/// target, in bits.
unsigned getShortWidth() const { return 16; } // FIXME
/// \brief Return the alignment of 'signed short' and 'unsigned short' for
/// this target.
unsigned getShortAlign() const { return 16; } // FIXME
/// getIntWidth/Align - Return the size of 'signed int' and 'unsigned int' for
/// this target, in bits.
unsigned getIntWidth() const { return IntWidth; }
unsigned getIntAlign() const { return IntAlign; }
/// getLongWidth/Align - Return the size of 'signed long' and 'unsigned long'
/// for this target, in bits.
unsigned getLongWidth() const { return LongWidth; }
unsigned getLongAlign() const { return LongAlign; }
/// getLongLongWidth/Align - Return the size of 'signed long long' and
/// 'unsigned long long' for this target, in bits.
unsigned getLongLongWidth() const { return LongLongWidth; }
unsigned getLongLongAlign() const { return LongLongAlign; }
/// \brief Determine whether the __int128 type is supported on this target.
virtual bool hasInt128Type() const { return getPointerWidth(0) >= 64; } // FIXME
/// \brief Return the alignment that is suitable for storing any
/// object with a fundamental alignment requirement.
unsigned getSuitableAlign() const { return SuitableAlign; }
/// getMinGlobalAlign - Return the minimum alignment of a global variable,
/// unless its alignment is explicitly reduced via attributes.
unsigned getMinGlobalAlign() const { return MinGlobalAlign; }
/// getWCharWidth/Align - Return the size of 'wchar_t' for this target, in
/// bits.
unsigned getWCharWidth() const { return getTypeWidth(WCharType); }
unsigned getWCharAlign() const { return getTypeAlign(WCharType); }
/// getChar16Width/Align - Return the size of 'char16_t' for this target, in
/// bits.
unsigned getChar16Width() const { return getTypeWidth(Char16Type); }
unsigned getChar16Align() const { return getTypeAlign(Char16Type); }
/// getChar32Width/Align - Return the size of 'char32_t' for this target, in
/// bits.
unsigned getChar32Width() const { return getTypeWidth(Char32Type); }
unsigned getChar32Align() const { return getTypeAlign(Char32Type); }
/// getHalfWidth/Align/Format - Return the size/align/format of 'half'.
unsigned getHalfWidth() const { return HalfWidth; }
unsigned getHalfAlign() const { return HalfAlign; }
const llvm::fltSemantics &getHalfFormat() const { return *HalfFormat; }
/// getFloatWidth/Align/Format - Return the size/align/format of 'float'.
unsigned getFloatWidth() const { return FloatWidth; }
unsigned getFloatAlign() const { return FloatAlign; }
const llvm::fltSemantics &getFloatFormat() const { return *FloatFormat; }
/// getDoubleWidth/Align/Format - Return the size/align/format of 'double'.
unsigned getDoubleWidth() const { return DoubleWidth; }
unsigned getDoubleAlign() const { return DoubleAlign; }
const llvm::fltSemantics &getDoubleFormat() const { return *DoubleFormat; }
/// getLongDoubleWidth/Align/Format - Return the size/align/format of 'long
/// double'.
unsigned getLongDoubleWidth() const { return LongDoubleWidth; }
unsigned getLongDoubleAlign() const { return LongDoubleAlign; }
const llvm::fltSemantics &getLongDoubleFormat() const {
return *LongDoubleFormat;
/// \brief Return the value for the C99 FLT_EVAL_METHOD macro.
virtual unsigned getFloatEvalMethod() const { return 0; }
// getLargeArrayMinWidth/Align - Return the minimum array size that is
// 'large' and its alignment.
unsigned getLargeArrayMinWidth() const { return LargeArrayMinWidth; }
unsigned getLargeArrayAlign() const { return LargeArrayAlign; }
/// \brief Return the maximum width lock-free atomic operation which will
/// ever be supported for the given target
unsigned getMaxAtomicPromoteWidth() const { return MaxAtomicPromoteWidth; }
/// \brief Return the maximum width lock-free atomic operation which can be
/// inlined given the supported features of the given target.
unsigned getMaxAtomicInlineWidth() const { return MaxAtomicInlineWidth; }
/// \brief Return the maximum vector alignment supported for the given target.
unsigned getMaxVectorAlign() const { return MaxVectorAlign; }
/// \brief Return the size of intmax_t and uintmax_t for this target, in bits.
unsigned getIntMaxTWidth() const {
return getTypeWidth(IntMaxType);
// Return the size of unwind_word for this target.
unsigned getUnwindWordWidth() const { return getPointerWidth(0); }
/// \brief Return the "preferred" register width on this target.
unsigned getRegisterWidth() const {
// Currently we assume the register width on the target matches the pointer
// width, we can introduce a new variable for this if/when some target wants
// it.
return PointerWidth;
/// \brief Returns the default value of the __USER_LABEL_PREFIX__ macro,
/// which is the prefix given to user symbols by default.
/// On most platforms this is "_", but it is "" on some, and "." on others.
const char *getUserLabelPrefix() const {
return UserLabelPrefix;
/// \brief Returns the name of the mcount instrumentation function.
const char *getMCountName() const {
return MCountName;
/// \brief Check if the Objective-C built-in boolean type should be signed
/// char.
/// Otherwise, if this returns false, the normal built-in boolean type
/// should also be used for Objective-C.
bool useSignedCharForObjCBool() const {
return UseSignedCharForObjCBool;
void noSignedCharForObjCBool() {
UseSignedCharForObjCBool = false;
/// \brief Check whether the alignment of bit-field types is respected
/// when laying out structures.
bool useBitFieldTypeAlignment() const {
return UseBitFieldTypeAlignment;
/// \brief Check whether zero length bitfields should force alignment of
/// the next member.
bool useZeroLengthBitfieldAlignment() const {
return UseZeroLengthBitfieldAlignment;
/// \brief Get the fixed alignment value in bits for a member that follows
/// a zero length bitfield.
unsigned getZeroLengthBitfieldBoundary() const {
return ZeroLengthBitfieldBoundary;
/// \brief Check whether this target support '\#pragma options align=mac68k'.
bool hasAlignMac68kSupport() const {
return HasAlignMac68kSupport;
/// \brief Return the user string for the specified integer type enum.
/// For example, SignedShort -> "short".
static const char *getTypeName(IntType T);
/// \brief Return the constant suffix for the specified integer type enum.
/// For example, SignedLong -> "L".
static const char *getTypeConstantSuffix(IntType T);
/// \brief Check whether the given real type should use the "fpret" flavor of
/// Objective-C message passing on this target.
bool useObjCFPRetForRealType(RealType T) const {
return RealTypeUsesObjCFPRet & (1 << T);
/// \brief Check whether _Complex long double should use the "fp2ret" flavor
/// of Objective-C message passing on this target.
bool useObjCFP2RetForComplexLongDouble() const {
return ComplexLongDoubleUsesFP2Ret;
/// \brief Specify if mangling based on address space map should be used or
/// not for language specific address spaces
bool useAddressSpaceMapMangling() const {
return UseAddrSpaceMapMangling;
///===---- Other target property query methods --------------------------===//
/// \brief Appends the target-specific \#define values for this
/// target set to the specified buffer.
virtual void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const = 0;
/// Return information about target-specific builtins for
/// the current primary target, and info about which builtins are non-portable
/// across the current set of primary and secondary targets.
virtual void getTargetBuiltins(const Builtin::Info *&Records,
unsigned &NumRecords) const = 0;
/// The __builtin_clz* and __builtin_ctz* built-in
/// functions are specified to have undefined results for zero inputs, but
/// on targets that support these operations in a way that provides
/// well-defined results for zero without loss of performance, it is a good
/// idea to avoid optimizing based on that undef behavior.
virtual bool isCLZForZeroUndef() const { return true; }
/// \brief Returns the kind of __builtin_va_list type that should be used
/// with this target.
virtual BuiltinVaListKind getBuiltinVaListKind() const = 0;
/// \brief Returns whether the passed in string is a valid clobber in an
/// inline asm statement.
/// This is used by Sema.
bool isValidClobber(StringRef Name) const;
/// \brief Returns whether the passed in string is a valid register name
/// according to GCC.
/// This is used by Sema for inline asm statements.
bool isValidGCCRegisterName(StringRef Name) const;
/// \brief Returns the "normalized" GCC register name.
/// For example, on x86 it will return "ax" when "eax" is passed in.
StringRef getNormalizedGCCRegisterName(StringRef Name) const;
struct ConstraintInfo {
enum {
CI_None = 0x00,
CI_AllowsMemory = 0x01,
CI_AllowsRegister = 0x02,
CI_ReadWrite = 0x04, // "+r" output constraint (read and write).
CI_HasMatchingInput = 0x08 // This output operand has a matching input.
unsigned Flags;
int TiedOperand;
std::string ConstraintStr; // constraint: "=rm"
std::string Name; // Operand name: [foo] with no []'s.
ConstraintInfo(StringRef ConstraintStr, StringRef Name)
: Flags(0), TiedOperand(-1), ConstraintStr(ConstraintStr.str()),
Name(Name.str()) {}
const std::string &getConstraintStr() const { return ConstraintStr; }
const std::string &getName() const { return Name; }
bool isReadWrite() const { return (Flags & CI_ReadWrite) != 0; }
bool allowsRegister() const { return (Flags & CI_AllowsRegister) != 0; }
bool allowsMemory() const { return (Flags & CI_AllowsMemory) != 0; }
/// \brief Return true if this output operand has a matching
/// (tied) input operand.
bool hasMatchingInput() const { return (Flags & CI_HasMatchingInput) != 0; }
/// \brief Return true if this input operand is a matching
/// constraint that ties it to an output operand.
/// If this returns true then getTiedOperand will indicate which output
/// operand this is tied to.
bool hasTiedOperand() const { return TiedOperand != -1; }
unsigned getTiedOperand() const {
assert(hasTiedOperand() && "Has no tied operand!");
return (unsigned)TiedOperand;
void setIsReadWrite() { Flags |= CI_ReadWrite; }
void setAllowsMemory() { Flags |= CI_AllowsMemory; }
void setAllowsRegister() { Flags |= CI_AllowsRegister; }
void setHasMatchingInput() { Flags |= CI_HasMatchingInput; }
/// \brief Indicate that this is an input operand that is tied to
/// the specified output operand.
/// Copy over the various constraint information from the output.
void setTiedOperand(unsigned N, ConstraintInfo &Output) {
Flags = Output.Flags;
TiedOperand = N;
// Don't copy Name or constraint string.
// validateOutputConstraint, validateInputConstraint - Checks that
// a constraint is valid and provides information about it.
// FIXME: These should return a real error instead of just true/false.
bool validateOutputConstraint(ConstraintInfo &Info) const;
bool validateInputConstraint(ConstraintInfo *OutputConstraints,
unsigned NumOutputs,
ConstraintInfo &info) const;
virtual bool validateInputSize(StringRef /*Constraint*/,
unsigned /*Size*/) const {
return true;
virtual bool validateConstraintModifier(StringRef /*Constraint*/,
const char /*Modifier*/,
unsigned /*Size*/) const {
return true;
bool resolveSymbolicName(const char *&Name,
ConstraintInfo *OutputConstraints,
unsigned NumOutputs, unsigned &Index) const;
// Constraint parm will be left pointing at the last character of
// the constraint. In practice, it won't be changed unless the
// constraint is longer than one character.
virtual std::string convertConstraint(const char *&Constraint) const {
// 'p' defaults to 'r', but can be overridden by targets.
if (*Constraint == 'p')
return std::string("r");
return std::string(1, *Constraint);
/// \brief Returns a string of target-specific clobbers, in LLVM format.
virtual const char *getClobbers() const = 0;
/// \brief Returns the target triple of the primary target.
const llvm::Triple &getTriple() const {
return Triple;
const char *getTargetDescription() const {
return DescriptionString;
struct GCCRegAlias {
const char * const Aliases[5];
const char * const Register;
struct AddlRegName {
const char * const Names[5];
const unsigned RegNum;
/// \brief Does this target support "protected" visibility?
/// Any target which dynamic libraries will naturally support
/// something like "default" (meaning that the symbol is visible
/// outside this shared object) and "hidden" (meaning that it isn't)
/// visibilities, but "protected" is really an ELF-specific concept
/// with weird semantics designed around the convenience of dynamic
/// linker implementations. Which is not to suggest that there's
/// consistent target-independent semantics for "default" visibility
/// either; the entire thing is pretty badly mangled.
virtual bool hasProtectedVisibility() const { return true; }
/// \brief An optional hook that targets can implement to perform semantic
/// checking on attribute((section("foo"))) specifiers.
/// In this case, "foo" is passed in to be checked. If the section
/// specifier is invalid, the backend should return a non-empty string
/// that indicates the problem.
/// This hook is a simple quality of implementation feature to catch errors
/// and give good diagnostics in cases when the assembler or code generator
/// would otherwise reject the section specifier.
virtual std::string isValidSectionSpecifier(StringRef SR) const {
return "";
/// \brief Set forced language options.
/// Apply changes to the target information with respect to certain
/// language options which change the target configuration.
virtual void setForcedLangOptions(LangOptions &Opts);
/// \brief Get the default set of target features for the CPU;
/// this should include all legal feature strings on the target.
virtual void getDefaultFeatures(llvm::StringMap<bool> &Features) const {
/// \brief Get the ABI currently in use.
virtual const char *getABI() const {
return "";
/// \brief Get the C++ ABI currently in use.
TargetCXXABI getCXXABI() const {
return TheCXXABI;
/// \brief Target the specified CPU.
/// \return False on error (invalid CPU name).
virtual bool setCPU(const std::string &Name) {
return false;
/// \brief Use the specified ABI.
/// \return False on error (invalid ABI name).
virtual bool setABI(const std::string &Name) {
return false;
/// \brief Use the specified unit for FP math.
/// \return False on error (invalid unit name).
virtual bool setFPMath(StringRef Name) {
return false;
/// \brief Use this specified C++ ABI.
/// \return False on error (invalid C++ ABI name).
bool setCXXABI(llvm::StringRef name) {
if (!ABI.tryParse(name)) return false;
return setCXXABI(ABI);
/// \brief Set the C++ ABI to be used by this implementation.
/// \return False on error (ABI not valid on this target)
virtual bool setCXXABI(TargetCXXABI ABI) {
return true;
/// \brief Enable or disable a specific target feature;
/// the feature name must be valid.
virtual void setFeatureEnabled(llvm::StringMap<bool> &Features,
StringRef Name,
bool Enabled) const {
Features[Name] = Enabled;
/// \brief Perform initialization based on the user configured
/// set of features (e.g., +sse4).
/// The list is guaranteed to have at most one entry per feature.
/// The target may modify the features list, to change which options are
/// passed onwards to the backend.
/// \return False on error.
virtual bool handleTargetFeatures(std::vector<std::string> &Features,
DiagnosticsEngine &Diags) {
return true;
/// \brief Determine whether the given target has the given feature.
virtual bool hasFeature(StringRef Feature) const {
return false;
// \brief Returns maximal number of args passed in registers.
unsigned getRegParmMax() const {
assert(RegParmMax < 7 && "RegParmMax value is larger than AST can handle");
return RegParmMax;
/// \brief Whether the target supports thread-local storage.
bool isTLSSupported() const {
return TLSSupported;
/// \brief Return true if {|} are normal characters in the asm string.
/// If this returns false (the default), then {abc|xyz} is syntax
/// that says that when compiling for asm variant #0, "abc" should be
/// generated, but when compiling for asm variant #1, "xyz" should be
/// generated.
bool hasNoAsmVariants() const {
return NoAsmVariants;
/// \brief Return the register number that __builtin_eh_return_regno would
/// return with the specified argument.
virtual int getEHDataRegisterNumber(unsigned RegNo) const {
return -1;
/// \brief Return the section to use for C++ static initialization functions.
virtual const char *getStaticInitSectionSpecifier() const {
return 0;
const LangAS::Map &getAddressSpaceMap() const {
return *AddrSpaceMap;
/// \brief Retrieve the name of the platform as it is used in the
/// availability attribute.
StringRef getPlatformName() const { return PlatformName; }
/// \brief Retrieve the minimum desired version of the platform, to
/// which the program should be compiled.
VersionTuple getPlatformMinVersion() const { return PlatformMinVersion; }
bool isBigEndian() const { return BigEndian; }
enum CallingConvMethodType {
/// \brief Gets the default calling convention for the given target and
/// declaration context.
virtual CallingConv getDefaultCallingConv(CallingConvMethodType MT) const {
// Not all targets will specify an explicit calling convention that we can
// express. This will always do the right thing, even though it's not
// an explicit calling convention.
return CC_C;
enum CallingConvCheckResult {
/// \brief Determines whether a given calling convention is valid for the
/// target. A calling convention can either be accepted, produce a warning
/// and be substituted with the default calling convention, or (someday)
/// produce an error (such as using thiscall on a non-instance function).
virtual CallingConvCheckResult checkCallingConvention(CallingConv CC) const {
switch (CC) {
return CCCR_Warning;
case CC_C:
return CCCR_OK;
virtual uint64_t getPointerWidthV(unsigned AddrSpace) const {
return PointerWidth;
virtual uint64_t getPointerAlignV(unsigned AddrSpace) const {
return PointerAlign;
virtual enum IntType getPtrDiffTypeV(unsigned AddrSpace) const {
return PtrDiffType;
virtual void getGCCRegNames(const char * const *&Names,
unsigned &NumNames) const = 0;
virtual void getGCCRegAliases(const GCCRegAlias *&Aliases,
unsigned &NumAliases) const = 0;
virtual void getGCCAddlRegNames(const AddlRegName *&Addl,
unsigned &NumAddl) const {
Addl = 0;
NumAddl = 0;
virtual bool validateAsmConstraint(const char *&Name,
TargetInfo::ConstraintInfo &info) const= 0;
} // end namespace clang