blob: 6082ec8b1f3ad0edeffc66058bf2ec0cbc6e0b60 [file] [log] [blame]
//===--- Diagnostic.h - C Language Family Diagnostic Handling ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Defines the Diagnostic-related interfaces.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_DIAGNOSTIC_H
#define LLVM_CLANG_DIAGNOSTIC_H
#include "clang/Basic/DiagnosticIDs.h"
#include "clang/Basic/DiagnosticOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include <list>
#include <vector>
namespace clang {
class DiagnosticConsumer;
class DiagnosticBuilder;
class DiagnosticOptions;
class IdentifierInfo;
class DeclContext;
class LangOptions;
class Preprocessor;
class DiagnosticErrorTrap;
class StoredDiagnostic;
namespace tok {
enum TokenKind : unsigned short;
}
/// \brief Annotates a diagnostic with some code that should be
/// inserted, removed, or replaced to fix the problem.
///
/// This kind of hint should be used when we are certain that the
/// introduction, removal, or modification of a particular (small!)
/// amount of code will correct a compilation error. The compiler
/// should also provide full recovery from such errors, such that
/// suppressing the diagnostic output can still result in successful
/// compilation.
class FixItHint {
public:
/// \brief Code that should be replaced to correct the error. Empty for an
/// insertion hint.
CharSourceRange RemoveRange;
/// \brief Code in the specific range that should be inserted in the insertion
/// location.
CharSourceRange InsertFromRange;
/// \brief The actual code to insert at the insertion location, as a
/// string.
std::string CodeToInsert;
bool BeforePreviousInsertions;
/// \brief Empty code modification hint, indicating that no code
/// modification is known.
FixItHint() : BeforePreviousInsertions(false) { }
bool isNull() const {
return !RemoveRange.isValid();
}
/// \brief Create a code modification hint that inserts the given
/// code string at a specific location.
static FixItHint CreateInsertion(SourceLocation InsertionLoc,
StringRef Code,
bool BeforePreviousInsertions = false) {
FixItHint Hint;
Hint.RemoveRange =
CharSourceRange::getCharRange(InsertionLoc, InsertionLoc);
Hint.CodeToInsert = Code;
Hint.BeforePreviousInsertions = BeforePreviousInsertions;
return Hint;
}
/// \brief Create a code modification hint that inserts the given
/// code from \p FromRange at a specific location.
static FixItHint CreateInsertionFromRange(SourceLocation InsertionLoc,
CharSourceRange FromRange,
bool BeforePreviousInsertions = false) {
FixItHint Hint;
Hint.RemoveRange =
CharSourceRange::getCharRange(InsertionLoc, InsertionLoc);
Hint.InsertFromRange = FromRange;
Hint.BeforePreviousInsertions = BeforePreviousInsertions;
return Hint;
}
/// \brief Create a code modification hint that removes the given
/// source range.
static FixItHint CreateRemoval(CharSourceRange RemoveRange) {
FixItHint Hint;
Hint.RemoveRange = RemoveRange;
return Hint;
}
static FixItHint CreateRemoval(SourceRange RemoveRange) {
return CreateRemoval(CharSourceRange::getTokenRange(RemoveRange));
}
/// \brief Create a code modification hint that replaces the given
/// source range with the given code string.
static FixItHint CreateReplacement(CharSourceRange RemoveRange,
StringRef Code) {
FixItHint Hint;
Hint.RemoveRange = RemoveRange;
Hint.CodeToInsert = Code;
return Hint;
}
static FixItHint CreateReplacement(SourceRange RemoveRange,
StringRef Code) {
return CreateReplacement(CharSourceRange::getTokenRange(RemoveRange), Code);
}
};
/// \brief Concrete class used by the front-end to report problems and issues.
///
/// This massages the diagnostics (e.g. handling things like "report warnings
/// as errors" and passes them off to the DiagnosticConsumer for reporting to
/// the user. DiagnosticsEngine is tied to one translation unit and one
/// SourceManager.
class DiagnosticsEngine : public RefCountedBase<DiagnosticsEngine> {
public:
/// \brief The level of the diagnostic, after it has been through mapping.
enum Level {
Ignored = DiagnosticIDs::Ignored,
Note = DiagnosticIDs::Note,
Remark = DiagnosticIDs::Remark,
Warning = DiagnosticIDs::Warning,
Error = DiagnosticIDs::Error,
Fatal = DiagnosticIDs::Fatal
};
/// \brief How do we handle otherwise-unmapped extension?
///
/// This is controlled by -pedantic and -pedantic-errors.
enum ExtensionHandling {
Ext_Ignore, Ext_Warn, Ext_Error
};
enum ArgumentKind {
ak_std_string, ///< std::string
ak_c_string, ///< const char *
ak_sint, ///< int
ak_uint, ///< unsigned
ak_tokenkind, ///< enum TokenKind : unsigned
ak_identifierinfo, ///< IdentifierInfo
ak_qualtype, ///< QualType
ak_declarationname, ///< DeclarationName
ak_nameddecl, ///< NamedDecl *
ak_nestednamespec, ///< NestedNameSpecifier *
ak_declcontext, ///< DeclContext *
ak_qualtype_pair, ///< pair<QualType, QualType>
ak_attr ///< Attr *
};
/// \brief Represents on argument value, which is a union discriminated
/// by ArgumentKind, with a value.
typedef std::pair<ArgumentKind, intptr_t> ArgumentValue;
private:
unsigned char AllExtensionsSilenced; // Used by __extension__
bool IgnoreAllWarnings; // Ignore all warnings: -w
bool WarningsAsErrors; // Treat warnings like errors.
bool EnableAllWarnings; // Enable all warnings.
bool ErrorsAsFatal; // Treat errors like fatal errors.
bool SuppressSystemWarnings; // Suppress warnings in system headers.
bool SuppressAllDiagnostics; // Suppress all diagnostics.
bool ElideType; // Elide common types of templates.
bool PrintTemplateTree; // Print a tree when comparing templates.
bool ShowColors; // Color printing is enabled.
OverloadsShown ShowOverloads; // Which overload candidates to show.
unsigned ErrorLimit; // Cap of # errors emitted, 0 -> no limit.
unsigned TemplateBacktraceLimit; // Cap on depth of template backtrace stack,
// 0 -> no limit.
unsigned ConstexprBacktraceLimit; // Cap on depth of constexpr evaluation
// backtrace stack, 0 -> no limit.
ExtensionHandling ExtBehavior; // Map extensions onto warnings or errors?
IntrusiveRefCntPtr<DiagnosticIDs> Diags;
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts;
DiagnosticConsumer *Client;
bool OwnsDiagClient;
SourceManager *SourceMgr;
/// \brief Mapping information for diagnostics.
///
/// Mapping info is packed into four bits per diagnostic. The low three
/// bits are the mapping (an instance of diag::Mapping), or zero if unset.
/// The high bit is set when the mapping was established as a user mapping.
/// If the high bit is clear, then the low bits are set to the default
/// value, and should be mapped with -pedantic, -Werror, etc.
///
/// A new DiagState is created and kept around when diagnostic pragmas modify
/// the state so that we know what is the diagnostic state at any given
/// source location.
class DiagState {
llvm::DenseMap<unsigned, DiagnosticMappingInfo> DiagMap;
public:
typedef llvm::DenseMap<unsigned, DiagnosticMappingInfo>::iterator
iterator;
typedef llvm::DenseMap<unsigned, DiagnosticMappingInfo>::const_iterator
const_iterator;
void setMappingInfo(diag::kind Diag, DiagnosticMappingInfo Info) {
DiagMap[Diag] = Info;
}
DiagnosticMappingInfo &getOrAddMappingInfo(diag::kind Diag);
const_iterator begin() const { return DiagMap.begin(); }
const_iterator end() const { return DiagMap.end(); }
};
/// \brief Keeps and automatically disposes all DiagStates that we create.
std::list<DiagState> DiagStates;
/// \brief Represents a point in source where the diagnostic state was
/// modified because of a pragma.
///
/// 'Loc' can be null if the point represents the diagnostic state
/// modifications done through the command-line.
struct DiagStatePoint {
DiagState *State;
FullSourceLoc Loc;
DiagStatePoint(DiagState *State, FullSourceLoc Loc)
: State(State), Loc(Loc) { }
bool operator<(const DiagStatePoint &RHS) const {
// If Loc is invalid it means it came from <command-line>, in which case
// we regard it as coming before any valid source location.
if (RHS.Loc.isInvalid())
return false;
if (Loc.isInvalid())
return true;
return Loc.isBeforeInTranslationUnitThan(RHS.Loc);
}
};
/// \brief A sorted vector of all DiagStatePoints representing changes in
/// diagnostic state due to diagnostic pragmas.
///
/// The vector is always sorted according to the SourceLocation of the
/// DiagStatePoint.
typedef std::vector<DiagStatePoint> DiagStatePointsTy;
mutable DiagStatePointsTy DiagStatePoints;
/// \brief Keeps the DiagState that was active during each diagnostic 'push'
/// so we can get back at it when we 'pop'.
std::vector<DiagState *> DiagStateOnPushStack;
DiagState *GetCurDiagState() const {
assert(!DiagStatePoints.empty());
return DiagStatePoints.back().State;
}
void PushDiagStatePoint(DiagState *State, SourceLocation L) {
FullSourceLoc Loc(L, getSourceManager());
// Make sure that DiagStatePoints is always sorted according to Loc.
assert(Loc.isValid() && "Adding invalid loc point");
assert(!DiagStatePoints.empty() &&
(DiagStatePoints.back().Loc.isInvalid() ||
DiagStatePoints.back().Loc.isBeforeInTranslationUnitThan(Loc)) &&
"Previous point loc comes after or is the same as new one");
DiagStatePoints.push_back(DiagStatePoint(State, Loc));
}
/// \brief Finds the DiagStatePoint that contains the diagnostic state of
/// the given source location.
DiagStatePointsTy::iterator GetDiagStatePointForLoc(SourceLocation Loc) const;
/// \brief Sticky flag set to \c true when an error is emitted.
bool ErrorOccurred;
/// \brief Sticky flag set to \c true when an "uncompilable error" occurs.
/// I.e. an error that was not upgraded from a warning by -Werror.
bool UncompilableErrorOccurred;
/// \brief Sticky flag set to \c true when a fatal error is emitted.
bool FatalErrorOccurred;
/// \brief Indicates that an unrecoverable error has occurred.
bool UnrecoverableErrorOccurred;
/// \brief Counts for DiagnosticErrorTrap to check whether an error occurred
/// during a parsing section, e.g. during parsing a function.
unsigned TrapNumErrorsOccurred;
unsigned TrapNumUnrecoverableErrorsOccurred;
/// \brief The level of the last diagnostic emitted.
///
/// This is used to emit continuation diagnostics with the same level as the
/// diagnostic that they follow.
DiagnosticIDs::Level LastDiagLevel;
unsigned NumWarnings; ///< Number of warnings reported
unsigned NumErrors; ///< Number of errors reported
unsigned NumErrorsSuppressed; ///< Number of errors suppressed
/// \brief A function pointer that converts an opaque diagnostic
/// argument to a strings.
///
/// This takes the modifiers and argument that was present in the diagnostic.
///
/// The PrevArgs array (whose length is NumPrevArgs) indicates the previous
/// arguments formatted for this diagnostic. Implementations of this function
/// can use this information to avoid redundancy across arguments.
///
/// This is a hack to avoid a layering violation between libbasic and libsema.
typedef void (*ArgToStringFnTy)(
ArgumentKind Kind, intptr_t Val,
const char *Modifier, unsigned ModifierLen,
const char *Argument, unsigned ArgumentLen,
const ArgumentValue *PrevArgs,
unsigned NumPrevArgs,
SmallVectorImpl<char> &Output,
void *Cookie,
ArrayRef<intptr_t> QualTypeVals);
void *ArgToStringCookie;
ArgToStringFnTy ArgToStringFn;
/// \brief ID of the "delayed" diagnostic, which is a (typically
/// fatal) diagnostic that had to be delayed because it was found
/// while emitting another diagnostic.
unsigned DelayedDiagID;
/// \brief First string argument for the delayed diagnostic.
std::string DelayedDiagArg1;
/// \brief Second string argument for the delayed diagnostic.
std::string DelayedDiagArg2;
public:
explicit DiagnosticsEngine(
const IntrusiveRefCntPtr<DiagnosticIDs> &Diags,
DiagnosticOptions *DiagOpts,
DiagnosticConsumer *client = 0,
bool ShouldOwnClient = true);
~DiagnosticsEngine();
const IntrusiveRefCntPtr<DiagnosticIDs> &getDiagnosticIDs() const {
return Diags;
}
/// \brief Retrieve the diagnostic options.
DiagnosticOptions &getDiagnosticOptions() const { return *DiagOpts; }
DiagnosticConsumer *getClient() { return Client; }
const DiagnosticConsumer *getClient() const { return Client; }
/// \brief Determine whether this \c DiagnosticsEngine object own its client.
bool ownsClient() const { return OwnsDiagClient; }
/// \brief Return the current diagnostic client along with ownership of that
/// client.
DiagnosticConsumer *takeClient() {
OwnsDiagClient = false;
return Client;
}
bool hasSourceManager() const { return SourceMgr != 0; }
SourceManager &getSourceManager() const {
assert(SourceMgr && "SourceManager not set!");
return *SourceMgr;
}
void setSourceManager(SourceManager *SrcMgr) { SourceMgr = SrcMgr; }
//===--------------------------------------------------------------------===//
// DiagnosticsEngine characterization methods, used by a client to customize
// how diagnostics are emitted.
//
/// \brief Copies the current DiagMappings and pushes the new copy
/// onto the top of the stack.
void pushMappings(SourceLocation Loc);
/// \brief Pops the current DiagMappings off the top of the stack,
/// causing the new top of the stack to be the active mappings.
///
/// \returns \c true if the pop happens, \c false if there is only one
/// DiagMapping on the stack.
bool popMappings(SourceLocation Loc);
/// \brief Set the diagnostic client associated with this diagnostic object.
///
/// \param ShouldOwnClient true if the diagnostic object should take
/// ownership of \c client.
void setClient(DiagnosticConsumer *client, bool ShouldOwnClient = true);
/// \brief Specify a limit for the number of errors we should
/// emit before giving up.
///
/// Zero disables the limit.
void setErrorLimit(unsigned Limit) { ErrorLimit = Limit; }
/// \brief Specify the maximum number of template instantiation
/// notes to emit along with a given diagnostic.
void setTemplateBacktraceLimit(unsigned Limit) {
TemplateBacktraceLimit = Limit;
}
/// \brief Retrieve the maximum number of template instantiation
/// notes to emit along with a given diagnostic.
unsigned getTemplateBacktraceLimit() const {
return TemplateBacktraceLimit;
}
/// \brief Specify the maximum number of constexpr evaluation
/// notes to emit along with a given diagnostic.
void setConstexprBacktraceLimit(unsigned Limit) {
ConstexprBacktraceLimit = Limit;
}
/// \brief Retrieve the maximum number of constexpr evaluation
/// notes to emit along with a given diagnostic.
unsigned getConstexprBacktraceLimit() const {
return ConstexprBacktraceLimit;
}
/// \brief When set to true, any unmapped warnings are ignored.
///
/// If this and WarningsAsErrors are both set, then this one wins.
void setIgnoreAllWarnings(bool Val) { IgnoreAllWarnings = Val; }
bool getIgnoreAllWarnings() const { return IgnoreAllWarnings; }
/// \brief When set to true, any unmapped ignored warnings are no longer
/// ignored.
///
/// If this and IgnoreAllWarnings are both set, then that one wins.
void setEnableAllWarnings(bool Val) { EnableAllWarnings = Val; }
bool getEnableAllWarnings() const { return EnableAllWarnings; }
/// \brief When set to true, any warnings reported are issued as errors.
void setWarningsAsErrors(bool Val) { WarningsAsErrors = Val; }
bool getWarningsAsErrors() const { return WarningsAsErrors; }
/// \brief When set to true, any error reported is made a fatal error.
void setErrorsAsFatal(bool Val) { ErrorsAsFatal = Val; }
bool getErrorsAsFatal() const { return ErrorsAsFatal; }
/// \brief When set to true mask warnings that come from system headers.
void setSuppressSystemWarnings(bool Val) { SuppressSystemWarnings = Val; }
bool getSuppressSystemWarnings() const { return SuppressSystemWarnings; }
/// \brief Suppress all diagnostics, to silence the front end when we
/// know that we don't want any more diagnostics to be passed along to the
/// client
void setSuppressAllDiagnostics(bool Val = true) {
SuppressAllDiagnostics = Val;
}
bool getSuppressAllDiagnostics() const { return SuppressAllDiagnostics; }
/// \brief Set type eliding, to skip outputting same types occurring in
/// template types.
void setElideType(bool Val = true) { ElideType = Val; }
bool getElideType() { return ElideType; }
/// \brief Set tree printing, to outputting the template difference in a
/// tree format.
void setPrintTemplateTree(bool Val = false) { PrintTemplateTree = Val; }
bool getPrintTemplateTree() { return PrintTemplateTree; }
/// \brief Set color printing, so the type diffing will inject color markers
/// into the output.
void setShowColors(bool Val = false) { ShowColors = Val; }
bool getShowColors() { return ShowColors; }
/// \brief Specify which overload candidates to show when overload resolution
/// fails.
///
/// By default, we show all candidates.
void setShowOverloads(OverloadsShown Val) {
ShowOverloads = Val;
}
OverloadsShown getShowOverloads() const { return ShowOverloads; }
/// \brief Pretend that the last diagnostic issued was ignored, so any
/// subsequent notes will be suppressed.
///
/// This can be used by clients who suppress diagnostics themselves.
void setLastDiagnosticIgnored() {
if (LastDiagLevel == DiagnosticIDs::Fatal)
FatalErrorOccurred = true;
LastDiagLevel = DiagnosticIDs::Ignored;
}
/// \brief Determine whether the previous diagnostic was ignored. This can
/// be used by clients that want to determine whether notes attached to a
/// diagnostic will be suppressed.
bool isLastDiagnosticIgnored() const {
return LastDiagLevel == DiagnosticIDs::Ignored;
}
/// \brief Controls whether otherwise-unmapped extension diagnostics are
/// mapped onto ignore/warning/error.
///
/// This corresponds to the GCC -pedantic and -pedantic-errors option.
void setExtensionHandlingBehavior(ExtensionHandling H) {
ExtBehavior = H;
}
ExtensionHandling getExtensionHandlingBehavior() const { return ExtBehavior; }
/// \brief Counter bumped when an __extension__ block is/ encountered.
///
/// When non-zero, all extension diagnostics are entirely silenced, no
/// matter how they are mapped.
void IncrementAllExtensionsSilenced() { ++AllExtensionsSilenced; }
void DecrementAllExtensionsSilenced() { --AllExtensionsSilenced; }
bool hasAllExtensionsSilenced() { return AllExtensionsSilenced != 0; }
/// \brief This allows the client to specify that certain warnings are
/// ignored.
///
/// Notes can never be mapped, errors can only be mapped to fatal, and
/// WARNINGs and EXTENSIONs can be mapped arbitrarily.
///
/// \param Loc The source location that this change of diagnostic state should
/// take affect. It can be null if we are setting the latest state.
void setDiagnosticMapping(diag::kind Diag, diag::Mapping Map,
SourceLocation Loc);
/// \brief Change an entire diagnostic group (e.g. "unknown-pragmas") to
/// have the specified mapping.
///
/// \returns true (and ignores the request) if "Group" was unknown, false
/// otherwise.
///
/// \param Loc The source location that this change of diagnostic state should
/// take affect. It can be null if we are setting the state from command-line.
bool setDiagnosticGroupMapping(StringRef Group, diag::Mapping Map,
SourceLocation Loc = SourceLocation());
/// \brief Set the warning-as-error flag for the given diagnostic group.
///
/// This function always only operates on the current diagnostic state.
///
/// \returns True if the given group is unknown, false otherwise.
bool setDiagnosticGroupWarningAsError(StringRef Group, bool Enabled);
/// \brief Set the error-as-fatal flag for the given diagnostic group.
///
/// This function always only operates on the current diagnostic state.
///
/// \returns True if the given group is unknown, false otherwise.
bool setDiagnosticGroupErrorAsFatal(StringRef Group, bool Enabled);
/// \brief Add the specified mapping to all diagnostics.
///
/// Mainly to be used by -Wno-everything to disable all warnings but allow
/// subsequent -W options to enable specific warnings.
void setMappingToAllDiagnostics(diag::Mapping Map,
SourceLocation Loc = SourceLocation());
bool hasErrorOccurred() const { return ErrorOccurred; }
/// \brief Errors that actually prevent compilation, not those that are
/// upgraded from a warning by -Werror.
bool hasUncompilableErrorOccurred() const {
return UncompilableErrorOccurred;
}
bool hasFatalErrorOccurred() const { return FatalErrorOccurred; }
/// \brief Determine whether any kind of unrecoverable error has occurred.
bool hasUnrecoverableErrorOccurred() const {
return FatalErrorOccurred || UnrecoverableErrorOccurred;
}
unsigned getNumWarnings() const { return NumWarnings; }
void setNumWarnings(unsigned NumWarnings) {
this->NumWarnings = NumWarnings;
}
/// \brief Return an ID for a diagnostic with the specified format string and
/// level.
///
/// If this is the first request for this diagnostic, it is registered and
/// created, otherwise the existing ID is returned.
///
/// \param FormatString A fixed diagnostic format string that will be hashed
/// and mapped to a unique DiagID.
template <unsigned N>
unsigned getCustomDiagID(Level L, const char (&FormatString)[N]) {
return Diags->getCustomDiagID((DiagnosticIDs::Level)L,
StringRef(FormatString, N - 1));
}
/// \brief Converts a diagnostic argument (as an intptr_t) into the string
/// that represents it.
void ConvertArgToString(ArgumentKind Kind, intptr_t Val,
const char *Modifier, unsigned ModLen,
const char *Argument, unsigned ArgLen,
const ArgumentValue *PrevArgs, unsigned NumPrevArgs,
SmallVectorImpl<char> &Output,
ArrayRef<intptr_t> QualTypeVals) const {
ArgToStringFn(Kind, Val, Modifier, ModLen, Argument, ArgLen,
PrevArgs, NumPrevArgs, Output, ArgToStringCookie,
QualTypeVals);
}
void SetArgToStringFn(ArgToStringFnTy Fn, void *Cookie) {
ArgToStringFn = Fn;
ArgToStringCookie = Cookie;
}
/// \brief Note that the prior diagnostic was emitted by some other
/// \c DiagnosticsEngine, and we may be attaching a note to that diagnostic.
void notePriorDiagnosticFrom(const DiagnosticsEngine &Other) {
LastDiagLevel = Other.LastDiagLevel;
}
/// \brief Reset the state of the diagnostic object to its initial
/// configuration.
void Reset();
//===--------------------------------------------------------------------===//
// DiagnosticsEngine classification and reporting interfaces.
//
/// \brief Based on the way the client configured the DiagnosticsEngine
/// object, classify the specified diagnostic ID into a Level, consumable by
/// the DiagnosticConsumer.
///
/// \param Loc The source location we are interested in finding out the
/// diagnostic state. Can be null in order to query the latest state.
Level getDiagnosticLevel(unsigned DiagID, SourceLocation Loc) const {
return (Level)Diags->getDiagnosticLevel(DiagID, Loc, *this);
}
/// \brief Issue the message to the client.
///
/// This actually returns an instance of DiagnosticBuilder which emits the
/// diagnostics (through @c ProcessDiag) when it is destroyed.
///
/// \param DiagID A member of the @c diag::kind enum.
/// \param Loc Represents the source location associated with the diagnostic,
/// which can be an invalid location if no position information is available.
inline DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID);
inline DiagnosticBuilder Report(unsigned DiagID);
void Report(const StoredDiagnostic &storedDiag);
/// \brief Determine whethere there is already a diagnostic in flight.
bool isDiagnosticInFlight() const { return CurDiagID != ~0U; }
/// \brief Set the "delayed" diagnostic that will be emitted once
/// the current diagnostic completes.
///
/// If a diagnostic is already in-flight but the front end must
/// report a problem (e.g., with an inconsistent file system
/// state), this routine sets a "delayed" diagnostic that will be
/// emitted after the current diagnostic completes. This should
/// only be used for fatal errors detected at inconvenient
/// times. If emitting a delayed diagnostic causes a second delayed
/// diagnostic to be introduced, that second delayed diagnostic
/// will be ignored.
///
/// \param DiagID The ID of the diagnostic being delayed.
///
/// \param Arg1 A string argument that will be provided to the
/// diagnostic. A copy of this string will be stored in the
/// DiagnosticsEngine object itself.
///
/// \param Arg2 A string argument that will be provided to the
/// diagnostic. A copy of this string will be stored in the
/// DiagnosticsEngine object itself.
void SetDelayedDiagnostic(unsigned DiagID, StringRef Arg1 = "",
StringRef Arg2 = "");
/// \brief Clear out the current diagnostic.
void Clear() { CurDiagID = ~0U; }
private:
/// \brief Report the delayed diagnostic.
void ReportDelayed();
// This is private state used by DiagnosticBuilder. We put it here instead of
// in DiagnosticBuilder in order to keep DiagnosticBuilder a small lightweight
// object. This implementation choice means that we can only have one
// diagnostic "in flight" at a time, but this seems to be a reasonable
// tradeoff to keep these objects small. Assertions verify that only one
// diagnostic is in flight at a time.
friend class DiagnosticIDs;
friend class DiagnosticBuilder;
friend class Diagnostic;
friend class PartialDiagnostic;
friend class DiagnosticErrorTrap;
/// \brief The location of the current diagnostic that is in flight.
SourceLocation CurDiagLoc;
/// \brief The ID of the current diagnostic that is in flight.
///
/// This is set to ~0U when there is no diagnostic in flight.
unsigned CurDiagID;
enum {
/// \brief The maximum number of arguments we can hold.
///
/// We currently only support up to 10 arguments (%0-%9). A single
/// diagnostic with more than that almost certainly has to be simplified
/// anyway.
MaxArguments = 10,
/// \brief The maximum number of ranges we can hold.
MaxRanges = 10,
/// \brief The maximum number of ranges we can hold.
MaxFixItHints = 10
};
/// \brief The number of entries in Arguments.
signed char NumDiagArgs;
/// \brief The number of ranges in the DiagRanges array.
unsigned char NumDiagRanges;
/// \brief The number of hints in the DiagFixItHints array.
unsigned char NumDiagFixItHints;
/// \brief Specifies whether an argument is in DiagArgumentsStr or
/// in DiagArguments.
///
/// This is an array of ArgumentKind::ArgumentKind enum values, one for each
/// argument.
unsigned char DiagArgumentsKind[MaxArguments];
/// \brief Holds the values of each string argument for the current
/// diagnostic.
///
/// This is only used when the corresponding ArgumentKind is ak_std_string.
std::string DiagArgumentsStr[MaxArguments];
/// \brief The values for the various substitution positions.
///
/// This is used when the argument is not an std::string. The specific
/// value is mangled into an intptr_t and the interpretation depends on
/// exactly what sort of argument kind it is.
intptr_t DiagArgumentsVal[MaxArguments];
/// \brief The list of ranges added to this diagnostic.
CharSourceRange DiagRanges[MaxRanges];
/// \brief If valid, provides a hint with some code to insert, remove,
/// or modify at a particular position.
FixItHint DiagFixItHints[MaxFixItHints];
DiagnosticMappingInfo makeMappingInfo(diag::Mapping Map, SourceLocation L) {
bool isPragma = L.isValid();
DiagnosticMappingInfo MappingInfo = DiagnosticMappingInfo::Make(
Map, /*IsUser=*/true, isPragma);
// If this is a pragma mapping, then set the diagnostic mapping flags so
// that we override command line options.
if (isPragma) {
MappingInfo.setNoWarningAsError(true);
MappingInfo.setNoErrorAsFatal(true);
}
return MappingInfo;
}
/// \brief Used to report a diagnostic that is finally fully formed.
///
/// \returns true if the diagnostic was emitted, false if it was suppressed.
bool ProcessDiag() {
return Diags->ProcessDiag(*this);
}
/// @name Diagnostic Emission
/// @{
protected:
// Sema requires access to the following functions because the current design
// of SFINAE requires it to use its own SemaDiagnosticBuilder, which needs to
// access us directly to ensure we minimize the emitted code for the common
// Sema::Diag() patterns.
friend class Sema;
/// \brief Emit the current diagnostic and clear the diagnostic state.
///
/// \param Force Emit the diagnostic regardless of suppression settings.
bool EmitCurrentDiagnostic(bool Force = false);
unsigned getCurrentDiagID() const { return CurDiagID; }
SourceLocation getCurrentDiagLoc() const { return CurDiagLoc; }
/// @}
friend class ASTReader;
friend class ASTWriter;
};
/// \brief RAII class that determines when any errors have occurred
/// between the time the instance was created and the time it was
/// queried.
class DiagnosticErrorTrap {
DiagnosticsEngine &Diag;
unsigned NumErrors;
unsigned NumUnrecoverableErrors;
public:
explicit DiagnosticErrorTrap(DiagnosticsEngine &Diag)
: Diag(Diag) { reset(); }
/// \brief Determine whether any errors have occurred since this
/// object instance was created.
bool hasErrorOccurred() const {
return Diag.TrapNumErrorsOccurred > NumErrors;
}
/// \brief Determine whether any unrecoverable errors have occurred since this
/// object instance was created.
bool hasUnrecoverableErrorOccurred() const {
return Diag.TrapNumUnrecoverableErrorsOccurred > NumUnrecoverableErrors;
}
/// \brief Set to initial state of "no errors occurred".
void reset() {
NumErrors = Diag.TrapNumErrorsOccurred;
NumUnrecoverableErrors = Diag.TrapNumUnrecoverableErrorsOccurred;
}
};
//===----------------------------------------------------------------------===//
// DiagnosticBuilder
//===----------------------------------------------------------------------===//
/// \brief A little helper class used to produce diagnostics.
///
/// This is constructed by the DiagnosticsEngine::Report method, and
/// allows insertion of extra information (arguments and source ranges) into
/// the currently "in flight" diagnostic. When the temporary for the builder
/// is destroyed, the diagnostic is issued.
///
/// Note that many of these will be created as temporary objects (many call
/// sites), so we want them to be small and we never want their address taken.
/// This ensures that compilers with somewhat reasonable optimizers will promote
/// the common fields to registers, eliminating increments of the NumArgs field,
/// for example.
class DiagnosticBuilder {
mutable DiagnosticsEngine *DiagObj;
mutable unsigned NumArgs, NumRanges, NumFixits;
/// \brief Status variable indicating if this diagnostic is still active.
///
// NOTE: This field is redundant with DiagObj (IsActive iff (DiagObj == 0)),
// but LLVM is not currently smart enough to eliminate the null check that
// Emit() would end up with if we used that as our status variable.
mutable bool IsActive;
/// \brief Flag indicating that this diagnostic is being emitted via a
/// call to ForceEmit.
mutable bool IsForceEmit;
void operator=(const DiagnosticBuilder &) LLVM_DELETED_FUNCTION;
friend class DiagnosticsEngine;
DiagnosticBuilder()
: DiagObj(0), NumArgs(0), NumRanges(0), NumFixits(0), IsActive(false),
IsForceEmit(false) { }
explicit DiagnosticBuilder(DiagnosticsEngine *diagObj)
: DiagObj(diagObj), NumArgs(0), NumRanges(0), NumFixits(0), IsActive(true),
IsForceEmit(false) {
assert(diagObj && "DiagnosticBuilder requires a valid DiagnosticsEngine!");
}
friend class PartialDiagnostic;
protected:
void FlushCounts() {
DiagObj->NumDiagArgs = NumArgs;
DiagObj->NumDiagRanges = NumRanges;
DiagObj->NumDiagFixItHints = NumFixits;
}
/// \brief Clear out the current diagnostic.
void Clear() const {
DiagObj = 0;
IsActive = false;
IsForceEmit = false;
}
/// \brief Determine whether this diagnostic is still active.
bool isActive() const { return IsActive; }
/// \brief Force the diagnostic builder to emit the diagnostic now.
///
/// Once this function has been called, the DiagnosticBuilder object
/// should not be used again before it is destroyed.
///
/// \returns true if a diagnostic was emitted, false if the
/// diagnostic was suppressed.
bool Emit() {
// If this diagnostic is inactive, then its soul was stolen by the copy ctor
// (or by a subclass, as in SemaDiagnosticBuilder).
if (!isActive()) return false;
// When emitting diagnostics, we set the final argument count into
// the DiagnosticsEngine object.
FlushCounts();
// Process the diagnostic.
bool Result = DiagObj->EmitCurrentDiagnostic(IsForceEmit);
// This diagnostic is dead.
Clear();
return Result;
}
public:
/// Copy constructor. When copied, this "takes" the diagnostic info from the
/// input and neuters it.
DiagnosticBuilder(const DiagnosticBuilder &D) {
DiagObj = D.DiagObj;
IsActive = D.IsActive;
IsForceEmit = D.IsForceEmit;
D.Clear();
NumArgs = D.NumArgs;
NumRanges = D.NumRanges;
NumFixits = D.NumFixits;
}
/// \brief Retrieve an empty diagnostic builder.
static DiagnosticBuilder getEmpty() {
return DiagnosticBuilder();
}
/// \brief Emits the diagnostic.
~DiagnosticBuilder() {
Emit();
}
/// \brief Forces the diagnostic to be emitted.
const DiagnosticBuilder &setForceEmit() const {
IsForceEmit = true;
return *this;
}
/// \brief Conversion of DiagnosticBuilder to bool always returns \c true.
///
/// This allows is to be used in boolean error contexts (where \c true is
/// used to indicate that an error has occurred), like:
/// \code
/// return Diag(...);
/// \endcode
operator bool() const { return true; }
void AddString(StringRef S) const {
assert(isActive() && "Clients must not add to cleared diagnostic!");
assert(NumArgs < DiagnosticsEngine::MaxArguments &&
"Too many arguments to diagnostic!");
DiagObj->DiagArgumentsKind[NumArgs] = DiagnosticsEngine::ak_std_string;
DiagObj->DiagArgumentsStr[NumArgs++] = S;
}
void AddTaggedVal(intptr_t V, DiagnosticsEngine::ArgumentKind Kind) const {
assert(isActive() && "Clients must not add to cleared diagnostic!");
assert(NumArgs < DiagnosticsEngine::MaxArguments &&
"Too many arguments to diagnostic!");
DiagObj->DiagArgumentsKind[NumArgs] = Kind;
DiagObj->DiagArgumentsVal[NumArgs++] = V;
}
void AddSourceRange(const CharSourceRange &R) const {
assert(isActive() && "Clients must not add to cleared diagnostic!");
assert(NumRanges < DiagnosticsEngine::MaxRanges &&
"Too many arguments to diagnostic!");
DiagObj->DiagRanges[NumRanges++] = R;
}
void AddFixItHint(const FixItHint &Hint) const {
assert(isActive() && "Clients must not add to cleared diagnostic!");
assert(NumFixits < DiagnosticsEngine::MaxFixItHints &&
"Too many arguments to diagnostic!");
DiagObj->DiagFixItHints[NumFixits++] = Hint;
}
bool hasMaxRanges() const {
return NumRanges == DiagnosticsEngine::MaxRanges;
}
bool hasMaxFixItHints() const {
return NumFixits == DiagnosticsEngine::MaxFixItHints;
}
};
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
StringRef S) {
DB.AddString(S);
return DB;
}
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
const char *Str) {
DB.AddTaggedVal(reinterpret_cast<intptr_t>(Str),
DiagnosticsEngine::ak_c_string);
return DB;
}
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, int I) {
DB.AddTaggedVal(I, DiagnosticsEngine::ak_sint);
return DB;
}
// We use enable_if here to prevent that this overload is selected for
// pointers or other arguments that are implicitly convertible to bool.
template <typename T>
inline
typename std::enable_if<std::is_same<T, bool>::value,
const DiagnosticBuilder &>::type
operator<<(const DiagnosticBuilder &DB, T I) {
DB.AddTaggedVal(I, DiagnosticsEngine::ak_sint);
return DB;
}
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
unsigned I) {
DB.AddTaggedVal(I, DiagnosticsEngine::ak_uint);
return DB;
}
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
tok::TokenKind I) {
DB.AddTaggedVal(static_cast<unsigned>(I), DiagnosticsEngine::ak_tokenkind);
return DB;
}
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
const IdentifierInfo *II) {
DB.AddTaggedVal(reinterpret_cast<intptr_t>(II),
DiagnosticsEngine::ak_identifierinfo);
return DB;
}
// Adds a DeclContext to the diagnostic. The enable_if template magic is here
// so that we only match those arguments that are (statically) DeclContexts;
// other arguments that derive from DeclContext (e.g., RecordDecls) will not
// match.
template<typename T>
inline
typename std::enable_if<std::is_same<T, DeclContext>::value,
const DiagnosticBuilder &>::type
operator<<(const DiagnosticBuilder &DB, T *DC) {
DB.AddTaggedVal(reinterpret_cast<intptr_t>(DC),
DiagnosticsEngine::ak_declcontext);
return DB;
}
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
const SourceRange &R) {
DB.AddSourceRange(CharSourceRange::getTokenRange(R));
return DB;
}
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
ArrayRef<SourceRange> Ranges) {
for (const SourceRange &R: Ranges)
DB.AddSourceRange(CharSourceRange::getTokenRange(R));
return DB;
}
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
const CharSourceRange &R) {
DB.AddSourceRange(R);
return DB;
}
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
const FixItHint &Hint) {
if (!Hint.isNull())
DB.AddFixItHint(Hint);
return DB;
}
inline DiagnosticBuilder DiagnosticsEngine::Report(SourceLocation Loc,
unsigned DiagID) {
assert(CurDiagID == ~0U && "Multiple diagnostics in flight at once!");
CurDiagLoc = Loc;
CurDiagID = DiagID;
return DiagnosticBuilder(this);
}
inline DiagnosticBuilder DiagnosticsEngine::Report(unsigned DiagID) {
return Report(SourceLocation(), DiagID);
}
//===----------------------------------------------------------------------===//
// Diagnostic
//===----------------------------------------------------------------------===//
/// A little helper class (which is basically a smart pointer that forwards
/// info from DiagnosticsEngine) that allows clients to enquire about the
/// currently in-flight diagnostic.
class Diagnostic {
const DiagnosticsEngine *DiagObj;
StringRef StoredDiagMessage;
public:
explicit Diagnostic(const DiagnosticsEngine *DO) : DiagObj(DO) {}
Diagnostic(const DiagnosticsEngine *DO, StringRef storedDiagMessage)
: DiagObj(DO), StoredDiagMessage(storedDiagMessage) {}
const DiagnosticsEngine *getDiags() const { return DiagObj; }
unsigned getID() const { return DiagObj->CurDiagID; }
const SourceLocation &getLocation() const { return DiagObj->CurDiagLoc; }
bool hasSourceManager() const { return DiagObj->hasSourceManager(); }
SourceManager &getSourceManager() const { return DiagObj->getSourceManager();}
unsigned getNumArgs() const { return DiagObj->NumDiagArgs; }
/// \brief Return the kind of the specified index.
///
/// Based on the kind of argument, the accessors below can be used to get
/// the value.
///
/// \pre Idx < getNumArgs()
DiagnosticsEngine::ArgumentKind getArgKind(unsigned Idx) const {
assert(Idx < getNumArgs() && "Argument index out of range!");
return (DiagnosticsEngine::ArgumentKind)DiagObj->DiagArgumentsKind[Idx];
}
/// \brief Return the provided argument string specified by \p Idx.
/// \pre getArgKind(Idx) == DiagnosticsEngine::ak_std_string
const std::string &getArgStdStr(unsigned Idx) const {
assert(getArgKind(Idx) == DiagnosticsEngine::ak_std_string &&
"invalid argument accessor!");
return DiagObj->DiagArgumentsStr[Idx];
}
/// \brief Return the specified C string argument.
/// \pre getArgKind(Idx) == DiagnosticsEngine::ak_c_string
const char *getArgCStr(unsigned Idx) const {
assert(getArgKind(Idx) == DiagnosticsEngine::ak_c_string &&
"invalid argument accessor!");
return reinterpret_cast<const char*>(DiagObj->DiagArgumentsVal[Idx]);
}
/// \brief Return the specified signed integer argument.
/// \pre getArgKind(Idx) == DiagnosticsEngine::ak_sint
int getArgSInt(unsigned Idx) const {
assert(getArgKind(Idx) == DiagnosticsEngine::ak_sint &&
"invalid argument accessor!");
return (int)DiagObj->DiagArgumentsVal[Idx];
}
/// \brief Return the specified unsigned integer argument.
/// \pre getArgKind(Idx) == DiagnosticsEngine::ak_uint
unsigned getArgUInt(unsigned Idx) const {
assert(getArgKind(Idx) == DiagnosticsEngine::ak_uint &&
"invalid argument accessor!");
return (unsigned)DiagObj->DiagArgumentsVal[Idx];
}
/// \brief Return the specified IdentifierInfo argument.
/// \pre getArgKind(Idx) == DiagnosticsEngine::ak_identifierinfo
const IdentifierInfo *getArgIdentifier(unsigned Idx) const {
assert(getArgKind(Idx) == DiagnosticsEngine::ak_identifierinfo &&
"invalid argument accessor!");
return reinterpret_cast<IdentifierInfo*>(DiagObj->DiagArgumentsVal[Idx]);
}
/// \brief Return the specified non-string argument in an opaque form.
/// \pre getArgKind(Idx) != DiagnosticsEngine::ak_std_string
intptr_t getRawArg(unsigned Idx) const {
assert(getArgKind(Idx) != DiagnosticsEngine::ak_std_string &&
"invalid argument accessor!");
return DiagObj->DiagArgumentsVal[Idx];
}
/// \brief Return the number of source ranges associated with this diagnostic.
unsigned getNumRanges() const {
return DiagObj->NumDiagRanges;
}
/// \pre Idx < getNumRanges()
const CharSourceRange &getRange(unsigned Idx) const {
assert(Idx < DiagObj->NumDiagRanges && "Invalid diagnostic range index!");
return DiagObj->DiagRanges[Idx];
}
/// \brief Return an array reference for this diagnostic's ranges.
ArrayRef<CharSourceRange> getRanges() const {
return llvm::makeArrayRef(DiagObj->DiagRanges, DiagObj->NumDiagRanges);
}
unsigned getNumFixItHints() const {
return DiagObj->NumDiagFixItHints;
}
const FixItHint &getFixItHint(unsigned Idx) const {
assert(Idx < getNumFixItHints() && "Invalid index!");
return DiagObj->DiagFixItHints[Idx];
}
const FixItHint *getFixItHints() const {
return getNumFixItHints()? DiagObj->DiagFixItHints : 0;
}
/// \brief Format this diagnostic into a string, substituting the
/// formal arguments into the %0 slots.
///
/// The result is appended onto the \p OutStr array.
void FormatDiagnostic(SmallVectorImpl<char> &OutStr) const;
/// \brief Format the given format-string into the output buffer using the
/// arguments stored in this diagnostic.
void FormatDiagnostic(const char *DiagStr, const char *DiagEnd,
SmallVectorImpl<char> &OutStr) const;
};
/**
* \brief Represents a diagnostic in a form that can be retained until its
* corresponding source manager is destroyed.
*/
class StoredDiagnostic {
unsigned ID;
DiagnosticsEngine::Level Level;
FullSourceLoc Loc;
std::string Message;
std::vector<CharSourceRange> Ranges;
std::vector<FixItHint> FixIts;
public:
StoredDiagnostic();
StoredDiagnostic(DiagnosticsEngine::Level Level, const Diagnostic &Info);
StoredDiagnostic(DiagnosticsEngine::Level Level, unsigned ID,
StringRef Message);
StoredDiagnostic(DiagnosticsEngine::Level Level, unsigned ID,
StringRef Message, FullSourceLoc Loc,
ArrayRef<CharSourceRange> Ranges,
ArrayRef<FixItHint> Fixits);
~StoredDiagnostic();
/// \brief Evaluates true when this object stores a diagnostic.
LLVM_EXPLICIT operator bool() const { return Message.size() > 0; }
unsigned getID() const { return ID; }
DiagnosticsEngine::Level getLevel() const { return Level; }
const FullSourceLoc &getLocation() const { return Loc; }
StringRef getMessage() const { return Message; }
void setLocation(FullSourceLoc Loc) { this->Loc = Loc; }
typedef std::vector<CharSourceRange>::const_iterator range_iterator;
range_iterator range_begin() const { return Ranges.begin(); }
range_iterator range_end() const { return Ranges.end(); }
unsigned range_size() const { return Ranges.size(); }
ArrayRef<CharSourceRange> getRanges() const {
return llvm::makeArrayRef(Ranges);
}
typedef std::vector<FixItHint>::const_iterator fixit_iterator;
fixit_iterator fixit_begin() const { return FixIts.begin(); }
fixit_iterator fixit_end() const { return FixIts.end(); }
unsigned fixit_size() const { return FixIts.size(); }
ArrayRef<FixItHint> getFixIts() const {
return llvm::makeArrayRef(FixIts);
}
};
/// \brief Abstract interface, implemented by clients of the front-end, which
/// formats and prints fully processed diagnostics.
class DiagnosticConsumer {
protected:
unsigned NumWarnings; ///< Number of warnings reported
unsigned NumErrors; ///< Number of errors reported
public:
DiagnosticConsumer() : NumWarnings(0), NumErrors(0) { }
unsigned getNumErrors() const { return NumErrors; }
unsigned getNumWarnings() const { return NumWarnings; }
virtual void clear() { NumWarnings = NumErrors = 0; }
virtual ~DiagnosticConsumer();
/// \brief Callback to inform the diagnostic client that processing
/// of a source file is beginning.
///
/// Note that diagnostics may be emitted outside the processing of a source
/// file, for example during the parsing of command line options. However,
/// diagnostics with source range information are required to only be emitted
/// in between BeginSourceFile() and EndSourceFile().
///
/// \param LangOpts The language options for the source file being processed.
/// \param PP The preprocessor object being used for the source; this is
/// optional, e.g., it may not be present when processing AST source files.
virtual void BeginSourceFile(const LangOptions &LangOpts,
const Preprocessor *PP = 0) {}
/// \brief Callback to inform the diagnostic client that processing
/// of a source file has ended.
///
/// The diagnostic client should assume that any objects made available via
/// BeginSourceFile() are inaccessible.
virtual void EndSourceFile() {}
/// \brief Callback to inform the diagnostic client that processing of all
/// source files has ended.
virtual void finish() {}
/// \brief Indicates whether the diagnostics handled by this
/// DiagnosticConsumer should be included in the number of diagnostics
/// reported by DiagnosticsEngine.
///
/// The default implementation returns true.
virtual bool IncludeInDiagnosticCounts() const;
/// \brief Handle this diagnostic, reporting it to the user or
/// capturing it to a log as needed.
///
/// The default implementation just keeps track of the total number of
/// warnings and errors.
virtual void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
const Diagnostic &Info);
};
/// \brief A diagnostic client that ignores all diagnostics.
class IgnoringDiagConsumer : public DiagnosticConsumer {
virtual void anchor();
void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
const Diagnostic &Info) override {
// Just ignore it.
}
};
/// \brief Diagnostic consumer that forwards diagnostics along to an
/// existing, already-initialized diagnostic consumer.
///
class ForwardingDiagnosticConsumer : public DiagnosticConsumer {
DiagnosticConsumer &Target;
public:
ForwardingDiagnosticConsumer(DiagnosticConsumer &Target) : Target(Target) {}
virtual ~ForwardingDiagnosticConsumer();
void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
const Diagnostic &Info) override;
void clear() override;
bool IncludeInDiagnosticCounts() const override;
};
// Struct used for sending info about how a type should be printed.
struct TemplateDiffTypes {
intptr_t FromType;
intptr_t ToType;
unsigned PrintTree : 1;
unsigned PrintFromType : 1;
unsigned ElideType : 1;
unsigned ShowColors : 1;
// The printer sets this variable to true if the template diff was used.
unsigned TemplateDiffUsed : 1;
};
/// Special character that the diagnostic printer will use to toggle the bold
/// attribute. The character itself will be not be printed.
const char ToggleHighlight = 127;
} // end namespace clang
#endif