| //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Builtin calls as LLVM code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenFunction.h" |
| #include "CGObjCRuntime.h" |
| #include "CodeGenModule.h" |
| #include "TargetInfo.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/Basic/TargetBuiltins.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/CodeGen/CGFunctionInfo.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Intrinsics.h" |
| |
| using namespace clang; |
| using namespace CodeGen; |
| using namespace llvm; |
| |
| /// getBuiltinLibFunction - Given a builtin id for a function like |
| /// "__builtin_fabsf", return a Function* for "fabsf". |
| llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, |
| unsigned BuiltinID) { |
| assert(Context.BuiltinInfo.isLibFunction(BuiltinID)); |
| |
| // Get the name, skip over the __builtin_ prefix (if necessary). |
| StringRef Name; |
| GlobalDecl D(FD); |
| |
| // If the builtin has been declared explicitly with an assembler label, |
| // use the mangled name. This differs from the plain label on platforms |
| // that prefix labels. |
| if (FD->hasAttr<AsmLabelAttr>()) |
| Name = getMangledName(D); |
| else |
| Name = Context.BuiltinInfo.GetName(BuiltinID) + 10; |
| |
| llvm::FunctionType *Ty = |
| cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); |
| |
| return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); |
| } |
| |
| /// Emit the conversions required to turn the given value into an |
| /// integer of the given size. |
| static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V, |
| QualType T, llvm::IntegerType *IntType) { |
| V = CGF.EmitToMemory(V, T); |
| |
| if (V->getType()->isPointerTy()) |
| return CGF.Builder.CreatePtrToInt(V, IntType); |
| |
| assert(V->getType() == IntType); |
| return V; |
| } |
| |
| static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V, |
| QualType T, llvm::Type *ResultType) { |
| V = CGF.EmitFromMemory(V, T); |
| |
| if (ResultType->isPointerTy()) |
| return CGF.Builder.CreateIntToPtr(V, ResultType); |
| |
| assert(V->getType() == ResultType); |
| return V; |
| } |
| |
| /// Utility to insert an atomic instruction based on Instrinsic::ID |
| /// and the expression node. |
| static RValue EmitBinaryAtomic(CodeGenFunction &CGF, |
| llvm::AtomicRMWInst::BinOp Kind, |
| const CallExpr *E) { |
| QualType T = E->getType(); |
| assert(E->getArg(0)->getType()->isPointerType()); |
| assert(CGF.getContext().hasSameUnqualifiedType(T, |
| E->getArg(0)->getType()->getPointeeType())); |
| assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); |
| |
| llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); |
| unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); |
| |
| llvm::IntegerType *IntType = |
| llvm::IntegerType::get(CGF.getLLVMContext(), |
| CGF.getContext().getTypeSize(T)); |
| llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); |
| |
| llvm::Value *Args[2]; |
| Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); |
| Args[1] = CGF.EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ValueType = Args[1]->getType(); |
| Args[1] = EmitToInt(CGF, Args[1], T, IntType); |
| |
| llvm::Value *Result = |
| CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1], |
| llvm::SequentiallyConsistent); |
| Result = EmitFromInt(CGF, Result, T, ValueType); |
| return RValue::get(Result); |
| } |
| |
| /// Utility to insert an atomic instruction based Instrinsic::ID and |
| /// the expression node, where the return value is the result of the |
| /// operation. |
| static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF, |
| llvm::AtomicRMWInst::BinOp Kind, |
| const CallExpr *E, |
| Instruction::BinaryOps Op) { |
| QualType T = E->getType(); |
| assert(E->getArg(0)->getType()->isPointerType()); |
| assert(CGF.getContext().hasSameUnqualifiedType(T, |
| E->getArg(0)->getType()->getPointeeType())); |
| assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); |
| |
| llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); |
| unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); |
| |
| llvm::IntegerType *IntType = |
| llvm::IntegerType::get(CGF.getLLVMContext(), |
| CGF.getContext().getTypeSize(T)); |
| llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); |
| |
| llvm::Value *Args[2]; |
| Args[1] = CGF.EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ValueType = Args[1]->getType(); |
| Args[1] = EmitToInt(CGF, Args[1], T, IntType); |
| Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); |
| |
| llvm::Value *Result = |
| CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1], |
| llvm::SequentiallyConsistent); |
| Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]); |
| Result = EmitFromInt(CGF, Result, T, ValueType); |
| return RValue::get(Result); |
| } |
| |
| /// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy, |
| /// which must be a scalar floating point type. |
| static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) { |
| const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>(); |
| assert(ValTyP && "isn't scalar fp type!"); |
| |
| StringRef FnName; |
| switch (ValTyP->getKind()) { |
| default: llvm_unreachable("Isn't a scalar fp type!"); |
| case BuiltinType::Float: FnName = "fabsf"; break; |
| case BuiltinType::Double: FnName = "fabs"; break; |
| case BuiltinType::LongDouble: FnName = "fabsl"; break; |
| } |
| |
| // The prototype is something that takes and returns whatever V's type is. |
| llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), V->getType(), |
| false); |
| llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName); |
| |
| return CGF.EmitNounwindRuntimeCall(Fn, V, "abs"); |
| } |
| |
| static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *Fn, |
| const CallExpr *E, llvm::Value *calleeValue) { |
| return CGF.EmitCall(E->getCallee()->getType(), calleeValue, E->getLocStart(), |
| ReturnValueSlot(), E->arg_begin(), E->arg_end(), Fn); |
| } |
| |
| /// \brief Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.* |
| /// depending on IntrinsicID. |
| /// |
| /// \arg CGF The current codegen function. |
| /// \arg IntrinsicID The ID for the Intrinsic we wish to generate. |
| /// \arg X The first argument to the llvm.*.with.overflow.*. |
| /// \arg Y The second argument to the llvm.*.with.overflow.*. |
| /// \arg Carry The carry returned by the llvm.*.with.overflow.*. |
| /// \returns The result (i.e. sum/product) returned by the intrinsic. |
| static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF, |
| const llvm::Intrinsic::ID IntrinsicID, |
| llvm::Value *X, llvm::Value *Y, |
| llvm::Value *&Carry) { |
| // Make sure we have integers of the same width. |
| assert(X->getType() == Y->getType() && |
| "Arguments must be the same type. (Did you forget to make sure both " |
| "arguments have the same integer width?)"); |
| |
| llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType()); |
| llvm::Value *Tmp = CGF.Builder.CreateCall2(Callee, X, Y); |
| Carry = CGF.Builder.CreateExtractValue(Tmp, 1); |
| return CGF.Builder.CreateExtractValue(Tmp, 0); |
| } |
| |
| RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD, |
| unsigned BuiltinID, const CallExpr *E) { |
| // See if we can constant fold this builtin. If so, don't emit it at all. |
| Expr::EvalResult Result; |
| if (E->EvaluateAsRValue(Result, CGM.getContext()) && |
| !Result.hasSideEffects()) { |
| if (Result.Val.isInt()) |
| return RValue::get(llvm::ConstantInt::get(getLLVMContext(), |
| Result.Val.getInt())); |
| if (Result.Val.isFloat()) |
| return RValue::get(llvm::ConstantFP::get(getLLVMContext(), |
| Result.Val.getFloat())); |
| } |
| |
| switch (BuiltinID) { |
| default: break; // Handle intrinsics and libm functions below. |
| case Builtin::BI__builtin___CFStringMakeConstantString: |
| case Builtin::BI__builtin___NSStringMakeConstantString: |
| return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0)); |
| case Builtin::BI__builtin_stdarg_start: |
| case Builtin::BI__builtin_va_start: |
| case Builtin::BI__va_start: |
| case Builtin::BI__builtin_va_end: { |
| Value *ArgValue = (BuiltinID == Builtin::BI__va_start) |
| ? EmitScalarExpr(E->getArg(0)) |
| : EmitVAListRef(E->getArg(0)); |
| llvm::Type *DestType = Int8PtrTy; |
| if (ArgValue->getType() != DestType) |
| ArgValue = Builder.CreateBitCast(ArgValue, DestType, |
| ArgValue->getName().data()); |
| |
| Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ? |
| Intrinsic::vaend : Intrinsic::vastart; |
| return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue)); |
| } |
| case Builtin::BI__builtin_va_copy: { |
| Value *DstPtr = EmitVAListRef(E->getArg(0)); |
| Value *SrcPtr = EmitVAListRef(E->getArg(1)); |
| |
| llvm::Type *Type = Int8PtrTy; |
| |
| DstPtr = Builder.CreateBitCast(DstPtr, Type); |
| SrcPtr = Builder.CreateBitCast(SrcPtr, Type); |
| return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy), |
| DstPtr, SrcPtr)); |
| } |
| case Builtin::BI__builtin_abs: |
| case Builtin::BI__builtin_labs: |
| case Builtin::BI__builtin_llabs: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| Value *NegOp = Builder.CreateNeg(ArgValue, "neg"); |
| Value *CmpResult = |
| Builder.CreateICmpSGE(ArgValue, |
| llvm::Constant::getNullValue(ArgValue->getType()), |
| "abscond"); |
| Value *Result = |
| Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs"); |
| |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__builtin_conj: |
| case Builtin::BI__builtin_conjf: |
| case Builtin::BI__builtin_conjl: { |
| ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
| Value *Real = ComplexVal.first; |
| Value *Imag = ComplexVal.second; |
| Value *Zero = |
| Imag->getType()->isFPOrFPVectorTy() |
| ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType()) |
| : llvm::Constant::getNullValue(Imag->getType()); |
| |
| Imag = Builder.CreateFSub(Zero, Imag, "sub"); |
| return RValue::getComplex(std::make_pair(Real, Imag)); |
| } |
| case Builtin::BI__builtin_creal: |
| case Builtin::BI__builtin_crealf: |
| case Builtin::BI__builtin_creall: |
| case Builtin::BIcreal: |
| case Builtin::BIcrealf: |
| case Builtin::BIcreall: { |
| ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
| return RValue::get(ComplexVal.first); |
| } |
| |
| case Builtin::BI__builtin_cimag: |
| case Builtin::BI__builtin_cimagf: |
| case Builtin::BI__builtin_cimagl: |
| case Builtin::BIcimag: |
| case Builtin::BIcimagf: |
| case Builtin::BIcimagl: { |
| ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
| return RValue::get(ComplexVal.second); |
| } |
| |
| case Builtin::BI__builtin_ctzs: |
| case Builtin::BI__builtin_ctz: |
| case Builtin::BI__builtin_ctzl: |
| case Builtin::BI__builtin_ctzll: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); |
| Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_clzs: |
| case Builtin::BI__builtin_clz: |
| case Builtin::BI__builtin_clzl: |
| case Builtin::BI__builtin_clzll: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); |
| Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_ffs: |
| case Builtin::BI__builtin_ffsl: |
| case Builtin::BI__builtin_ffsll: { |
| // ffs(x) -> x ? cttz(x) + 1 : 0 |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Tmp = Builder.CreateAdd(Builder.CreateCall2(F, ArgValue, |
| Builder.getTrue()), |
| llvm::ConstantInt::get(ArgType, 1)); |
| Value *Zero = llvm::Constant::getNullValue(ArgType); |
| Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero"); |
| Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs"); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_parity: |
| case Builtin::BI__builtin_parityl: |
| case Builtin::BI__builtin_parityll: { |
| // parity(x) -> ctpop(x) & 1 |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Tmp = Builder.CreateCall(F, ArgValue); |
| Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1)); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_popcount: |
| case Builtin::BI__builtin_popcountl: |
| case Builtin::BI__builtin_popcountll: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Result = Builder.CreateCall(F, ArgValue); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_expect: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ArgType = ArgValue->getType(); |
| |
| Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType); |
| Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); |
| |
| Value *Result = Builder.CreateCall2(FnExpect, ArgValue, ExpectedValue, |
| "expval"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_bswap16: |
| case Builtin::BI__builtin_bswap32: |
| case Builtin::BI__builtin_bswap64: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ArgType = ArgValue->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType); |
| return RValue::get(Builder.CreateCall(F, ArgValue)); |
| } |
| case Builtin::BI__builtin_object_size: { |
| // We rely on constant folding to deal with expressions with side effects. |
| assert(!E->getArg(0)->HasSideEffects(getContext()) && |
| "should have been constant folded"); |
| |
| // We pass this builtin onto the optimizer so that it can |
| // figure out the object size in more complex cases. |
| llvm::Type *ResType = ConvertType(E->getType()); |
| |
| // LLVM only supports 0 and 2, make sure that we pass along that |
| // as a boolean. |
| Value *Ty = EmitScalarExpr(E->getArg(1)); |
| ConstantInt *CI = dyn_cast<ConstantInt>(Ty); |
| assert(CI); |
| uint64_t val = CI->getZExtValue(); |
| CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1); |
| // FIXME: Get right address space. |
| llvm::Type *Tys[] = { ResType, Builder.getInt8PtrTy(0) }; |
| Value *F = CGM.getIntrinsic(Intrinsic::objectsize, Tys); |
| return RValue::get(Builder.CreateCall2(F, EmitScalarExpr(E->getArg(0)),CI)); |
| } |
| case Builtin::BI__builtin_prefetch: { |
| Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0)); |
| // FIXME: Technically these constants should of type 'int', yes? |
| RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) : |
| llvm::ConstantInt::get(Int32Ty, 0); |
| Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : |
| llvm::ConstantInt::get(Int32Ty, 3); |
| Value *Data = llvm::ConstantInt::get(Int32Ty, 1); |
| Value *F = CGM.getIntrinsic(Intrinsic::prefetch); |
| return RValue::get(Builder.CreateCall4(F, Address, RW, Locality, Data)); |
| } |
| case Builtin::BI__builtin_readcyclecounter: { |
| Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter); |
| return RValue::get(Builder.CreateCall(F)); |
| } |
| case Builtin::BI__builtin___clear_cache: { |
| Value *Begin = EmitScalarExpr(E->getArg(0)); |
| Value *End = EmitScalarExpr(E->getArg(1)); |
| Value *F = CGM.getIntrinsic(Intrinsic::clear_cache); |
| return RValue::get(Builder.CreateCall2(F, Begin, End)); |
| } |
| case Builtin::BI__builtin_trap: { |
| Value *F = CGM.getIntrinsic(Intrinsic::trap); |
| return RValue::get(Builder.CreateCall(F)); |
| } |
| case Builtin::BI__debugbreak: { |
| Value *F = CGM.getIntrinsic(Intrinsic::debugtrap); |
| return RValue::get(Builder.CreateCall(F)); |
| } |
| case Builtin::BI__builtin_unreachable: { |
| if (SanOpts->Unreachable) |
| EmitCheck(Builder.getFalse(), "builtin_unreachable", |
| EmitCheckSourceLocation(E->getExprLoc()), |
| ArrayRef<llvm::Value *>(), CRK_Unrecoverable); |
| else |
| Builder.CreateUnreachable(); |
| |
| // We do need to preserve an insertion point. |
| EmitBlock(createBasicBlock("unreachable.cont")); |
| |
| return RValue::get(0); |
| } |
| |
| case Builtin::BI__builtin_powi: |
| case Builtin::BI__builtin_powif: |
| case Builtin::BI__builtin_powil: { |
| Value *Base = EmitScalarExpr(E->getArg(0)); |
| Value *Exponent = EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ArgType = Base->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType); |
| return RValue::get(Builder.CreateCall2(F, Base, Exponent)); |
| } |
| |
| case Builtin::BI__builtin_isgreater: |
| case Builtin::BI__builtin_isgreaterequal: |
| case Builtin::BI__builtin_isless: |
| case Builtin::BI__builtin_islessequal: |
| case Builtin::BI__builtin_islessgreater: |
| case Builtin::BI__builtin_isunordered: { |
| // Ordered comparisons: we know the arguments to these are matching scalar |
| // floating point values. |
| Value *LHS = EmitScalarExpr(E->getArg(0)); |
| Value *RHS = EmitScalarExpr(E->getArg(1)); |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unknown ordered comparison"); |
| case Builtin::BI__builtin_isgreater: |
| LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_isgreaterequal: |
| LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_isless: |
| LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_islessequal: |
| LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_islessgreater: |
| LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_isunordered: |
| LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp"); |
| break; |
| } |
| // ZExt bool to int type. |
| return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()))); |
| } |
| case Builtin::BI__builtin_isnan: { |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| V = Builder.CreateFCmpUNO(V, V, "cmp"); |
| return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); |
| } |
| |
| case Builtin::BI__builtin_isinf: { |
| // isinf(x) --> fabs(x) == infinity |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| V = EmitFAbs(*this, V, E->getArg(0)->getType()); |
| |
| V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf"); |
| return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); |
| } |
| |
| // TODO: BI__builtin_isinf_sign |
| // isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0 |
| |
| case Builtin::BI__builtin_isnormal: { |
| // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq"); |
| |
| Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType()); |
| Value *IsLessThanInf = |
| Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf"); |
| APFloat Smallest = APFloat::getSmallestNormalized( |
| getContext().getFloatTypeSemantics(E->getArg(0)->getType())); |
| Value *IsNormal = |
| Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest), |
| "isnormal"); |
| V = Builder.CreateAnd(Eq, IsLessThanInf, "and"); |
| V = Builder.CreateAnd(V, IsNormal, "and"); |
| return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); |
| } |
| |
| case Builtin::BI__builtin_isfinite: { |
| // isfinite(x) --> x == x && fabs(x) != infinity; |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq"); |
| |
| Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType()); |
| Value *IsNotInf = |
| Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf"); |
| |
| V = Builder.CreateAnd(Eq, IsNotInf, "and"); |
| return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); |
| } |
| |
| case Builtin::BI__builtin_fpclassify: { |
| Value *V = EmitScalarExpr(E->getArg(5)); |
| llvm::Type *Ty = ConvertType(E->getArg(5)->getType()); |
| |
| // Create Result |
| BasicBlock *Begin = Builder.GetInsertBlock(); |
| BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn); |
| Builder.SetInsertPoint(End); |
| PHINode *Result = |
| Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4, |
| "fpclassify_result"); |
| |
| // if (V==0) return FP_ZERO |
| Builder.SetInsertPoint(Begin); |
| Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty), |
| "iszero"); |
| Value *ZeroLiteral = EmitScalarExpr(E->getArg(4)); |
| BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn); |
| Builder.CreateCondBr(IsZero, End, NotZero); |
| Result->addIncoming(ZeroLiteral, Begin); |
| |
| // if (V != V) return FP_NAN |
| Builder.SetInsertPoint(NotZero); |
| Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp"); |
| Value *NanLiteral = EmitScalarExpr(E->getArg(0)); |
| BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn); |
| Builder.CreateCondBr(IsNan, End, NotNan); |
| Result->addIncoming(NanLiteral, NotZero); |
| |
| // if (fabs(V) == infinity) return FP_INFINITY |
| Builder.SetInsertPoint(NotNan); |
| Value *VAbs = EmitFAbs(*this, V, E->getArg(5)->getType()); |
| Value *IsInf = |
| Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()), |
| "isinf"); |
| Value *InfLiteral = EmitScalarExpr(E->getArg(1)); |
| BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn); |
| Builder.CreateCondBr(IsInf, End, NotInf); |
| Result->addIncoming(InfLiteral, NotNan); |
| |
| // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL |
| Builder.SetInsertPoint(NotInf); |
| APFloat Smallest = APFloat::getSmallestNormalized( |
| getContext().getFloatTypeSemantics(E->getArg(5)->getType())); |
| Value *IsNormal = |
| Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest), |
| "isnormal"); |
| Value *NormalResult = |
| Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)), |
| EmitScalarExpr(E->getArg(3))); |
| Builder.CreateBr(End); |
| Result->addIncoming(NormalResult, NotInf); |
| |
| // return Result |
| Builder.SetInsertPoint(End); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BIalloca: |
| case Builtin::BI_alloca: |
| case Builtin::BI__builtin_alloca: { |
| Value *Size = EmitScalarExpr(E->getArg(0)); |
| return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size)); |
| } |
| case Builtin::BIbzero: |
| case Builtin::BI__builtin_bzero: { |
| std::pair<llvm::Value*, unsigned> Dest = |
| EmitPointerWithAlignment(E->getArg(0)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(1)); |
| Builder.CreateMemSet(Dest.first, Builder.getInt8(0), SizeVal, |
| Dest.second, false); |
| return RValue::get(Dest.first); |
| } |
| case Builtin::BImemcpy: |
| case Builtin::BI__builtin_memcpy: { |
| std::pair<llvm::Value*, unsigned> Dest = |
| EmitPointerWithAlignment(E->getArg(0)); |
| std::pair<llvm::Value*, unsigned> Src = |
| EmitPointerWithAlignment(E->getArg(1)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| unsigned Align = std::min(Dest.second, Src.second); |
| Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false); |
| return RValue::get(Dest.first); |
| } |
| |
| case Builtin::BI__builtin___memcpy_chk: { |
| // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2. |
| llvm::APSInt Size, DstSize; |
| if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) || |
| !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext())) |
| break; |
| if (Size.ugt(DstSize)) |
| break; |
| std::pair<llvm::Value*, unsigned> Dest = |
| EmitPointerWithAlignment(E->getArg(0)); |
| std::pair<llvm::Value*, unsigned> Src = |
| EmitPointerWithAlignment(E->getArg(1)); |
| Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
| unsigned Align = std::min(Dest.second, Src.second); |
| Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false); |
| return RValue::get(Dest.first); |
| } |
| |
| case Builtin::BI__builtin_objc_memmove_collectable: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *SrcAddr = EmitScalarExpr(E->getArg(1)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, |
| Address, SrcAddr, SizeVal); |
| return RValue::get(Address); |
| } |
| |
| case Builtin::BI__builtin___memmove_chk: { |
| // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2. |
| llvm::APSInt Size, DstSize; |
| if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) || |
| !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext())) |
| break; |
| if (Size.ugt(DstSize)) |
| break; |
| std::pair<llvm::Value*, unsigned> Dest = |
| EmitPointerWithAlignment(E->getArg(0)); |
| std::pair<llvm::Value*, unsigned> Src = |
| EmitPointerWithAlignment(E->getArg(1)); |
| Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
| unsigned Align = std::min(Dest.second, Src.second); |
| Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false); |
| return RValue::get(Dest.first); |
| } |
| |
| case Builtin::BImemmove: |
| case Builtin::BI__builtin_memmove: { |
| std::pair<llvm::Value*, unsigned> Dest = |
| EmitPointerWithAlignment(E->getArg(0)); |
| std::pair<llvm::Value*, unsigned> Src = |
| EmitPointerWithAlignment(E->getArg(1)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| unsigned Align = std::min(Dest.second, Src.second); |
| Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false); |
| return RValue::get(Dest.first); |
| } |
| case Builtin::BImemset: |
| case Builtin::BI__builtin_memset: { |
| std::pair<llvm::Value*, unsigned> Dest = |
| EmitPointerWithAlignment(E->getArg(0)); |
| Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), |
| Builder.getInt8Ty()); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false); |
| return RValue::get(Dest.first); |
| } |
| case Builtin::BI__builtin___memset_chk: { |
| // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2. |
| llvm::APSInt Size, DstSize; |
| if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) || |
| !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext())) |
| break; |
| if (Size.ugt(DstSize)) |
| break; |
| std::pair<llvm::Value*, unsigned> Dest = |
| EmitPointerWithAlignment(E->getArg(0)); |
| Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), |
| Builder.getInt8Ty()); |
| Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
| Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false); |
| return RValue::get(Dest.first); |
| } |
| case Builtin::BI__builtin_dwarf_cfa: { |
| // The offset in bytes from the first argument to the CFA. |
| // |
| // Why on earth is this in the frontend? Is there any reason at |
| // all that the backend can't reasonably determine this while |
| // lowering llvm.eh.dwarf.cfa()? |
| // |
| // TODO: If there's a satisfactory reason, add a target hook for |
| // this instead of hard-coding 0, which is correct for most targets. |
| int32_t Offset = 0; |
| |
| Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa); |
| return RValue::get(Builder.CreateCall(F, |
| llvm::ConstantInt::get(Int32Ty, Offset))); |
| } |
| case Builtin::BI__builtin_return_address: { |
| Value *Depth = EmitScalarExpr(E->getArg(0)); |
| Depth = Builder.CreateIntCast(Depth, Int32Ty, false); |
| Value *F = CGM.getIntrinsic(Intrinsic::returnaddress); |
| return RValue::get(Builder.CreateCall(F, Depth)); |
| } |
| case Builtin::BI__builtin_frame_address: { |
| Value *Depth = EmitScalarExpr(E->getArg(0)); |
| Depth = Builder.CreateIntCast(Depth, Int32Ty, false); |
| Value *F = CGM.getIntrinsic(Intrinsic::frameaddress); |
| return RValue::get(Builder.CreateCall(F, Depth)); |
| } |
| case Builtin::BI__builtin_extract_return_addr: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *Result = getTargetHooks().decodeReturnAddress(*this, Address); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_frob_return_addr: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *Result = getTargetHooks().encodeReturnAddress(*this, Address); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_dwarf_sp_column: { |
| llvm::IntegerType *Ty |
| = cast<llvm::IntegerType>(ConvertType(E->getType())); |
| int Column = getTargetHooks().getDwarfEHStackPointer(CGM); |
| if (Column == -1) { |
| CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column"); |
| return RValue::get(llvm::UndefValue::get(Ty)); |
| } |
| return RValue::get(llvm::ConstantInt::get(Ty, Column, true)); |
| } |
| case Builtin::BI__builtin_init_dwarf_reg_size_table: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address)) |
| CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table"); |
| return RValue::get(llvm::UndefValue::get(ConvertType(E->getType()))); |
| } |
| case Builtin::BI__builtin_eh_return: { |
| Value *Int = EmitScalarExpr(E->getArg(0)); |
| Value *Ptr = EmitScalarExpr(E->getArg(1)); |
| |
| llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType()); |
| assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && |
| "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"); |
| Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32 |
| ? Intrinsic::eh_return_i32 |
| : Intrinsic::eh_return_i64); |
| Builder.CreateCall2(F, Int, Ptr); |
| Builder.CreateUnreachable(); |
| |
| // We do need to preserve an insertion point. |
| EmitBlock(createBasicBlock("builtin_eh_return.cont")); |
| |
| return RValue::get(0); |
| } |
| case Builtin::BI__builtin_unwind_init: { |
| Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init); |
| return RValue::get(Builder.CreateCall(F)); |
| } |
| case Builtin::BI__builtin_extend_pointer: { |
| // Extends a pointer to the size of an _Unwind_Word, which is |
| // uint64_t on all platforms. Generally this gets poked into a |
| // register and eventually used as an address, so if the |
| // addressing registers are wider than pointers and the platform |
| // doesn't implicitly ignore high-order bits when doing |
| // addressing, we need to make sure we zext / sext based on |
| // the platform's expectations. |
| // |
| // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html |
| |
| // Cast the pointer to intptr_t. |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast"); |
| |
| // If that's 64 bits, we're done. |
| if (IntPtrTy->getBitWidth() == 64) |
| return RValue::get(Result); |
| |
| // Otherwise, ask the codegen data what to do. |
| if (getTargetHooks().extendPointerWithSExt()) |
| return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext")); |
| else |
| return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext")); |
| } |
| case Builtin::BI__builtin_setjmp: { |
| // Buffer is a void**. |
| Value *Buf = EmitScalarExpr(E->getArg(0)); |
| |
| // Store the frame pointer to the setjmp buffer. |
| Value *FrameAddr = |
| Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress), |
| ConstantInt::get(Int32Ty, 0)); |
| Builder.CreateStore(FrameAddr, Buf); |
| |
| // Store the stack pointer to the setjmp buffer. |
| Value *StackAddr = |
| Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave)); |
| Value *StackSaveSlot = |
| Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2)); |
| Builder.CreateStore(StackAddr, StackSaveSlot); |
| |
| // Call LLVM's EH setjmp, which is lightweight. |
| Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp); |
| Buf = Builder.CreateBitCast(Buf, Int8PtrTy); |
| return RValue::get(Builder.CreateCall(F, Buf)); |
| } |
| case Builtin::BI__builtin_longjmp: { |
| Value *Buf = EmitScalarExpr(E->getArg(0)); |
| Buf = Builder.CreateBitCast(Buf, Int8PtrTy); |
| |
| // Call LLVM's EH longjmp, which is lightweight. |
| Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf); |
| |
| // longjmp doesn't return; mark this as unreachable. |
| Builder.CreateUnreachable(); |
| |
| // We do need to preserve an insertion point. |
| EmitBlock(createBasicBlock("longjmp.cont")); |
| |
| return RValue::get(0); |
| } |
| case Builtin::BI__sync_fetch_and_add: |
| case Builtin::BI__sync_fetch_and_sub: |
| case Builtin::BI__sync_fetch_and_or: |
| case Builtin::BI__sync_fetch_and_and: |
| case Builtin::BI__sync_fetch_and_xor: |
| case Builtin::BI__sync_add_and_fetch: |
| case Builtin::BI__sync_sub_and_fetch: |
| case Builtin::BI__sync_and_and_fetch: |
| case Builtin::BI__sync_or_and_fetch: |
| case Builtin::BI__sync_xor_and_fetch: |
| case Builtin::BI__sync_val_compare_and_swap: |
| case Builtin::BI__sync_bool_compare_and_swap: |
| case Builtin::BI__sync_lock_test_and_set: |
| case Builtin::BI__sync_lock_release: |
| case Builtin::BI__sync_swap: |
| llvm_unreachable("Shouldn't make it through sema"); |
| case Builtin::BI__sync_fetch_and_add_1: |
| case Builtin::BI__sync_fetch_and_add_2: |
| case Builtin::BI__sync_fetch_and_add_4: |
| case Builtin::BI__sync_fetch_and_add_8: |
| case Builtin::BI__sync_fetch_and_add_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E); |
| case Builtin::BI__sync_fetch_and_sub_1: |
| case Builtin::BI__sync_fetch_and_sub_2: |
| case Builtin::BI__sync_fetch_and_sub_4: |
| case Builtin::BI__sync_fetch_and_sub_8: |
| case Builtin::BI__sync_fetch_and_sub_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E); |
| case Builtin::BI__sync_fetch_and_or_1: |
| case Builtin::BI__sync_fetch_and_or_2: |
| case Builtin::BI__sync_fetch_and_or_4: |
| case Builtin::BI__sync_fetch_and_or_8: |
| case Builtin::BI__sync_fetch_and_or_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E); |
| case Builtin::BI__sync_fetch_and_and_1: |
| case Builtin::BI__sync_fetch_and_and_2: |
| case Builtin::BI__sync_fetch_and_and_4: |
| case Builtin::BI__sync_fetch_and_and_8: |
| case Builtin::BI__sync_fetch_and_and_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E); |
| case Builtin::BI__sync_fetch_and_xor_1: |
| case Builtin::BI__sync_fetch_and_xor_2: |
| case Builtin::BI__sync_fetch_and_xor_4: |
| case Builtin::BI__sync_fetch_and_xor_8: |
| case Builtin::BI__sync_fetch_and_xor_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E); |
| |
| // Clang extensions: not overloaded yet. |
| case Builtin::BI__sync_fetch_and_min: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E); |
| case Builtin::BI__sync_fetch_and_max: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E); |
| case Builtin::BI__sync_fetch_and_umin: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E); |
| case Builtin::BI__sync_fetch_and_umax: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E); |
| |
| case Builtin::BI__sync_add_and_fetch_1: |
| case Builtin::BI__sync_add_and_fetch_2: |
| case Builtin::BI__sync_add_and_fetch_4: |
| case Builtin::BI__sync_add_and_fetch_8: |
| case Builtin::BI__sync_add_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E, |
| llvm::Instruction::Add); |
| case Builtin::BI__sync_sub_and_fetch_1: |
| case Builtin::BI__sync_sub_and_fetch_2: |
| case Builtin::BI__sync_sub_and_fetch_4: |
| case Builtin::BI__sync_sub_and_fetch_8: |
| case Builtin::BI__sync_sub_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E, |
| llvm::Instruction::Sub); |
| case Builtin::BI__sync_and_and_fetch_1: |
| case Builtin::BI__sync_and_and_fetch_2: |
| case Builtin::BI__sync_and_and_fetch_4: |
| case Builtin::BI__sync_and_and_fetch_8: |
| case Builtin::BI__sync_and_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E, |
| llvm::Instruction::And); |
| case Builtin::BI__sync_or_and_fetch_1: |
| case Builtin::BI__sync_or_and_fetch_2: |
| case Builtin::BI__sync_or_and_fetch_4: |
| case Builtin::BI__sync_or_and_fetch_8: |
| case Builtin::BI__sync_or_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E, |
| llvm::Instruction::Or); |
| case Builtin::BI__sync_xor_and_fetch_1: |
| case Builtin::BI__sync_xor_and_fetch_2: |
| case Builtin::BI__sync_xor_and_fetch_4: |
| case Builtin::BI__sync_xor_and_fetch_8: |
| case Builtin::BI__sync_xor_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E, |
| llvm::Instruction::Xor); |
| |
| case Builtin::BI__sync_val_compare_and_swap_1: |
| case Builtin::BI__sync_val_compare_and_swap_2: |
| case Builtin::BI__sync_val_compare_and_swap_4: |
| case Builtin::BI__sync_val_compare_and_swap_8: |
| case Builtin::BI__sync_val_compare_and_swap_16: { |
| QualType T = E->getType(); |
| llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0)); |
| unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); |
| |
| llvm::IntegerType *IntType = |
| llvm::IntegerType::get(getLLVMContext(), |
| getContext().getTypeSize(T)); |
| llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); |
| |
| Value *Args[3]; |
| Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType); |
| Args[1] = EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ValueType = Args[1]->getType(); |
| Args[1] = EmitToInt(*this, Args[1], T, IntType); |
| Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType); |
| |
| Value *Result = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2], |
| llvm::SequentiallyConsistent, |
| llvm::SequentiallyConsistent); |
| Result = EmitFromInt(*this, Result, T, ValueType); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__sync_bool_compare_and_swap_1: |
| case Builtin::BI__sync_bool_compare_and_swap_2: |
| case Builtin::BI__sync_bool_compare_and_swap_4: |
| case Builtin::BI__sync_bool_compare_and_swap_8: |
| case Builtin::BI__sync_bool_compare_and_swap_16: { |
| QualType T = E->getArg(1)->getType(); |
| llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0)); |
| unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); |
| |
| llvm::IntegerType *IntType = |
| llvm::IntegerType::get(getLLVMContext(), |
| getContext().getTypeSize(T)); |
| llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); |
| |
| Value *Args[3]; |
| Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType); |
| Args[1] = EmitToInt(*this, EmitScalarExpr(E->getArg(1)), T, IntType); |
| Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType); |
| |
| Value *OldVal = Args[1]; |
| Value *PrevVal = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2], |
| llvm::SequentiallyConsistent, |
| llvm::SequentiallyConsistent); |
| Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal); |
| // zext bool to int. |
| Result = Builder.CreateZExt(Result, ConvertType(E->getType())); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__sync_swap_1: |
| case Builtin::BI__sync_swap_2: |
| case Builtin::BI__sync_swap_4: |
| case Builtin::BI__sync_swap_8: |
| case Builtin::BI__sync_swap_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); |
| |
| case Builtin::BI__sync_lock_test_and_set_1: |
| case Builtin::BI__sync_lock_test_and_set_2: |
| case Builtin::BI__sync_lock_test_and_set_4: |
| case Builtin::BI__sync_lock_test_and_set_8: |
| case Builtin::BI__sync_lock_test_and_set_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); |
| |
| case Builtin::BI__sync_lock_release_1: |
| case Builtin::BI__sync_lock_release_2: |
| case Builtin::BI__sync_lock_release_4: |
| case Builtin::BI__sync_lock_release_8: |
| case Builtin::BI__sync_lock_release_16: { |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| QualType ElTy = E->getArg(0)->getType()->getPointeeType(); |
| CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy); |
| llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(), |
| StoreSize.getQuantity() * 8); |
| Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo()); |
| llvm::StoreInst *Store = |
| Builder.CreateStore(llvm::Constant::getNullValue(ITy), Ptr); |
| Store->setAlignment(StoreSize.getQuantity()); |
| Store->setAtomic(llvm::Release); |
| return RValue::get(0); |
| } |
| |
| case Builtin::BI__sync_synchronize: { |
| // We assume this is supposed to correspond to a C++0x-style |
| // sequentially-consistent fence (i.e. this is only usable for |
| // synchonization, not device I/O or anything like that). This intrinsic |
| // is really badly designed in the sense that in theory, there isn't |
| // any way to safely use it... but in practice, it mostly works |
| // to use it with non-atomic loads and stores to get acquire/release |
| // semantics. |
| Builder.CreateFence(llvm::SequentiallyConsistent); |
| return RValue::get(0); |
| } |
| |
| case Builtin::BI__c11_atomic_is_lock_free: |
| case Builtin::BI__atomic_is_lock_free: { |
| // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the |
| // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since |
| // _Atomic(T) is always properly-aligned. |
| const char *LibCallName = "__atomic_is_lock_free"; |
| CallArgList Args; |
| Args.add(RValue::get(EmitScalarExpr(E->getArg(0))), |
| getContext().getSizeType()); |
| if (BuiltinID == Builtin::BI__atomic_is_lock_free) |
| Args.add(RValue::get(EmitScalarExpr(E->getArg(1))), |
| getContext().VoidPtrTy); |
| else |
| Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)), |
| getContext().VoidPtrTy); |
| const CGFunctionInfo &FuncInfo = |
| CGM.getTypes().arrangeFreeFunctionCall(E->getType(), Args, |
| FunctionType::ExtInfo(), |
| RequiredArgs::All); |
| llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); |
| llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); |
| return EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); |
| } |
| |
| case Builtin::BI__atomic_test_and_set: { |
| // Look at the argument type to determine whether this is a volatile |
| // operation. The parameter type is always volatile. |
| QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); |
| bool Volatile = |
| PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); |
| |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace(); |
| Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); |
| Value *NewVal = Builder.getInt8(1); |
| Value *Order = EmitScalarExpr(E->getArg(1)); |
| if (isa<llvm::ConstantInt>(Order)) { |
| int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
| AtomicRMWInst *Result = 0; |
| switch (ord) { |
| case 0: // memory_order_relaxed |
| default: // invalid order |
| Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, |
| Ptr, NewVal, |
| llvm::Monotonic); |
| break; |
| case 1: // memory_order_consume |
| case 2: // memory_order_acquire |
| Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, |
| Ptr, NewVal, |
| llvm::Acquire); |
| break; |
| case 3: // memory_order_release |
| Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, |
| Ptr, NewVal, |
| llvm::Release); |
| break; |
| case 4: // memory_order_acq_rel |
| Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, |
| Ptr, NewVal, |
| llvm::AcquireRelease); |
| break; |
| case 5: // memory_order_seq_cst |
| Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, |
| Ptr, NewVal, |
| llvm::SequentiallyConsistent); |
| break; |
| } |
| Result->setVolatile(Volatile); |
| return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); |
| } |
| |
| llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); |
| |
| llvm::BasicBlock *BBs[5] = { |
| createBasicBlock("monotonic", CurFn), |
| createBasicBlock("acquire", CurFn), |
| createBasicBlock("release", CurFn), |
| createBasicBlock("acqrel", CurFn), |
| createBasicBlock("seqcst", CurFn) |
| }; |
| llvm::AtomicOrdering Orders[5] = { |
| llvm::Monotonic, llvm::Acquire, llvm::Release, |
| llvm::AcquireRelease, llvm::SequentiallyConsistent |
| }; |
| |
| Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
| llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); |
| |
| Builder.SetInsertPoint(ContBB); |
| PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set"); |
| |
| for (unsigned i = 0; i < 5; ++i) { |
| Builder.SetInsertPoint(BBs[i]); |
| AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, |
| Ptr, NewVal, Orders[i]); |
| RMW->setVolatile(Volatile); |
| Result->addIncoming(RMW, BBs[i]); |
| Builder.CreateBr(ContBB); |
| } |
| |
| SI->addCase(Builder.getInt32(0), BBs[0]); |
| SI->addCase(Builder.getInt32(1), BBs[1]); |
| SI->addCase(Builder.getInt32(2), BBs[1]); |
| SI->addCase(Builder.getInt32(3), BBs[2]); |
| SI->addCase(Builder.getInt32(4), BBs[3]); |
| SI->addCase(Builder.getInt32(5), BBs[4]); |
| |
| Builder.SetInsertPoint(ContBB); |
| return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); |
| } |
| |
| case Builtin::BI__atomic_clear: { |
| QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); |
| bool Volatile = |
| PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); |
| |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace(); |
| Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); |
| Value *NewVal = Builder.getInt8(0); |
| Value *Order = EmitScalarExpr(E->getArg(1)); |
| if (isa<llvm::ConstantInt>(Order)) { |
| int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
| StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); |
| Store->setAlignment(1); |
| switch (ord) { |
| case 0: // memory_order_relaxed |
| default: // invalid order |
| Store->setOrdering(llvm::Monotonic); |
| break; |
| case 3: // memory_order_release |
| Store->setOrdering(llvm::Release); |
| break; |
| case 5: // memory_order_seq_cst |
| Store->setOrdering(llvm::SequentiallyConsistent); |
| break; |
| } |
| return RValue::get(0); |
| } |
| |
| llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); |
| |
| llvm::BasicBlock *BBs[3] = { |
| createBasicBlock("monotonic", CurFn), |
| createBasicBlock("release", CurFn), |
| createBasicBlock("seqcst", CurFn) |
| }; |
| llvm::AtomicOrdering Orders[3] = { |
| llvm::Monotonic, llvm::Release, llvm::SequentiallyConsistent |
| }; |
| |
| Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
| llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); |
| |
| for (unsigned i = 0; i < 3; ++i) { |
| Builder.SetInsertPoint(BBs[i]); |
| StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); |
| Store->setAlignment(1); |
| Store->setOrdering(Orders[i]); |
| Builder.CreateBr(ContBB); |
| } |
| |
| SI->addCase(Builder.getInt32(0), BBs[0]); |
| SI->addCase(Builder.getInt32(3), BBs[1]); |
| SI->addCase(Builder.getInt32(5), BBs[2]); |
| |
| Builder.SetInsertPoint(ContBB); |
| return RValue::get(0); |
| } |
| |
| case Builtin::BI__atomic_thread_fence: |
| case Builtin::BI__atomic_signal_fence: |
| case Builtin::BI__c11_atomic_thread_fence: |
| case Builtin::BI__c11_atomic_signal_fence: { |
| llvm::SynchronizationScope Scope; |
| if (BuiltinID == Builtin::BI__atomic_signal_fence || |
| BuiltinID == Builtin::BI__c11_atomic_signal_fence) |
| Scope = llvm::SingleThread; |
| else |
| Scope = llvm::CrossThread; |
| Value *Order = EmitScalarExpr(E->getArg(0)); |
| if (isa<llvm::ConstantInt>(Order)) { |
| int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
| switch (ord) { |
| case 0: // memory_order_relaxed |
| default: // invalid order |
| break; |
| case 1: // memory_order_consume |
| case 2: // memory_order_acquire |
| Builder.CreateFence(llvm::Acquire, Scope); |
| break; |
| case 3: // memory_order_release |
| Builder.CreateFence(llvm::Release, Scope); |
| break; |
| case 4: // memory_order_acq_rel |
| Builder.CreateFence(llvm::AcquireRelease, Scope); |
| break; |
| case 5: // memory_order_seq_cst |
| Builder.CreateFence(llvm::SequentiallyConsistent, Scope); |
| break; |
| } |
| return RValue::get(0); |
| } |
| |
| llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB; |
| AcquireBB = createBasicBlock("acquire", CurFn); |
| ReleaseBB = createBasicBlock("release", CurFn); |
| AcqRelBB = createBasicBlock("acqrel", CurFn); |
| SeqCstBB = createBasicBlock("seqcst", CurFn); |
| llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); |
| |
| Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
| llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB); |
| |
| Builder.SetInsertPoint(AcquireBB); |
| Builder.CreateFence(llvm::Acquire, Scope); |
| Builder.CreateBr(ContBB); |
| SI->addCase(Builder.getInt32(1), AcquireBB); |
| SI->addCase(Builder.getInt32(2), AcquireBB); |
| |
| Builder.SetInsertPoint(ReleaseBB); |
| Builder.CreateFence(llvm::Release, Scope); |
| Builder.CreateBr(ContBB); |
| SI->addCase(Builder.getInt32(3), ReleaseBB); |
| |
| Builder.SetInsertPoint(AcqRelBB); |
| Builder.CreateFence(llvm::AcquireRelease, Scope); |
| Builder.CreateBr(ContBB); |
| SI->addCase(Builder.getInt32(4), AcqRelBB); |
| |
| Builder.SetInsertPoint(SeqCstBB); |
| Builder.CreateFence(llvm::SequentiallyConsistent, Scope); |
| Builder.CreateBr(ContBB); |
| SI->addCase(Builder.getInt32(5), SeqCstBB); |
| |
| Builder.SetInsertPoint(ContBB); |
| return RValue::get(0); |
| } |
| |
| // Library functions with special handling. |
| case Builtin::BIsqrt: |
| case Builtin::BIsqrtf: |
| case Builtin::BIsqrtl: { |
| // Transform a call to sqrt* into a @llvm.sqrt.* intrinsic call, but only |
| // in finite- or unsafe-math mode (the intrinsic has different semantics |
| // for handling negative numbers compared to the library function, so |
| // -fmath-errno=0 is not enough). |
| if (!FD->hasAttr<ConstAttr>()) |
| break; |
| if (!(CGM.getCodeGenOpts().UnsafeFPMath || |
| CGM.getCodeGenOpts().NoNaNsFPMath)) |
| break; |
| Value *Arg0 = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ArgType = Arg0->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::sqrt, ArgType); |
| return RValue::get(Builder.CreateCall(F, Arg0)); |
| } |
| |
| case Builtin::BIpow: |
| case Builtin::BIpowf: |
| case Builtin::BIpowl: { |
| // Transform a call to pow* into a @llvm.pow.* intrinsic call. |
| if (!FD->hasAttr<ConstAttr>()) |
| break; |
| Value *Base = EmitScalarExpr(E->getArg(0)); |
| Value *Exponent = EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ArgType = Base->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType); |
| return RValue::get(Builder.CreateCall2(F, Base, Exponent)); |
| } |
| |
| case Builtin::BIfma: |
| case Builtin::BIfmaf: |
| case Builtin::BIfmal: |
| case Builtin::BI__builtin_fma: |
| case Builtin::BI__builtin_fmaf: |
| case Builtin::BI__builtin_fmal: { |
| // Rewrite fma to intrinsic. |
| Value *FirstArg = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ArgType = FirstArg->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType); |
| return RValue::get(Builder.CreateCall3(F, FirstArg, |
| EmitScalarExpr(E->getArg(1)), |
| EmitScalarExpr(E->getArg(2)))); |
| } |
| |
| case Builtin::BI__builtin_signbit: |
| case Builtin::BI__builtin_signbitf: |
| case Builtin::BI__builtin_signbitl: { |
| LLVMContext &C = CGM.getLLVMContext(); |
| |
| Value *Arg = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ArgTy = Arg->getType(); |
| if (ArgTy->isPPC_FP128Ty()) |
| break; // FIXME: I'm not sure what the right implementation is here. |
| int ArgWidth = ArgTy->getPrimitiveSizeInBits(); |
| llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth); |
| Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy); |
| Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy); |
| Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp); |
| return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType()))); |
| } |
| case Builtin::BI__builtin_annotation: { |
| llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation, |
| AnnVal->getType()); |
| |
| // Get the annotation string, go through casts. Sema requires this to be a |
| // non-wide string literal, potentially casted, so the cast<> is safe. |
| const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts(); |
| StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString(); |
| return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc())); |
| } |
| case Builtin::BI__builtin_addcb: |
| case Builtin::BI__builtin_addcs: |
| case Builtin::BI__builtin_addc: |
| case Builtin::BI__builtin_addcl: |
| case Builtin::BI__builtin_addcll: |
| case Builtin::BI__builtin_subcb: |
| case Builtin::BI__builtin_subcs: |
| case Builtin::BI__builtin_subc: |
| case Builtin::BI__builtin_subcl: |
| case Builtin::BI__builtin_subcll: { |
| |
| // We translate all of these builtins from expressions of the form: |
| // int x = ..., y = ..., carryin = ..., carryout, result; |
| // result = __builtin_addc(x, y, carryin, &carryout); |
| // |
| // to LLVM IR of the form: |
| // |
| // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y) |
| // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0 |
| // %carry1 = extractvalue {i32, i1} %tmp1, 1 |
| // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1, |
| // i32 %carryin) |
| // %result = extractvalue {i32, i1} %tmp2, 0 |
| // %carry2 = extractvalue {i32, i1} %tmp2, 1 |
| // %tmp3 = or i1 %carry1, %carry2 |
| // %tmp4 = zext i1 %tmp3 to i32 |
| // store i32 %tmp4, i32* %carryout |
| |
| // Scalarize our inputs. |
| llvm::Value *X = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Y = EmitScalarExpr(E->getArg(1)); |
| llvm::Value *Carryin = EmitScalarExpr(E->getArg(2)); |
| std::pair<llvm::Value*, unsigned> CarryOutPtr = |
| EmitPointerWithAlignment(E->getArg(3)); |
| |
| // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow. |
| llvm::Intrinsic::ID IntrinsicId; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unknown multiprecision builtin id."); |
| case Builtin::BI__builtin_addcb: |
| case Builtin::BI__builtin_addcs: |
| case Builtin::BI__builtin_addc: |
| case Builtin::BI__builtin_addcl: |
| case Builtin::BI__builtin_addcll: |
| IntrinsicId = llvm::Intrinsic::uadd_with_overflow; |
| break; |
| case Builtin::BI__builtin_subcb: |
| case Builtin::BI__builtin_subcs: |
| case Builtin::BI__builtin_subc: |
| case Builtin::BI__builtin_subcl: |
| case Builtin::BI__builtin_subcll: |
| IntrinsicId = llvm::Intrinsic::usub_with_overflow; |
| break; |
| } |
| |
| // Construct our resulting LLVM IR expression. |
| llvm::Value *Carry1; |
| llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId, |
| X, Y, Carry1); |
| llvm::Value *Carry2; |
| llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId, |
| Sum1, Carryin, Carry2); |
| llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2), |
| X->getType()); |
| llvm::StoreInst *CarryOutStore = Builder.CreateStore(CarryOut, |
| CarryOutPtr.first); |
| CarryOutStore->setAlignment(CarryOutPtr.second); |
| return RValue::get(Sum2); |
| } |
| case Builtin::BI__builtin_uadd_overflow: |
| case Builtin::BI__builtin_uaddl_overflow: |
| case Builtin::BI__builtin_uaddll_overflow: |
| case Builtin::BI__builtin_usub_overflow: |
| case Builtin::BI__builtin_usubl_overflow: |
| case Builtin::BI__builtin_usubll_overflow: |
| case Builtin::BI__builtin_umul_overflow: |
| case Builtin::BI__builtin_umull_overflow: |
| case Builtin::BI__builtin_umulll_overflow: |
| case Builtin::BI__builtin_sadd_overflow: |
| case Builtin::BI__builtin_saddl_overflow: |
| case Builtin::BI__builtin_saddll_overflow: |
| case Builtin::BI__builtin_ssub_overflow: |
| case Builtin::BI__builtin_ssubl_overflow: |
| case Builtin::BI__builtin_ssubll_overflow: |
| case Builtin::BI__builtin_smul_overflow: |
| case Builtin::BI__builtin_smull_overflow: |
| case Builtin::BI__builtin_smulll_overflow: { |
| |
| // We translate all of these builtins directly to the relevant llvm IR node. |
| |
| // Scalarize our inputs. |
| llvm::Value *X = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Y = EmitScalarExpr(E->getArg(1)); |
| std::pair<llvm::Value *, unsigned> SumOutPtr = |
| EmitPointerWithAlignment(E->getArg(2)); |
| |
| // Decide which of the overflow intrinsics we are lowering to: |
| llvm::Intrinsic::ID IntrinsicId; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unknown security overflow builtin id."); |
| case Builtin::BI__builtin_uadd_overflow: |
| case Builtin::BI__builtin_uaddl_overflow: |
| case Builtin::BI__builtin_uaddll_overflow: |
| IntrinsicId = llvm::Intrinsic::uadd_with_overflow; |
| break; |
| case Builtin::BI__builtin_usub_overflow: |
| case Builtin::BI__builtin_usubl_overflow: |
| case Builtin::BI__builtin_usubll_overflow: |
| IntrinsicId = llvm::Intrinsic::usub_with_overflow; |
| break; |
| case Builtin::BI__builtin_umul_overflow: |
| case Builtin::BI__builtin_umull_overflow: |
| case Builtin::BI__builtin_umulll_overflow: |
| IntrinsicId = llvm::Intrinsic::umul_with_overflow; |
| break; |
| case Builtin::BI__builtin_sadd_overflow: |
| case Builtin::BI__builtin_saddl_overflow: |
| case Builtin::BI__builtin_saddll_overflow: |
| IntrinsicId = llvm::Intrinsic::sadd_with_overflow; |
| break; |
| case Builtin::BI__builtin_ssub_overflow: |
| case Builtin::BI__builtin_ssubl_overflow: |
| case Builtin::BI__builtin_ssubll_overflow: |
| IntrinsicId = llvm::Intrinsic::ssub_with_overflow; |
| break; |
| case Builtin::BI__builtin_smul_overflow: |
| case Builtin::BI__builtin_smull_overflow: |
| case Builtin::BI__builtin_smulll_overflow: |
| IntrinsicId = llvm::Intrinsic::smul_with_overflow; |
| break; |
| } |
| |
| |
| llvm::Value *Carry; |
| llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry); |
| llvm::StoreInst *SumOutStore = Builder.CreateStore(Sum, SumOutPtr.first); |
| SumOutStore->setAlignment(SumOutPtr.second); |
| |
| return RValue::get(Carry); |
| } |
| case Builtin::BI__builtin_addressof: |
| return RValue::get(EmitLValue(E->getArg(0)).getAddress()); |
| case Builtin::BI__noop: |
| return RValue::get(0); |
| case Builtin::BI_InterlockedCompareExchange: { |
| AtomicCmpXchgInst *CXI = Builder.CreateAtomicCmpXchg( |
| EmitScalarExpr(E->getArg(0)), |
| EmitScalarExpr(E->getArg(2)), |
| EmitScalarExpr(E->getArg(1)), |
| SequentiallyConsistent, |
| SequentiallyConsistent); |
| CXI->setVolatile(true); |
| return RValue::get(CXI); |
| } |
| case Builtin::BI_InterlockedIncrement: { |
| AtomicRMWInst *RMWI = Builder.CreateAtomicRMW( |
| AtomicRMWInst::Add, |
| EmitScalarExpr(E->getArg(0)), |
| ConstantInt::get(Int32Ty, 1), |
| llvm::SequentiallyConsistent); |
| RMWI->setVolatile(true); |
| return RValue::get(Builder.CreateAdd(RMWI, ConstantInt::get(Int32Ty, 1))); |
| } |
| case Builtin::BI_InterlockedDecrement: { |
| AtomicRMWInst *RMWI = Builder.CreateAtomicRMW( |
| AtomicRMWInst::Sub, |
| EmitScalarExpr(E->getArg(0)), |
| ConstantInt::get(Int32Ty, 1), |
| llvm::SequentiallyConsistent); |
| RMWI->setVolatile(true); |
| return RValue::get(Builder.CreateSub(RMWI, ConstantInt::get(Int32Ty, 1))); |
| } |
| case Builtin::BI_InterlockedExchangeAdd: { |
| AtomicRMWInst *RMWI = Builder.CreateAtomicRMW( |
| AtomicRMWInst::Add, |
| EmitScalarExpr(E->getArg(0)), |
| EmitScalarExpr(E->getArg(1)), |
| llvm::SequentiallyConsistent); |
| RMWI->setVolatile(true); |
| return RValue::get(RMWI); |
| } |
| } |
| |
| // If this is an alias for a lib function (e.g. __builtin_sin), emit |
| // the call using the normal call path, but using the unmangled |
| // version of the function name. |
| if (getContext().BuiltinInfo.isLibFunction(BuiltinID)) |
| return emitLibraryCall(*this, FD, E, |
| CGM.getBuiltinLibFunction(FD, BuiltinID)); |
| |
| // If this is a predefined lib function (e.g. malloc), emit the call |
| // using exactly the normal call path. |
| if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID)) |
| return emitLibraryCall(*this, FD, E, EmitScalarExpr(E->getCallee())); |
| |
| // See if we have a target specific intrinsic. |
| const char *Name = getContext().BuiltinInfo.GetName(BuiltinID); |
| Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic; |
| if (const char *Prefix = |
| llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch())) |
| IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name); |
| |
| if (IntrinsicID != Intrinsic::not_intrinsic) { |
| SmallVector<Value*, 16> Args; |
| |
| // Find out if any arguments are required to be integer constant |
| // expressions. |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| assert(Error == ASTContext::GE_None && "Should not codegen an error"); |
| |
| Function *F = CGM.getIntrinsic(IntrinsicID); |
| llvm::FunctionType *FTy = F->getFunctionType(); |
| |
| for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { |
| Value *ArgValue; |
| // If this is a normal argument, just emit it as a scalar. |
| if ((ICEArguments & (1 << i)) == 0) { |
| ArgValue = EmitScalarExpr(E->getArg(i)); |
| } else { |
| // If this is required to be a constant, constant fold it so that we |
| // know that the generated intrinsic gets a ConstantInt. |
| llvm::APSInt Result; |
| bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext()); |
| assert(IsConst && "Constant arg isn't actually constant?"); |
| (void)IsConst; |
| ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result); |
| } |
| |
| // If the intrinsic arg type is different from the builtin arg type |
| // we need to do a bit cast. |
| llvm::Type *PTy = FTy->getParamType(i); |
| if (PTy != ArgValue->getType()) { |
| assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && |
| "Must be able to losslessly bit cast to param"); |
| ArgValue = Builder.CreateBitCast(ArgValue, PTy); |
| } |
| |
| Args.push_back(ArgValue); |
| } |
| |
| Value *V = Builder.CreateCall(F, Args); |
| QualType BuiltinRetType = E->getType(); |
| |
| llvm::Type *RetTy = VoidTy; |
| if (!BuiltinRetType->isVoidType()) |
| RetTy = ConvertType(BuiltinRetType); |
| |
| if (RetTy != V->getType()) { |
| assert(V->getType()->canLosslesslyBitCastTo(RetTy) && |
| "Must be able to losslessly bit cast result type"); |
| V = Builder.CreateBitCast(V, RetTy); |
| } |
| |
| return RValue::get(V); |
| } |
| |
| // See if we have a target specific builtin that needs to be lowered. |
| if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E)) |
| return RValue::get(V); |
| |
| ErrorUnsupported(E, "builtin function"); |
| |
| // Unknown builtin, for now just dump it out and return undef. |
| return GetUndefRValue(E->getType()); |
| } |
| |
| Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| switch (getTarget().getTriple().getArch()) { |
| case llvm::Triple::aarch64: |
| case llvm::Triple::aarch64_be: |
| return EmitAArch64BuiltinExpr(BuiltinID, E); |
| case llvm::Triple::arm: |
| case llvm::Triple::armeb: |
| case llvm::Triple::thumb: |
| case llvm::Triple::thumbeb: |
| return EmitARMBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::arm64: |
| return EmitARM64BuiltinExpr(BuiltinID, E); |
| case llvm::Triple::x86: |
| case llvm::Triple::x86_64: |
| return EmitX86BuiltinExpr(BuiltinID, E); |
| case llvm::Triple::ppc: |
| case llvm::Triple::ppc64: |
| case llvm::Triple::ppc64le: |
| return EmitPPCBuiltinExpr(BuiltinID, E); |
| default: |
| return 0; |
| } |
| } |
| |
| static llvm::VectorType *GetNeonType(CodeGenFunction *CGF, |
| NeonTypeFlags TypeFlags, |
| bool V1Ty=false) { |
| int IsQuad = TypeFlags.isQuad(); |
| switch (TypeFlags.getEltType()) { |
| case NeonTypeFlags::Int8: |
| case NeonTypeFlags::Poly8: |
| return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad)); |
| case NeonTypeFlags::Int16: |
| case NeonTypeFlags::Poly16: |
| case NeonTypeFlags::Float16: |
| return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); |
| case NeonTypeFlags::Int32: |
| return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad)); |
| case NeonTypeFlags::Int64: |
| case NeonTypeFlags::Poly64: |
| return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad)); |
| case NeonTypeFlags::Poly128: |
| // FIXME: i128 and f128 doesn't get fully support in Clang and llvm. |
| // There is a lot of i128 and f128 API missing. |
| // so we use v16i8 to represent poly128 and get pattern matched. |
| return llvm::VectorType::get(CGF->Int8Ty, 16); |
| case NeonTypeFlags::Float32: |
| return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad)); |
| case NeonTypeFlags::Float64: |
| return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad)); |
| } |
| llvm_unreachable("Unknown vector element type!"); |
| } |
| |
| Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) { |
| unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements(); |
| Value* SV = llvm::ConstantVector::getSplat(nElts, C); |
| return Builder.CreateShuffleVector(V, V, SV, "lane"); |
| } |
| |
| Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops, |
| const char *name, |
| unsigned shift, bool rightshift) { |
| unsigned j = 0; |
| for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); |
| ai != ae; ++ai, ++j) |
| if (shift > 0 && shift == j) |
| Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift); |
| else |
| Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name); |
| |
| return Builder.CreateCall(F, Ops, name); |
| } |
| |
| Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty, |
| bool neg) { |
| int SV = cast<ConstantInt>(V)->getSExtValue(); |
| |
| llvm::VectorType *VTy = cast<llvm::VectorType>(Ty); |
| llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV); |
| return llvm::ConstantVector::getSplat(VTy->getNumElements(), C); |
| } |
| |
| // \brief Right-shift a vector by a constant. |
| Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift, |
| llvm::Type *Ty, bool usgn, |
| const char *name) { |
| llvm::VectorType *VTy = cast<llvm::VectorType>(Ty); |
| |
| int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue(); |
| int EltSize = VTy->getScalarSizeInBits(); |
| |
| Vec = Builder.CreateBitCast(Vec, Ty); |
| |
| // lshr/ashr are undefined when the shift amount is equal to the vector |
| // element size. |
| if (ShiftAmt == EltSize) { |
| if (usgn) { |
| // Right-shifting an unsigned value by its size yields 0. |
| llvm::Constant *Zero = ConstantInt::get(VTy->getElementType(), 0); |
| return llvm::ConstantVector::getSplat(VTy->getNumElements(), Zero); |
| } else { |
| // Right-shifting a signed value by its size is equivalent |
| // to a shift of size-1. |
| --ShiftAmt; |
| Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt); |
| } |
| } |
| |
| Shift = EmitNeonShiftVector(Shift, Ty, false); |
| if (usgn) |
| return Builder.CreateLShr(Vec, Shift, name); |
| else |
| return Builder.CreateAShr(Vec, Shift, name); |
| } |
| |
| Value *CodeGenFunction::EmitConcatVectors(Value *Lo, Value *Hi, |
| llvm::Type *ArgTy) { |
| unsigned NumElts = ArgTy->getVectorNumElements(); |
| SmallVector<Constant *, 16> Indices; |
| for (unsigned i = 0; i < 2 * NumElts; ++i) |
| Indices.push_back(ConstantInt::get(Int32Ty, i)); |
| |
| Constant *Mask = ConstantVector::get(Indices); |
| Value *LoCast = Builder.CreateBitCast(Lo, ArgTy); |
| Value *HiCast = Builder.CreateBitCast(Hi, ArgTy); |
| return Builder.CreateShuffleVector(LoCast, HiCast, Mask, "concat"); |
| } |
| |
| Value *CodeGenFunction::EmitExtractHigh(Value *Vec, llvm::Type *ResTy) { |
| unsigned NumElts = ResTy->getVectorNumElements(); |
| SmallVector<Constant *, 8> Indices; |
| |
| llvm::Type *InTy = llvm::VectorType::get(ResTy->getVectorElementType(), |
| NumElts * 2); |
| Value *VecCast = Builder.CreateBitCast(Vec, InTy); |
| |
| // extract_high is a shuffle on the second half of the input indices: E.g. 4, |
| // 5, 6, 7 if we're extracting <4 x i16> from <8 x i16>. |
| for (unsigned i = 0; i < NumElts; ++i) |
| Indices.push_back(ConstantInt::get(Int32Ty, NumElts + i)); |
| |
| Constant *Mask = ConstantVector::get(Indices); |
| return Builder.CreateShuffleVector(VecCast, VecCast, Mask, "concat"); |
| } |
| |
| /// GetPointeeAlignment - Given an expression with a pointer type, find the |
| /// alignment of the type referenced by the pointer. Skip over implicit |
| /// casts. |
| std::pair<llvm::Value*, unsigned> |
| CodeGenFunction::EmitPointerWithAlignment(const Expr *Addr) { |
| assert(Addr->getType()->isPointerType()); |
| Addr = Addr->IgnoreParens(); |
| if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Addr)) { |
| if ((ICE->getCastKind() == CK_BitCast || ICE->getCastKind() == CK_NoOp) && |
| ICE->getSubExpr()->getType()->isPointerType()) { |
| std::pair<llvm::Value*, unsigned> Ptr = |
| EmitPointerWithAlignment(ICE->getSubExpr()); |
| Ptr.first = Builder.CreateBitCast(Ptr.first, |
| ConvertType(Addr->getType())); |
| return Ptr; |
| } else if (ICE->getCastKind() == CK_ArrayToPointerDecay) { |
| LValue LV = EmitLValue(ICE->getSubExpr()); |
| unsigned Align = LV.getAlignment().getQuantity(); |
| if (!Align) { |
| // FIXME: Once LValues are fixed to always set alignment, |
| // zap this code. |
| QualType PtTy = ICE->getSubExpr()->getType(); |
| if (!PtTy->isIncompleteType()) |
| Align = getContext().getTypeAlignInChars(PtTy).getQuantity(); |
| else |
| Align = 1; |
| } |
| return std::make_pair(LV.getAddress(), Align); |
| } |
| } |
| if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Addr)) { |
| if (UO->getOpcode() == UO_AddrOf) { |
| LValue LV = EmitLValue(UO->getSubExpr()); |
| unsigned Align = LV.getAlignment().getQuantity(); |
| if (!Align) { |
| // FIXME: Once LValues are fixed to always set alignment, |
| // zap this code. |
| QualType PtTy = UO->getSubExpr()->getType(); |
| if (!PtTy->isIncompleteType()) |
| Align = getContext().getTypeAlignInChars(PtTy).getQuantity(); |
| else |
| Align = 1; |
| } |
| return std::make_pair(LV.getAddress(), Align); |
| } |
| } |
| |
| unsigned Align = 1; |
| QualType PtTy = Addr->getType()->getPointeeType(); |
| if (!PtTy->isIncompleteType()) |
| Align = getContext().getTypeAlignInChars(PtTy).getQuantity(); |
| |
| return std::make_pair(EmitScalarExpr(Addr), Align); |
| } |
| |
| enum { |
| AddRetType = (1 << 0), |
| Add1ArgType = (1 << 1), |
| Add2ArgTypes = (1 << 2), |
| |
| VectorizeRetType = (1 << 3), |
| VectorizeArgTypes = (1 << 4), |
| |
| InventFloatType = (1 << 5), |
| UnsignedAlts = (1 << 6), |
| |
| Use64BitVectors = (1 << 7), |
| Use128BitVectors = (1 << 8), |
| |
| Vectorize1ArgType = Add1ArgType | VectorizeArgTypes, |
| VectorRet = AddRetType | VectorizeRetType, |
| VectorRetGetArgs01 = |
| AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes, |
| FpCmpzModifiers = |
| AddRetType | VectorizeRetType | Add1ArgType | InventFloatType |
| }; |
| |
| struct NeonIntrinsicInfo { |
| unsigned BuiltinID; |
| unsigned LLVMIntrinsic; |
| unsigned AltLLVMIntrinsic; |
| const char *NameHint; |
| unsigned TypeModifier; |
| |
| bool operator<(unsigned RHSBuiltinID) const { |
| return BuiltinID < RHSBuiltinID; |
| } |
| }; |
| |
| #define NEONMAP0(NameBase) \ |
| { NEON::BI__builtin_neon_ ## NameBase, 0, 0, #NameBase, 0 } |
| |
| #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ |
| { NEON:: BI__builtin_neon_ ## NameBase, \ |
| Intrinsic::LLVMIntrinsic, 0, #NameBase, TypeModifier } |
| |
| #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \ |
| { NEON:: BI__builtin_neon_ ## NameBase, \ |
| Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \ |
| #NameBase, TypeModifier } |
| |
| static const NeonIntrinsicInfo AArch64SISDIntrinsicInfo[] = { |
| NEONMAP1(vabdd_f64, aarch64_neon_vabd, AddRetType), |
| NEONMAP1(vabds_f32, aarch64_neon_vabd, AddRetType), |
| NEONMAP1(vabsd_s64, aarch64_neon_vabs, 0), |
| NEONMAP1(vaddd_s64, aarch64_neon_vaddds, 0), |
| NEONMAP1(vaddd_u64, aarch64_neon_vadddu, 0), |
| NEONMAP1(vaddlv_s16, aarch64_neon_saddlv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddlv_s8, aarch64_neon_saddlv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddlv_u16, aarch64_neon_uaddlv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddlv_u8, aarch64_neon_uaddlv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddlvq_s16, aarch64_neon_saddlv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddlvq_s8, aarch64_neon_saddlv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddlvq_u16, aarch64_neon_uaddlv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddlvq_u8, aarch64_neon_uaddlv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddv_f32, aarch64_neon_vpfadd, AddRetType | Add1ArgType), |
| NEONMAP1(vaddv_s16, aarch64_neon_vaddv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddv_s32, aarch64_neon_vaddv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddv_s8, aarch64_neon_vaddv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddv_u16, aarch64_neon_vaddv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddv_u32, aarch64_neon_vaddv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddv_u8, aarch64_neon_vaddv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddvq_f32, aarch64_neon_vpfadd, AddRetType | Add1ArgType), |
| NEONMAP1(vaddvq_f64, aarch64_neon_vpfadd, AddRetType | Add1ArgType), |
| NEONMAP1(vaddvq_s16, aarch64_neon_vaddv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddvq_s32, aarch64_neon_vaddv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddvq_s64, aarch64_neon_vaddv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddvq_s8, aarch64_neon_vaddv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddvq_u16, aarch64_neon_vaddv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddvq_u32, aarch64_neon_vaddv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddvq_u64, aarch64_neon_vaddv, VectorRet | Add1ArgType), |
| NEONMAP1(vaddvq_u8, aarch64_neon_vaddv, VectorRet | Add1ArgType), |
| NEONMAP1(vcaged_f64, aarch64_neon_fcage, VectorRet | Add2ArgTypes), |
| NEONMAP1(vcages_f32, aarch64_neon_fcage, VectorRet | Add2ArgTypes), |
| NEONMAP1(vcagtd_f64, aarch64_neon_fcagt, VectorRet | Add2ArgTypes), |
| NEONMAP1(vcagts_f32, aarch64_neon_fcagt, VectorRet | Add2ArgTypes), |
| NEONMAP1(vcaled_f64, aarch64_neon_fcage, VectorRet | Add2ArgTypes), |
| NEONMAP1(vcales_f32, aarch64_neon_fcage, VectorRet | Add2ArgTypes), |
| NEONMAP1(vcaltd_f64, aarch64_neon_fcagt, VectorRet | Add2ArgTypes), |
| NEONMAP1(vcalts_f32, aarch64_neon_fcagt, VectorRet | Add2ArgTypes), |
| NEONMAP1(vceqd_f64, aarch64_neon_fceq, VectorRet | Add2ArgTypes), |
| NEONMAP1(vceqd_s64, aarch64_neon_vceq, VectorRetGetArgs01), |
| NEONMAP1(vceqd_u64, aarch64_neon_vceq, VectorRetGetArgs01), |
| NEONMAP1(vceqs_f32, aarch64_neon_fceq, VectorRet | Add2ArgTypes), |
| NEONMAP1(vceqzd_f64, aarch64_neon_fceq, FpCmpzModifiers), |
| NEONMAP1(vceqzd_s64, aarch64_neon_vceq, VectorRetGetArgs01), |
| NEONMAP1(vceqzd_u64, aarch64_neon_vceq, VectorRetGetArgs01), |
| NEONMAP1(vceqzs_f32, aarch64_neon_fceq, FpCmpzModifiers), |
| NEONMAP1(vcged_f64, aarch64_neon_fcge, VectorRet | Add2ArgTypes), |
| NEONMAP1(vcged_s64, aarch64_neon_vcge, VectorRetGetArgs01), |
| NEONMAP1(vcged_u64, aarch64_neon_vchs, VectorRetGetArgs01), |
| NEONMAP1(vcges_f32, aarch64_neon_fcge, VectorRet | Add2ArgTypes), |
| NEONMAP1(vcgezd_f64, aarch64_neon_fcge, FpCmpzModifiers), |
| NEONMAP1(vcgezd_s64, aarch64_neon_vcge, VectorRetGetArgs01), |
| NEONMAP1(vcgezs_f32, aarch64_neon_fcge, FpCmpzModifiers), |
| NEONMAP1(vcgtd_f64, aarch64_neon_fcgt, VectorRet | Add2ArgTypes), |
| NEONMAP1(vcgtd_s64, aarch64_neon_vcgt, VectorRetGetArgs01), |
| NEONMAP1(vcgtd_u64, aarch64_neon_vchi, VectorRetGetArgs01), |
| NEONMAP1(vcgts_f32, aarch64_neon_fcgt, VectorRet | Add2ArgTypes), |
| NEONMAP1(vcgtzd_f64, aarch64_neon_fcgt, FpCmpzModifiers), |
| NEONMAP1(vcgtzd_s64, aarch64_neon_vcgt, VectorRetGetArgs01), |
| NEONMAP1(vcgtzs_f32, aarch64_neon_fcgt, FpCmpzModifiers), |
| NEONMAP1(vcled_f64, aarch64_neon_fcge, VectorRet | Add2ArgTypes), |
| NEONMAP1(vcled_s64, aarch64_neon_vcge, VectorRetGetArgs01), |
| NEONMAP1(vcled_u64, aarch64_neon_vchs, VectorRetGetArgs01), |
| NEONMAP1(vcles_f32, aarch64_neon_fcge, VectorRet | Add2ArgTypes), |
| NEONMAP1(vclezd_f64, aarch64_neon_fclez, FpCmpzModifiers), |
| NEONMAP1(vclezd_s64, aarch64_neon_vclez, VectorRetGetArgs01), |
| NEONMAP1(vclezs_f32, aarch64_neon_fclez, FpCmpzModifiers), |
| NEONMAP1(vcltd_f64, aarch64_neon_fcgt, VectorRet | Add2ArgTypes), |
| NEONMAP1(vcltd_s64, aarch64_neon_vcgt, VectorRetGetArgs01), |
| NEONMAP1(vcltd_u64, aarch64_neon_vchi, VectorRetGetArgs01), |
| NEONMAP1(vclts_f32, aarch64_neon_fcgt, VectorRet | Add2ArgTypes), |
| NEONMAP1(vcltzd_f64, aarch64_neon_fcltz, FpCmpzModifiers), |
| NEONMAP1(vcltzd_s64, aarch64_neon_vcltz, VectorRetGetArgs01), |
| NEONMAP1(vcltzs_f32, aarch64_neon_fcltz, FpCmpzModifiers), |
| NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, VectorRet | Add1ArgType), |
| NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, VectorRet | Add1ArgType), |
| NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, VectorRet | Add1ArgType), |
| NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, VectorRet | Add1ArgType), |
| NEONMAP1(vcvtd_f64_s64, aarch64_neon_vcvtint2fps, AddRetType | Vectorize1ArgType), |
| NEONMAP1(vcvtd_f64_u64, aarch64_neon_vcvtint2fpu, AddRetType | Vectorize1ArgType), |
| NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp_n, AddRetType | Vectorize1ArgType), |
| NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp_n, AddRetType | Vectorize1ArgType), |
| NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs_n, VectorRet | Add1ArgType), |
| NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu_n, VectorRet | Add1ArgType), |
| NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, VectorRet | Add1ArgType), |
| NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, VectorRet | Add1ArgType), |
| NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, VectorRet | Add1ArgType), |
| NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, VectorRet | Add1ArgType), |
| NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, VectorRet | Add1ArgType), |
| NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, VectorRet | Add1ArgType), |
| NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, VectorRet | Add1ArgType), |
| NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, VectorRet | Add1ArgType), |
| NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, VectorRet | Add1ArgType), |
| NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, VectorRet | Add1ArgType), |
| NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, VectorRet | Add1ArgType), |
| NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, VectorRet | Add1ArgType), |
| NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, VectorRet | Add1ArgType), |
| NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, VectorRet | Add1ArgType), |
| NEONMAP1(vcvts_f32_s32, aarch64_neon_vcvtint2fps, AddRetType | Vectorize1ArgType), |
| NEONMAP1(vcvts_f32_u32, aarch64_neon_vcvtint2fpu, AddRetType | Vectorize1ArgType), |
| NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp_n, AddRetType | Vectorize1ArgType), |
| NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp_n, AddRetType | Vectorize1ArgType), |
| NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs_n, VectorRet | Add1ArgType), |
| NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu_n, VectorRet | Add1ArgType), |
| NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, VectorRet | Add1ArgType), |
| NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, VectorRet | Add1ArgType), |
| NEONMAP1(vcvtxd_f32_f64, aarch64_neon_fcvtxn, 0), |
| NEONMAP0(vdupb_lane_i8), |
| NEONMAP0(vdupb_laneq_i8), |
| NEONMAP0(vdupd_lane_f64), |
| NEONMAP0(vdupd_lane_i64), |
| NEONMAP0(vdupd_laneq_f64), |
| NEONMAP0(vdupd_laneq_i64), |
| NEONMAP0(vduph_lane_i16), |
| NEONMAP0(vduph_laneq_i16), |
| NEONMAP0(vdups_lane_f32), |
| NEONMAP0(vdups_lane_i32), |
| NEONMAP0(vdups_laneq_f32), |
| NEONMAP0(vdups_laneq_i32), |
| NEONMAP0(vfmad_lane_f64), |
| NEONMAP0(vfmad_laneq_f64), |
| NEONMAP0(vfmas_lane_f32), |
| NEONMAP0(vfmas_laneq_f32), |
| NEONMAP0(vget_lane_f32), |
| NEONMAP0(vget_lane_f64), |
| NEONMAP0(vget_lane_i16), |
| NEONMAP0(vget_lane_i32), |
| NEONMAP0(vget_lane_i64), |
| NEONMAP0(vget_lane_i8), |
| NEONMAP0(vgetq_lane_f32), |
| NEONMAP0(vgetq_lane_f64), |
| NEONMAP0(vgetq_lane_i16), |
| NEONMAP0(vgetq_lane_i32), |
| NEONMAP0(vgetq_lane_i64), |
| NEONMAP0(vgetq_lane_i8), |
| NEONMAP1(vmaxnmv_f32, aarch64_neon_vpfmaxnm, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxnmvq_f32, aarch64_neon_vmaxnmv, 0), |
| NEONMAP1(vmaxnmvq_f64, aarch64_neon_vpfmaxnm, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxv_f32, aarch64_neon_vpmax, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxv_s16, aarch64_neon_smaxv, VectorRet | Add1ArgType), |
| NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, VectorRet | Add1ArgType), |
| NEONMAP1(vmaxv_s8, aarch64_neon_smaxv, VectorRet | Add1ArgType), |
| NEONMAP1(vmaxv_u16, aarch64_neon_umaxv, VectorRet | Add1ArgType), |
| NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, VectorRet | Add1ArgType), |
| NEONMAP1(vmaxv_u8, aarch64_neon_umaxv, VectorRet | Add1ArgType), |
| NEONMAP1(vmaxvq_f32, aarch64_neon_vmaxv, 0), |
| NEONMAP1(vmaxvq_f64, aarch64_neon_vpmax, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxvq_s16, aarch64_neon_smaxv, VectorRet | Add1ArgType), |
| NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, VectorRet | Add1ArgType), |
| NEONMAP1(vmaxvq_s8, aarch64_neon_smaxv, VectorRet | Add1ArgType), |
| NEONMAP1(vmaxvq_u16, aarch64_neon_umaxv, VectorRet | Add1ArgType), |
| NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, VectorRet | Add1ArgType), |
| NEONMAP1(vmaxvq_u8, aarch64_neon_umaxv, VectorRet | Add1ArgType), |
| NEONMAP1(vminnmv_f32, aarch64_neon_vpfminnm, AddRetType | Add1ArgType), |
| NEONMAP1(vminnmvq_f32, aarch64_neon_vminnmv, 0), |
| NEONMAP1(vminnmvq_f64, aarch64_neon_vpfminnm, AddRetType | Add1ArgType), |
| NEONMAP1(vminv_f32, aarch64_neon_vpmin, AddRetType | Add1ArgType), |
| NEONMAP1(vminv_s16, aarch64_neon_sminv, VectorRet | Add1ArgType), |
| NEONMAP1(vminv_s32, aarch64_neon_sminv, VectorRet | Add1ArgType), |
| NEONMAP1(vminv_s8, aarch64_neon_sminv, VectorRet | Add1ArgType), |
| NEONMAP1(vminv_u16, aarch64_neon_uminv, VectorRet | Add1ArgType), |
| NEONMAP1(vminv_u32, aarch64_neon_uminv, VectorRet | Add1ArgType), |
| NEONMAP1(vminv_u8, aarch64_neon_uminv, VectorRet | Add1ArgType), |
| NEONMAP1(vminvq_f32, aarch64_neon_vminv, 0), |
| NEONMAP1(vminvq_f64, aarch64_neon_vpmin, AddRetType | Add1ArgType), |
| NEONMAP1(vminvq_s16, aarch64_neon_sminv, VectorRet | Add1ArgType), |
| NEONMAP1(vminvq_s32, aarch64_neon_sminv, VectorRet | Add1ArgType), |
| NEONMAP1(vminvq_s8, aarch64_neon_sminv, VectorRet | Add1ArgType), |
| NEONMAP1(vminvq_u16, aarch64_neon_uminv, VectorRet | Add1ArgType), |
| NEONMAP1(vminvq_u32, aarch64_neon_uminv, VectorRet | Add1ArgType), |
| NEONMAP1(vminvq_u8, aarch64_neon_uminv, VectorRet | Add1ArgType), |
| NEONMAP0(vmul_n_f64), |
| NEONMAP1(vmull_p64, aarch64_neon_vmull_p64, 0), |
| NEONMAP0(vmulxd_f64), |
| NEONMAP0(vmulxs_f32), |
| NEONMAP1(vnegd_s64, aarch64_neon_vneg, 0), |
| NEONMAP1(vpaddd_f64, aarch64_neon_vpfadd, AddRetType | Add1ArgType), |
| NEONMAP1(vpaddd_s64, aarch64_neon_vpadd, 0), |
| NEONMAP1(vpaddd_u64, aarch64_neon_vpadd, 0), |
| NEONMAP1(vpadds_f32, aarch64_neon_vpfadd, AddRetType | Add1ArgType), |
| NEONMAP1(vpmaxnmqd_f64, aarch64_neon_vpfmaxnm, AddRetType | Add1ArgType), |
| NEONMAP1(vpmaxnms_f32, aarch64_neon_vpfmaxnm, AddRetType | Add1ArgType), |
| NEONMAP1(vpmaxqd_f64, aarch64_neon_vpmax, AddRetType | Add1ArgType), |
| NEONMAP1(vpmaxs_f32, aarch64_neon_vpmax, AddRetType | Add1ArgType), |
| NEONMAP1(vpminnmqd_f64, aarch64_neon_vpfminnm, AddRetType | Add1ArgType), |
| NEONMAP1(vpminnms_f32, aarch64_neon_vpfminnm, AddRetType | Add1ArgType), |
| NEONMAP1(vpminqd_f64, aarch64_neon_vpmin, AddRetType | Add1ArgType), |
| NEONMAP1(vpmins_f32, aarch64_neon_vpmin, AddRetType | Add1ArgType), |
| NEONMAP1(vqabsb_s8, arm_neon_vqabs, VectorRet), |
| NEONMAP1(vqabsd_s64, arm_neon_vqabs, VectorRet), |
| NEONMAP1(vqabsh_s16, arm_neon_vqabs, VectorRet), |
| NEONMAP1(vqabss_s32, arm_neon_vqabs, VectorRet), |
| NEONMAP1(vqaddb_s8, arm_neon_vqadds, VectorRet), |
| NEONMAP1(vqaddb_u8, arm_neon_vqaddu, VectorRet), |
| NEONMAP1(vqaddd_s64, arm_neon_vqadds, VectorRet), |
| NEONMAP1(vqaddd_u64, arm_neon_vqaddu, VectorRet), |
| NEONMAP1(vqaddh_s16, arm_neon_vqadds, VectorRet), |
| NEONMAP1(vqaddh_u16, arm_neon_vqaddu, VectorRet), |
| NEONMAP1(vqadds_s32, arm_neon_vqadds, VectorRet), |
| NEONMAP1(vqadds_u32, arm_neon_vqaddu, VectorRet), |
| NEONMAP0(vqdmlalh_lane_s16), |
| NEONMAP0(vqdmlalh_laneq_s16), |
| NEONMAP1(vqdmlalh_s16, aarch64_neon_vqdmlal, VectorRet), |
| NEONMAP0(vqdmlals_lane_s32), |
| NEONMAP0(vqdmlals_laneq_s32), |
| NEONMAP1(vqdmlals_s32, aarch64_neon_vqdmlal, VectorRet), |
| NEONMAP0(vqdmlslh_lane_s16), |
| NEONMAP0(vqdmlslh_laneq_s16), |
| NEONMAP1(vqdmlslh_s16, aarch64_neon_vqdmlsl, VectorRet), |
| NEONMAP0(vqdmlsls_lane_s32), |
| NEONMAP0(vqdmlsls_laneq_s32), |
| NEONMAP1(vqdmlsls_s32, aarch64_neon_vqdmlsl, VectorRet), |
| NEONMAP1(vqdmulhh_s16, arm_neon_vqdmulh, VectorRet), |
| NEONMAP1(vqdmulhs_s32, arm_neon_vqdmulh, VectorRet), |
| NEONMAP1(vqdmullh_s16, arm_neon_vqdmull, VectorRet), |
| NEONMAP1(vqdmulls_s32, arm_neon_vqdmull, VectorRet), |
| NEONMAP1(vqmovnd_s64, arm_neon_vqmovns, VectorRet), |
| NEONMAP1(vqmovnd_u64, arm_neon_vqmovnu, VectorRet), |
| NEONMAP1(vqmovnh_s16, arm_neon_vqmovns, VectorRet), |
| NEONMAP1(vqmovnh_u16, arm_neon_vqmovnu, VectorRet), |
| NEONMAP1(vqmovns_s32, arm_neon_vqmovns, VectorRet), |
| NEONMAP1(vqmovns_u32, arm_neon_vqmovnu, VectorRet), |
| NEONMAP1(vqmovund_s64, arm_neon_vqmovnsu, VectorRet), |
| NEONMAP1(vqmovunh_s16, arm_neon_vqmovnsu, VectorRet), |
| NEONMAP1(vqmovuns_s32, arm_neon_vqmovnsu, VectorRet), |
| NEONMAP1(vqnegb_s8, arm_neon_vqneg, VectorRet), |
| NEONMAP1(vqnegd_s64, arm_neon_vqneg, VectorRet), |
| NEONMAP1(vqnegh_s16, arm_neon_vqneg, VectorRet), |
| NEONMAP1(vqnegs_s32, arm_neon_vqneg, VectorRet), |
| NEONMAP1(vqrdmulhh_s16, arm_neon_vqrdmulh, VectorRet), |
| NEONMAP1(vqrdmulhs_s32, arm_neon_vqrdmulh, VectorRet), |
| NEONMAP1(vqrshlb_s8, aarch64_neon_vqrshls, VectorRet), |
| NEONMAP1(vqrshlb_u8, aarch64_neon_vqrshlu, VectorRet), |
| NEONMAP1(vqrshld_s64, aarch64_neon_vqrshls, VectorRet), |
| NEONMAP1(vqrshld_u64, aarch64_neon_vqrshlu, VectorRet), |
| NEONMAP1(vqrshlh_s16, aarch64_neon_vqrshls, VectorRet), |
| NEONMAP1(vqrshlh_u16, aarch64_neon_vqrshlu, VectorRet), |
| NEONMAP1(vqrshls_s32, aarch64_neon_vqrshls, VectorRet), |
| NEONMAP1(vqrshls_u32, aarch64_neon_vqrshlu, VectorRet), |
| NEONMAP1(vqrshrnd_n_s64, aarch64_neon_vsqrshrn, VectorRet), |
| NEONMAP1(vqrshrnd_n_u64, aarch64_neon_vuqrshrn, VectorRet), |
| NEONMAP1(vqrshrnh_n_s16, aarch64_neon_vsqrshrn, VectorRet), |
| NEONMAP1(vqrshrnh_n_u16, aarch64_neon_vuqrshrn, VectorRet), |
| NEONMAP1(vqrshrns_n_s32, aarch64_neon_vsqrshrn, VectorRet), |
| NEONMAP1(vqrshrns_n_u32, aarch64_neon_vuqrshrn, VectorRet), |
| NEONMAP1(vqrshrund_n_s64, aarch64_neon_vsqrshrun, VectorRet), |
| NEONMAP1(vqrshrunh_n_s16, aarch64_neon_vsqrshrun, VectorRet), |
| NEONMAP1(vqrshruns_n_s32, aarch64_neon_vsqrshrun, VectorRet), |
| NEONMAP1(vqshlb_n_s8, aarch64_neon_vqshls_n, VectorRet), |
| NEONMAP1(vqshlb_n_u8, aarch64_neon_vqshlu_n, VectorRet), |
| NEONMAP1(vqshlb_s8, aarch64_neon_vqshls, VectorRet), |
| NEONMAP1(vqshlb_u8, aarch64_neon_vqshlu, VectorRet), |
| NEONMAP1(vqshld_n_s64, aarch64_neon_vqshls_n, VectorRet), |
| NEONMAP1(vqshld_n_u64, aarch64_neon_vqshlu_n, VectorRet), |
| NEONMAP1(vqshld_s64, aarch64_neon_vqshls, VectorRet), |
| NEONMAP1(vqshld_u64, aarch64_neon_vqshlu, VectorRet), |
| NEONMAP1(vqshlh_n_s16, aarch64_neon_vqshls_n, VectorRet), |
| NEONMAP1(vqshlh_n_u16, aarch64_neon_vqshlu_n, VectorRet), |
| NEONMAP1(vqshlh_s16, aarch64_neon_vqshls, VectorRet), |
| NEONMAP1(vqshlh_u16, aarch64_neon_vqshlu, VectorRet), |
| NEONMAP1(vqshls_n_s32, aarch64_neon_vqshls_n, VectorRet), |
| NEONMAP1(vqshls_n_u32, aarch64_neon_vqshlu_n, VectorRet), |
| NEONMAP1(vqshls_s32, aarch64_neon_vqshls, VectorRet), |
| NEONMAP1(vqshls_u32, aarch64_neon_vqshlu, VectorRet), |
| NEONMAP1(vqshlub_n_s8, aarch64_neon_vsqshlu, VectorRet), |
| NEONMAP1(vqshlud_n_s64, aarch64_neon_vsqshlu, VectorRet), |
| NEONMAP1(vqshluh_n_s16, aarch64_neon_vsqshlu, VectorRet), |
| NEONMAP1(vqshlus_n_s32, aarch64_neon_vsqshlu, VectorRet), |
| NEONMAP1(vqshrnd_n_s64, aarch64_neon_vsqshrn, VectorRet), |
| NEONMAP1(vqshrnd_n_u64, aarch64_neon_vuqshrn, VectorRet), |
| NEONMAP1(vqshrnh_n_s16, aarch64_neon_vsqshrn, VectorRet), |
| NEONMAP1(vqshrnh_n_u16, aarch64_neon_vuqshrn, VectorRet), |
| NEONMAP1(vqshrns_n_s32, aarch64_neon_vsqshrn, VectorRet), |
| NEONMAP1(vqshrns_n_u32, aarch64_neon_vuqshrn, VectorRet), |
| NEONMAP1(vqshrund_n_s64, aarch64_neon_vsqshrun, VectorRet), |
| NEONMAP1(vqshrunh_n_s16, aarch64_neon_vsqshrun, VectorRet), |
| NEONMAP1(vqshruns_n_s32, aarch64_neon_vsqshrun, VectorRet), |
| NEONMAP1(vqsubb_s8, arm_neon_vqsubs, VectorRet), |
| NEONMAP1(vqsubb_u8, arm_neon_vqsubu, VectorRet), |
| NEONMAP1(vqsubd_s64, arm_neon_vqsubs, VectorRet), |
| NEONMAP1(vqsubd_u64, arm_neon_vqsubu, VectorRet), |
| NEONMAP1(vqsubh_s16, arm_neon_vqsubs, VectorRet), |
| NEONMAP1(vqsubh_u16, arm_neon_vqsubu, VectorRet), |
| NEONMAP1(vqsubs_s32, arm_neon_vqsubs, VectorRet), |
| NEONMAP1(vqsubs_u32, arm_neon_vqsubu, VectorRet), |
| NEONMAP1(vrecped_f64, aarch64_neon_vrecpe, AddRetType), |
| NEONMAP1(vrecpes_f32, aarch64_neon_vrecpe, AddRetType), |
| NEONMAP1(vrecpsd_f64, aarch64_neon_vrecps, AddRetType), |
| NEONMAP1(vrecpss_f32, aarch64_neon_vrecps, AddRetType), |
| NEONMAP1(vrecpxd_f64, aarch64_neon_vrecpx, AddRetType), |
| NEONMAP1(vrecpxs_f32, aarch64_neon_vrecpx, AddRetType), |
| NEONMAP1(vrshld_s64, aarch64_neon_vrshlds, 0), |
| NEONMAP1(vrshld_u64, aarch64_neon_vrshldu, 0), |
| NEONMAP1(vrshrd_n_s64, aarch64_neon_vsrshr, VectorRet), |
| NEONMAP1(vrshrd_n_u64, aarch64_neon_vurshr, VectorRet), |
| NEONMAP1(vrsqrted_f64, aarch64_neon_vrsqrte, AddRetType), |
| NEONMAP1(vrsqrtes_f32, aarch64_neon_vrsqrte, AddRetType), |
| NEONMAP1(vrsqrtsd_f64, aarch64_neon_vrsqrts, AddRetType), |
| NEONMAP1(vrsqrtss_f32, aarch64_neon_vrsqrts, AddRetType), |
| NEONMAP1(vrsrad_n_s64, aarch64_neon_vrsrads_n, 0), |
| NEONMAP1(vrsrad_n_u64, aarch64_neon_vrsradu_n, 0), |
| NEONMAP0(vset_lane_f32), |
| NEONMAP0(vset_lane_f64), |
| NEONMAP0(vset_lane_i16), |
| NEONMAP0(vset_lane_i32), |
| NEONMAP0(vset_lane_i64), |
| NEONMAP0(vset_lane_i8), |
| NEONMAP0(vsetq_lane_f32), |
| NEONMAP0(vsetq_lane_f64), |
| NEONMAP0(vsetq_lane_i16), |
| NEONMAP0(vsetq_lane_i32), |
| NEONMAP0(vsetq_lane_i64), |
| NEONMAP0(vsetq_lane_i8), |
| NEONMAP1(vsha1cq_u32, arm_neon_sha1c, 0), |
| NEONMAP1(vsha1h_u32, arm_neon_sha1h, 0), |
| NEONMAP1(vsha1mq_u32, arm_neon_sha1m, 0), |
| NEONMAP1(vsha1pq_u32, arm_neon_sha1p, 0), |
| NEONMAP1(vshld_n_s64, aarch64_neon_vshld_n, 0), |
| NEONMAP1(vshld_n_u64, aarch64_neon_vshld_n, 0), |
| NEONMAP1(vshld_s64, aarch64_neon_vshlds, 0), |
| NEONMAP1(vshld_u64, aarch64_neon_vshldu, 0), |
| NEONMAP1(vshrd_n_s64, aarch64_neon_vshrds_n, 0), |
| NEONMAP1(vshrd_n_u64, aarch64_neon_vshrdu_n, 0), |
| NEONMAP1(vslid_n_s64, aarch64_neon_vsli, VectorRet), |
| NEONMAP1(vslid_n_u64, aarch64_neon_vsli, VectorRet), |
| NEONMAP1(vsqaddb_u8, aarch64_neon_vsqadd, VectorRet), |
| NEONMAP1(vsqaddd_u64, aarch64_neon_vsqadd, VectorRet), |
| NEONMAP1(vsqaddh_u16, aarch64_neon_vsqadd, VectorRet), |
| NEONMAP1(vsqadds_u32, aarch64_neon_vsqadd, VectorRet), |
| NEONMAP1(vsrad_n_s64, aarch64_neon_vsrads_n, 0), |
| NEONMAP1(vsrad_n_u64, aarch64_neon_vsradu_n, 0), |
| NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, VectorRet), |
| NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, VectorRet), |
| NEONMAP1(vsubd_s64, aarch64_neon_vsubds, 0), |
| NEONMAP1(vsubd_u64, aarch64_neon_vsubdu, 0), |
| NEONMAP1(vtstd_s64, aarch64_neon_vtstd, VectorRetGetArgs01), |
| NEONMAP1(vtstd_u64, aarch64_neon_vtstd, VectorRetGetArgs01), |
| NEONMAP1(vuqaddb_s8, aarch64_neon_vuqadd, VectorRet), |
| NEONMAP1(vuqaddd_s64, aarch64_neon_vuqadd, VectorRet), |
| NEONMAP1(vuqaddh_s16, aarch64_neon_vuqadd, VectorRet), |
| NEONMAP1(vuqadds_s32, aarch64_neon_vuqadd, VectorRet) |
| }; |
| |
| static NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = { |
| NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vabs_v, arm_neon_vabs, 0), |
| NEONMAP1(vabsq_v, arm_neon_vabs, 0), |
| NEONMAP0(vaddhn_v), |
| NEONMAP1(vaesdq_v, arm_neon_aesd, 0), |
| NEONMAP1(vaeseq_v, arm_neon_aese, 0), |
| NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0), |
| NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0), |
| NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType), |
| NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType), |
| NEONMAP1(vcage_v, arm_neon_vacge, 0), |
| NEONMAP1(vcageq_v, arm_neon_vacge, 0), |
| NEONMAP1(vcagt_v, arm_neon_vacgt, 0), |
| NEONMAP1(vcagtq_v, arm_neon_vacgt, 0), |
| NEONMAP1(vcale_v, arm_neon_vacge, 0), |
| NEONMAP1(vcaleq_v, arm_neon_vacge, 0), |
| NEONMAP1(vcalt_v, arm_neon_vacgt, 0), |
| NEONMAP1(vcaltq_v, arm_neon_vacgt, 0), |
| NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType), |
| NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType), |
| NEONMAP1(vclz_v, ctlz, Add1ArgType), |
| NEONMAP1(vclzq_v, ctlz, Add1ArgType), |
| NEONMAP1(vcnt_v, ctpop, Add1ArgType), |
| NEONMAP1(vcntq_v, ctpop, Add1ArgType), |
| NEONMAP1(vcvt_f16_v, arm_neon_vcvtfp2hf, 0), |
| NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0), |
| NEONMAP0(vcvt_f32_v), |
| NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), |
| NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP0(vcvt_s32_v), |
| NEONMAP0(vcvt_s64_v), |
| NEONMAP0(vcvt_u32_v), |
| NEONMAP0(vcvt_u64_v), |
| NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0), |
| NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0), |
| NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0), |
| NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0), |
| NEONMAP0(vcvtq_f32_v), |
| NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), |
| NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP0(vcvtq_s32_v), |
| NEONMAP0(vcvtq_s64_v), |
| NEONMAP0(vcvtq_u32_v), |
| NEONMAP0(vcvtq_u64_v), |
| NEONMAP0(vext_v), |
| NEONMAP0(vextq_v), |
| NEONMAP0(vfma_v), |
| NEONMAP0(vfmaq_v), |
| NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vld1_dup_v), |
| NEONMAP1(vld1_v, arm_neon_vld1, 0), |
| NEONMAP0(vld1q_dup_v), |
| NEONMAP1(vld1q_v, arm_neon_vld1, 0), |
| NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0), |
| NEONMAP1(vld2_v, arm_neon_vld2, 0), |
| NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0), |
| NEONMAP1(vld2q_v, arm_neon_vld2, 0), |
| NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0), |
| NEONMAP1(vld3_v, arm_neon_vld3, 0), |
| NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0), |
| NEONMAP1(vld3q_v, arm_neon_vld3, 0), |
| NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0), |
| NEONMAP1(vld4_v, arm_neon_vld4, 0), |
| NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0), |
| NEONMAP1(vld4q_v, arm_neon_vld4, 0), |
| NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vmovl_v), |
| NEONMAP0(vmovn_v), |
| NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType), |
| NEONMAP0(vmull_v), |
| NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType), |
| NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), |
| NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts |