blob: 700a26505bbda098c5c35c2c7a7819986618c571 [file] [log] [blame]
//== ProgramState.h - Path-sensitive "State" for tracking values -*- C++ -*--=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines SymbolRef, ExprBindKey, and ProgramState*.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_GR_VALUESTATE_H
#define LLVM_CLANG_GR_VALUESTATE_H
#include "clang/Basic/LLVM.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/Environment.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/TaintTag.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableMap.h"
namespace llvm {
class APSInt;
class BumpPtrAllocator;
}
namespace clang {
class ASTContext;
namespace ento {
class ProgramStateManager;
typedef ConstraintManager* (*ConstraintManagerCreator)(ProgramStateManager&,
SubEngine&);
typedef StoreManager* (*StoreManagerCreator)(ProgramStateManager&);
//===----------------------------------------------------------------------===//
// ProgramStateTrait - Traits used by the Generic Data Map of a ProgramState.
//===----------------------------------------------------------------------===//
template <typename T> struct ProgramStatePartialTrait;
template <typename T> struct ProgramStateTrait {
typedef typename T::data_type data_type;
static inline void *GDMIndex() { return &T::TagInt; }
static inline void *MakeVoidPtr(data_type D) { return (void*) D; }
static inline data_type MakeData(void *const* P) {
return P ? (data_type) *P : (data_type) 0;
}
};
class ProgramStateManager;
/// \class ProgramState
/// ProgramState - This class encapsulates:
///
/// 1. A mapping from expressions to values (Environment)
/// 2. A mapping from locations to values (Store)
/// 3. Constraints on symbolic values (GenericDataMap)
///
/// Together these represent the "abstract state" of a program.
///
/// ProgramState is intended to be used as a functional object; that is,
/// once it is created and made "persistent" in a FoldingSet, its
/// values will never change.
class ProgramState : public llvm::FoldingSetNode {
public:
typedef llvm::ImmutableSet<llvm::APSInt*> IntSetTy;
typedef llvm::ImmutableMap<void*, void*> GenericDataMap;
private:
void operator=(const ProgramState& R) const; // Do not implement.
friend class ProgramStateManager;
friend class ExplodedGraph;
friend class ExplodedNode;
ProgramStateManager *stateMgr;
Environment Env; // Maps a Stmt to its current SVal.
Store store; // Maps a location to its current value.
GenericDataMap GDM; // Custom data stored by a client of this class.
unsigned refCount;
/// makeWithStore - Return a ProgramState with the same values as the current
/// state with the exception of using the specified Store.
const ProgramState *makeWithStore(const StoreRef &store) const;
void setStore(const StoreRef &storeRef);
public:
/// This ctor is used when creating the first ProgramState object.
ProgramState(ProgramStateManager *mgr, const Environment& env,
StoreRef st, GenericDataMap gdm);
/// Copy ctor - We must explicitly define this or else the "Next" ptr
/// in FoldingSetNode will also get copied.
ProgramState(const ProgramState &RHS);
~ProgramState();
/// Return the ProgramStateManager associated with this state.
ProgramStateManager &getStateManager() const { return *stateMgr; }
/// Return true if this state is referenced by a persistent ExplodedNode.
bool referencedByExplodedNode() const { return refCount > 0; }
/// getEnvironment - Return the environment associated with this state.
/// The environment is the mapping from expressions to values.
const Environment& getEnvironment() const { return Env; }
/// Return the store associated with this state. The store
/// is a mapping from locations to values.
Store getStore() const { return store; }
/// getGDM - Return the generic data map associated with this state.
GenericDataMap getGDM() const { return GDM; }
void setGDM(GenericDataMap gdm) { GDM = gdm; }
/// Profile - Profile the contents of a ProgramState object for use in a
/// FoldingSet. Two ProgramState objects are considered equal if they
/// have the same Environment, Store, and GenericDataMap.
static void Profile(llvm::FoldingSetNodeID& ID, const ProgramState *V) {
V->Env.Profile(ID);
ID.AddPointer(V->store);
V->GDM.Profile(ID);
}
/// Profile - Used to profile the contents of this object for inclusion
/// in a FoldingSet.
void Profile(llvm::FoldingSetNodeID& ID) const {
Profile(ID, this);
}
BasicValueFactory &getBasicVals() const;
SymbolManager &getSymbolManager() const;
//==---------------------------------------------------------------------==//
// Constraints on values.
//==---------------------------------------------------------------------==//
//
// Each ProgramState records constraints on symbolic values. These constraints
// are managed using the ConstraintManager associated with a ProgramStateManager.
// As constraints gradually accrue on symbolic values, added constraints
// may conflict and indicate that a state is infeasible (as no real values
// could satisfy all the constraints). This is the principal mechanism
// for modeling path-sensitivity in ExprEngine/ProgramState.
//
// Various "assume" methods form the interface for adding constraints to
// symbolic values. A call to 'assume' indicates an assumption being placed
// on one or symbolic values. 'assume' methods take the following inputs:
//
// (1) A ProgramState object representing the current state.
//
// (2) The assumed constraint (which is specific to a given "assume" method).
//
// (3) A binary value "Assumption" that indicates whether the constraint is
// assumed to be true or false.
//
// The output of "assume*" is a new ProgramState object with the added constraints.
// If no new state is feasible, NULL is returned.
//
const ProgramState *assume(DefinedOrUnknownSVal cond, bool assumption) const;
/// This method assumes both "true" and "false" for 'cond', and
/// returns both corresponding states. It's shorthand for doing
/// 'assume' twice.
std::pair<const ProgramState*, const ProgramState*>
assume(DefinedOrUnknownSVal cond) const;
const ProgramState *assumeInBound(DefinedOrUnknownSVal idx,
DefinedOrUnknownSVal upperBound,
bool assumption) const;
/// Utility method for getting regions.
const VarRegion* getRegion(const VarDecl *D, const LocationContext *LC) const;
//==---------------------------------------------------------------------==//
// Binding and retrieving values to/from the environment and symbolic store.
//==---------------------------------------------------------------------==//
/// BindCompoundLiteral - Return the state that has the bindings currently
/// in this state plus the bindings for the CompoundLiteral.
const ProgramState *bindCompoundLiteral(const CompoundLiteralExpr *CL,
const LocationContext *LC,
SVal V) const;
/// Create a new state by binding the value 'V' to the statement 'S' in the
/// state's environment.
const ProgramState *BindExpr(const Stmt *S, SVal V, bool Invalidate = true) const;
/// Create a new state by binding the value 'V' and location 'locaton' to the
/// statement 'S' in the state's environment.
const ProgramState *bindExprAndLocation(const Stmt *S, SVal location, SVal V)
const;
const ProgramState *bindDecl(const VarRegion *VR, SVal V) const;
const ProgramState *bindDeclWithNoInit(const VarRegion *VR) const;
const ProgramState *bindLoc(Loc location, SVal V) const;
const ProgramState *bindLoc(SVal location, SVal V) const;
const ProgramState *bindDefault(SVal loc, SVal V) const;
const ProgramState *unbindLoc(Loc LV) const;
/// invalidateRegions - Returns the state with bindings for the given regions
/// cleared from the store. The regions are provided as a continuous array
/// from Begin to End. Optionally invalidates global regions as well.
const ProgramState *invalidateRegions(ArrayRef<const MemRegion *> Regions,
const Expr *E, unsigned BlockCount,
StoreManager::InvalidatedSymbols *IS = 0,
bool invalidateGlobals = false) const;
/// enterStackFrame - Returns the state for entry to the given stack frame,
/// preserving the current state.
const ProgramState *enterStackFrame(const StackFrameContext *frame) const;
/// Get the lvalue for a variable reference.
Loc getLValue(const VarDecl *D, const LocationContext *LC) const;
/// Get the lvalue for a StringLiteral.
Loc getLValue(const StringLiteral *literal) const;
Loc getLValue(const CompoundLiteralExpr *literal,
const LocationContext *LC) const;
/// Get the lvalue for an ivar reference.
SVal getLValue(const ObjCIvarDecl *decl, SVal base) const;
/// Get the lvalue for a field reference.
SVal getLValue(const FieldDecl *decl, SVal Base) const;
/// Get the lvalue for an array index.
SVal getLValue(QualType ElementType, SVal Idx, SVal Base) const;
const llvm::APSInt *getSymVal(SymbolRef sym) const;
/// Returns the SVal bound to the statement 'S' in the state's environment.
SVal getSVal(const Stmt *S, bool useOnlyDirectBindings = false) const;
SVal getSValAsScalarOrLoc(const Stmt *Ex) const;
SVal getSVal(Loc LV, QualType T = QualType()) const;
/// Returns the "raw" SVal bound to LV before any value simplfication.
SVal getRawSVal(Loc LV, QualType T= QualType()) const;
SVal getSVal(const MemRegion* R) const;
SVal getSValAsScalarOrLoc(const MemRegion *R) const;
/// \brief Visits the symbols reachable from the given SVal using the provided
/// SymbolVisitor.
///
/// This is a convenience API. Consider using ScanReachableSymbols class
/// directly when making multiple scans on the same state with the same
/// visitor to avoid repeated initialization cost.
/// \sa ScanReachableSymbols
bool scanReachableSymbols(SVal val, SymbolVisitor& visitor) const;
/// \brief Visits the symbols reachable from the SVals in the given range
/// using the provided SymbolVisitor.
bool scanReachableSymbols(const SVal *I, const SVal *E,
SymbolVisitor &visitor) const;
/// \brief Visits the symbols reachable from the regions in the given
/// MemRegions range using the provided SymbolVisitor.
bool scanReachableSymbols(const MemRegion * const *I,
const MemRegion * const *E,
SymbolVisitor &visitor) const;
template <typename CB> CB scanReachableSymbols(SVal val) const;
template <typename CB> CB scanReachableSymbols(const SVal *beg,
const SVal *end) const;
template <typename CB> CB
scanReachableSymbols(const MemRegion * const *beg,
const MemRegion * const *end) const;
/// Create a new state in which the statement is marked as tainted.
const ProgramState* addTaint(const Stmt *S,
TaintTagType Kind = TaintTagGeneric) const;
/// Create a new state in which the symbol is marked as tainted.
const ProgramState* addTaint(SymbolRef S,
TaintTagType Kind = TaintTagGeneric) const;
/// Create a new state in which the region symbol is marked as tainted.
const ProgramState* addTaint(const MemRegion *R,
TaintTagType Kind = TaintTagGeneric) const;
/// Check if the statement is tainted in the current state.
bool isTainted(const Stmt *S, TaintTagType Kind = TaintTagGeneric) const;
bool isTainted(SVal V, TaintTagType Kind = TaintTagGeneric) const;
bool isTainted(const SymExpr* Sym, TaintTagType Kind = TaintTagGeneric) const;
bool isTainted(const MemRegion *Reg, TaintTagType Kind=TaintTagGeneric) const;
//==---------------------------------------------------------------------==//
// Accessing the Generic Data Map (GDM).
//==---------------------------------------------------------------------==//
void *const* FindGDM(void *K) const;
template<typename T>
const ProgramState *add(typename ProgramStateTrait<T>::key_type K) const;
template <typename T>
typename ProgramStateTrait<T>::data_type
get() const {
return ProgramStateTrait<T>::MakeData(FindGDM(ProgramStateTrait<T>::GDMIndex()));
}
template<typename T>
typename ProgramStateTrait<T>::lookup_type
get(typename ProgramStateTrait<T>::key_type key) const {
void *const* d = FindGDM(ProgramStateTrait<T>::GDMIndex());
return ProgramStateTrait<T>::Lookup(ProgramStateTrait<T>::MakeData(d), key);
}
template <typename T>
typename ProgramStateTrait<T>::context_type get_context() const;
template<typename T>
const ProgramState *remove(typename ProgramStateTrait<T>::key_type K) const;
template<typename T>
const ProgramState *remove(typename ProgramStateTrait<T>::key_type K,
typename ProgramStateTrait<T>::context_type C) const;
template <typename T>
const ProgramState *remove() const;
template<typename T>
const ProgramState *set(typename ProgramStateTrait<T>::data_type D) const;
template<typename T>
const ProgramState *set(typename ProgramStateTrait<T>::key_type K,
typename ProgramStateTrait<T>::value_type E) const;
template<typename T>
const ProgramState *set(typename ProgramStateTrait<T>::key_type K,
typename ProgramStateTrait<T>::value_type E,
typename ProgramStateTrait<T>::context_type C) const;
template<typename T>
bool contains(typename ProgramStateTrait<T>::key_type key) const {
void *const* d = FindGDM(ProgramStateTrait<T>::GDMIndex());
return ProgramStateTrait<T>::Contains(ProgramStateTrait<T>::MakeData(d), key);
}
// Pretty-printing.
void print(raw_ostream &Out, CFG *C, const char *nl = "\n",
const char *sep = "") const;
void dump(CFG &C) const;
void printDOT(raw_ostream &Out, CFG &C) const;
void dump() const;
private:
/// Increments the number of times this state is referenced by ExplodeNodes.
void incrementReferenceCount() { ++refCount; }
/// Decrement the number of times this state is referenced by ExplodeNodes.
void decrementReferenceCount() {
assert(refCount > 0);
--refCount;
}
const ProgramState *
invalidateRegionsImpl(ArrayRef<const MemRegion *> Regions,
const Expr *E, unsigned BlockCount,
StoreManager::InvalidatedSymbols &IS,
bool invalidateGlobals) const;
};
class ProgramStateSet {
typedef llvm::SmallPtrSet<const ProgramState*,5> ImplTy;
ImplTy Impl;
public:
ProgramStateSet() {}
inline void Add(const ProgramState *St) {
Impl.insert(St);
}
typedef ImplTy::const_iterator iterator;
inline unsigned size() const { return Impl.size(); }
inline bool empty() const { return Impl.empty(); }
inline iterator begin() const { return Impl.begin(); }
inline iterator end() const { return Impl.end(); }
class AutoPopulate {
ProgramStateSet &S;
unsigned StartSize;
const ProgramState *St;
public:
AutoPopulate(ProgramStateSet &s, const ProgramState *st)
: S(s), StartSize(S.size()), St(st) {}
~AutoPopulate() {
if (StartSize == S.size())
S.Add(St);
}
};
};
//===----------------------------------------------------------------------===//
// ProgramStateManager - Factory object for ProgramStates.
//===----------------------------------------------------------------------===//
class ProgramStateManager {
friend class ProgramState;
private:
/// Eng - The SubEngine that owns this state manager.
SubEngine *Eng; /* Can be null. */
EnvironmentManager EnvMgr;
llvm::OwningPtr<StoreManager> StoreMgr;
llvm::OwningPtr<ConstraintManager> ConstraintMgr;
ProgramState::GenericDataMap::Factory GDMFactory;
typedef llvm::DenseMap<void*,std::pair<void*,void (*)(void*)> > GDMContextsTy;
GDMContextsTy GDMContexts;
/// StateSet - FoldingSet containing all the states created for analyzing
/// a particular function. This is used to unique states.
llvm::FoldingSet<ProgramState> StateSet;
/// Object that manages the data for all created SVals.
llvm::OwningPtr<SValBuilder> svalBuilder;
/// A BumpPtrAllocator to allocate states.
llvm::BumpPtrAllocator &Alloc;
/// A vector of recently allocated ProgramStates that can potentially be
/// reused.
std::vector<ProgramState *> recentlyAllocatedStates;
/// A vector of ProgramStates that we can reuse.
std::vector<ProgramState *> freeStates;
public:
ProgramStateManager(ASTContext &Ctx,
StoreManagerCreator CreateStoreManager,
ConstraintManagerCreator CreateConstraintManager,
llvm::BumpPtrAllocator& alloc,
SubEngine &subeng)
: Eng(&subeng),
EnvMgr(alloc),
GDMFactory(alloc),
svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
Alloc(alloc) {
StoreMgr.reset((*CreateStoreManager)(*this));
ConstraintMgr.reset((*CreateConstraintManager)(*this, subeng));
}
ProgramStateManager(ASTContext &Ctx,
StoreManagerCreator CreateStoreManager,
ConstraintManager* ConstraintManagerPtr,
llvm::BumpPtrAllocator& alloc)
: Eng(0),
EnvMgr(alloc),
GDMFactory(alloc),
svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
Alloc(alloc) {
StoreMgr.reset((*CreateStoreManager)(*this));
ConstraintMgr.reset(ConstraintManagerPtr);
}
~ProgramStateManager();
const ProgramState *getInitialState(const LocationContext *InitLoc);
ASTContext &getContext() { return svalBuilder->getContext(); }
const ASTContext &getContext() const { return svalBuilder->getContext(); }
BasicValueFactory &getBasicVals() {
return svalBuilder->getBasicValueFactory();
}
const BasicValueFactory& getBasicVals() const {
return svalBuilder->getBasicValueFactory();
}
SValBuilder &getSValBuilder() {
return *svalBuilder;
}
SymbolManager &getSymbolManager() {
return svalBuilder->getSymbolManager();
}
const SymbolManager &getSymbolManager() const {
return svalBuilder->getSymbolManager();
}
llvm::BumpPtrAllocator& getAllocator() { return Alloc; }
MemRegionManager& getRegionManager() {
return svalBuilder->getRegionManager();
}
const MemRegionManager& getRegionManager() const {
return svalBuilder->getRegionManager();
}
StoreManager& getStoreManager() { return *StoreMgr; }
ConstraintManager& getConstraintManager() { return *ConstraintMgr; }
SubEngine* getOwningEngine() { return Eng; }
const ProgramState *removeDeadBindings(const ProgramState *St,
const StackFrameContext *LCtx,
SymbolReaper& SymReaper);
/// Marshal a new state for the callee in another translation unit.
/// 'state' is owned by the caller's engine.
const ProgramState *MarshalState(const ProgramState *state, const StackFrameContext *L);
public:
SVal ArrayToPointer(Loc Array) {
return StoreMgr->ArrayToPointer(Array);
}
// Methods that manipulate the GDM.
const ProgramState *addGDM(const ProgramState *St, void *Key, void *Data);
const ProgramState *removeGDM(const ProgramState *state, void *Key);
// Methods that query & manipulate the Store.
void iterBindings(const ProgramState *state, StoreManager::BindingsHandler& F) {
StoreMgr->iterBindings(state->getStore(), F);
}
const ProgramState *getPersistentState(ProgramState &Impl);
const ProgramState *getPersistentStateWithGDM(const ProgramState *FromState,
const ProgramState *GDMState);
bool haveEqualEnvironments(const ProgramState * S1, const ProgramState * S2) {
return S1->Env == S2->Env;
}
bool haveEqualStores(const ProgramState * S1, const ProgramState * S2) {
return S1->store == S2->store;
}
/// Periodically called by ExprEngine to recycle ProgramStates that were
/// created but never used for creating an ExplodedNode.
void recycleUnusedStates();
//==---------------------------------------------------------------------==//
// Generic Data Map methods.
//==---------------------------------------------------------------------==//
//
// ProgramStateManager and ProgramState support a "generic data map" that allows
// different clients of ProgramState objects to embed arbitrary data within a
// ProgramState object. The generic data map is essentially an immutable map
// from a "tag" (that acts as the "key" for a client) and opaque values.
// Tags/keys and values are simply void* values. The typical way that clients
// generate unique tags are by taking the address of a static variable.
// Clients are responsible for ensuring that data values referred to by a
// the data pointer are immutable (and thus are essentially purely functional
// data).
//
// The templated methods below use the ProgramStateTrait<T> class
// to resolve keys into the GDM and to return data values to clients.
//
// Trait based GDM dispatch.
template <typename T>
const ProgramState *set(const ProgramState *st, typename ProgramStateTrait<T>::data_type D) {
return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
ProgramStateTrait<T>::MakeVoidPtr(D));
}
template<typename T>
const ProgramState *set(const ProgramState *st,
typename ProgramStateTrait<T>::key_type K,
typename ProgramStateTrait<T>::value_type V,
typename ProgramStateTrait<T>::context_type C) {
return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Set(st->get<T>(), K, V, C)));
}
template <typename T>
const ProgramState *add(const ProgramState *st,
typename ProgramStateTrait<T>::key_type K,
typename ProgramStateTrait<T>::context_type C) {
return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Add(st->get<T>(), K, C)));
}
template <typename T>
const ProgramState *remove(const ProgramState *st,
typename ProgramStateTrait<T>::key_type K,
typename ProgramStateTrait<T>::context_type C) {
return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Remove(st->get<T>(), K, C)));
}
template <typename T>
const ProgramState *remove(const ProgramState *st) {
return removeGDM(st, ProgramStateTrait<T>::GDMIndex());
}
void *FindGDMContext(void *index,
void *(*CreateContext)(llvm::BumpPtrAllocator&),
void (*DeleteContext)(void*));
template <typename T>
typename ProgramStateTrait<T>::context_type get_context() {
void *p = FindGDMContext(ProgramStateTrait<T>::GDMIndex(),
ProgramStateTrait<T>::CreateContext,
ProgramStateTrait<T>::DeleteContext);
return ProgramStateTrait<T>::MakeContext(p);
}
const llvm::APSInt* getSymVal(const ProgramState *St, SymbolRef sym) {
return ConstraintMgr->getSymVal(St, sym);
}
void EndPath(const ProgramState *St) {
ConstraintMgr->EndPath(St);
}
};
//===----------------------------------------------------------------------===//
// Out-of-line method definitions for ProgramState.
//===----------------------------------------------------------------------===//
inline const VarRegion* ProgramState::getRegion(const VarDecl *D,
const LocationContext *LC) const {
return getStateManager().getRegionManager().getVarRegion(D, LC);
}
inline const ProgramState *ProgramState::assume(DefinedOrUnknownSVal Cond,
bool Assumption) const {
if (Cond.isUnknown())
return this;
return getStateManager().ConstraintMgr->assume(this, cast<DefinedSVal>(Cond),
Assumption);
}
inline std::pair<const ProgramState*, const ProgramState*>
ProgramState::assume(DefinedOrUnknownSVal Cond) const {
if (Cond.isUnknown())
return std::make_pair(this, this);
return getStateManager().ConstraintMgr->assumeDual(this,
cast<DefinedSVal>(Cond));
}
inline const ProgramState *ProgramState::bindLoc(SVal LV, SVal V) const {
return !isa<Loc>(LV) ? this : bindLoc(cast<Loc>(LV), V);
}
inline Loc ProgramState::getLValue(const VarDecl *VD,
const LocationContext *LC) const {
return getStateManager().StoreMgr->getLValueVar(VD, LC);
}
inline Loc ProgramState::getLValue(const StringLiteral *literal) const {
return getStateManager().StoreMgr->getLValueString(literal);
}
inline Loc ProgramState::getLValue(const CompoundLiteralExpr *literal,
const LocationContext *LC) const {
return getStateManager().StoreMgr->getLValueCompoundLiteral(literal, LC);
}
inline SVal ProgramState::getLValue(const ObjCIvarDecl *D, SVal Base) const {
return getStateManager().StoreMgr->getLValueIvar(D, Base);
}
inline SVal ProgramState::getLValue(const FieldDecl *D, SVal Base) const {
return getStateManager().StoreMgr->getLValueField(D, Base);
}
inline SVal ProgramState::getLValue(QualType ElementType, SVal Idx, SVal Base) const{
if (NonLoc *N = dyn_cast<NonLoc>(&Idx))
return getStateManager().StoreMgr->getLValueElement(ElementType, *N, Base);
return UnknownVal();
}
inline const llvm::APSInt *ProgramState::getSymVal(SymbolRef sym) const {
return getStateManager().getSymVal(this, sym);
}
inline SVal ProgramState::getSVal(const Stmt *Ex, bool useOnlyDirectBindings) const{
return Env.getSVal(Ex, *getStateManager().svalBuilder,
useOnlyDirectBindings);
}
inline SVal ProgramState::getSValAsScalarOrLoc(const Stmt *S) const {
if (const Expr *Ex = dyn_cast<Expr>(S)) {
QualType T = Ex->getType();
if (Ex->isLValue() || Loc::isLocType(T) || T->isIntegerType())
return getSVal(S);
}
return UnknownVal();
}
inline SVal ProgramState::getRawSVal(Loc LV, QualType T) const {
return getStateManager().StoreMgr->Retrieve(getStore(), LV, T);
}
inline SVal ProgramState::getSVal(const MemRegion* R) const {
return getStateManager().StoreMgr->Retrieve(getStore(), loc::MemRegionVal(R));
}
inline BasicValueFactory &ProgramState::getBasicVals() const {
return getStateManager().getBasicVals();
}
inline SymbolManager &ProgramState::getSymbolManager() const {
return getStateManager().getSymbolManager();
}
template<typename T>
const ProgramState *ProgramState::add(typename ProgramStateTrait<T>::key_type K) const {
return getStateManager().add<T>(this, K, get_context<T>());
}
template <typename T>
typename ProgramStateTrait<T>::context_type ProgramState::get_context() const {
return getStateManager().get_context<T>();
}
template<typename T>
const ProgramState *ProgramState::remove(typename ProgramStateTrait<T>::key_type K) const {
return getStateManager().remove<T>(this, K, get_context<T>());
}
template<typename T>
const ProgramState *ProgramState::remove(typename ProgramStateTrait<T>::key_type K,
typename ProgramStateTrait<T>::context_type C) const {
return getStateManager().remove<T>(this, K, C);
}
template <typename T>
const ProgramState *ProgramState::remove() const {
return getStateManager().remove<T>(this);
}
template<typename T>
const ProgramState *ProgramState::set(typename ProgramStateTrait<T>::data_type D) const {
return getStateManager().set<T>(this, D);
}
template<typename T>
const ProgramState *ProgramState::set(typename ProgramStateTrait<T>::key_type K,
typename ProgramStateTrait<T>::value_type E) const {
return getStateManager().set<T>(this, K, E, get_context<T>());
}
template<typename T>
const ProgramState *ProgramState::set(typename ProgramStateTrait<T>::key_type K,
typename ProgramStateTrait<T>::value_type E,
typename ProgramStateTrait<T>::context_type C) const {
return getStateManager().set<T>(this, K, E, C);
}
template <typename CB>
CB ProgramState::scanReachableSymbols(SVal val) const {
CB cb(this);
scanReachableSymbols(val, cb);
return cb;
}
template <typename CB>
CB ProgramState::scanReachableSymbols(const SVal *beg, const SVal *end) const {
CB cb(this);
scanReachableSymbols(beg, end, cb);
return cb;
}
template <typename CB>
CB ProgramState::scanReachableSymbols(const MemRegion * const *beg,
const MemRegion * const *end) const {
CB cb(this);
scanReachableSymbols(beg, end, cb);
return cb;
}
/// \class ScanReachableSymbols
/// A Utility class that allows to visit the reachable symbols using a custom
/// SymbolVisitor.
class ScanReachableSymbols : public SubRegionMap::Visitor {
virtual void anchor();
typedef llvm::DenseMap<const void*, unsigned> VisitedItems;
VisitedItems visited;
const ProgramState *state;
SymbolVisitor &visitor;
llvm::OwningPtr<SubRegionMap> SRM;
public:
ScanReachableSymbols(const ProgramState *st, SymbolVisitor& v)
: state(st), visitor(v) {}
bool scan(nonloc::CompoundVal val);
bool scan(SVal val);
bool scan(const MemRegion *R);
bool scan(const SymExpr *sym);
// From SubRegionMap::Visitor.
bool Visit(const MemRegion* Parent, const MemRegion* SubRegion) {
return scan(SubRegion);
}
};
} // end GR namespace
} // end clang namespace
#endif