blob: 0fd9e51b3a37a7e880895299e5ba5cef7a63c3fd [file] [log] [blame]
//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Type interface and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_TYPE_H
#define LLVM_CLANG_AST_TYPE_H
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/Linkage.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/Visibility.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/TemplateName.h"
#include "llvm/Support/type_traits.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "clang/Basic/LLVM.h"
namespace clang {
enum {
TypeAlignmentInBits = 4,
TypeAlignment = 1 << TypeAlignmentInBits
};
class Type;
class ExtQuals;
class QualType;
}
namespace llvm {
template <typename T>
class PointerLikeTypeTraits;
template<>
class PointerLikeTypeTraits< ::clang::Type*> {
public:
static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
static inline ::clang::Type *getFromVoidPointer(void *P) {
return static_cast< ::clang::Type*>(P);
}
enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
};
template<>
class PointerLikeTypeTraits< ::clang::ExtQuals*> {
public:
static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
return static_cast< ::clang::ExtQuals*>(P);
}
enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
};
template <>
struct isPodLike<clang::QualType> { static const bool value = true; };
}
namespace clang {
class ASTContext;
class TypedefNameDecl;
class TemplateDecl;
class TemplateTypeParmDecl;
class NonTypeTemplateParmDecl;
class TemplateTemplateParmDecl;
class TagDecl;
class RecordDecl;
class CXXRecordDecl;
class EnumDecl;
class FieldDecl;
class ObjCInterfaceDecl;
class ObjCProtocolDecl;
class ObjCMethodDecl;
class UnresolvedUsingTypenameDecl;
class Expr;
class Stmt;
class SourceLocation;
class StmtIteratorBase;
class TemplateArgument;
class TemplateArgumentLoc;
class TemplateArgumentListInfo;
class ElaboratedType;
class ExtQuals;
class ExtQualsTypeCommonBase;
struct PrintingPolicy;
template <typename> class CanQual;
typedef CanQual<Type> CanQualType;
// Provide forward declarations for all of the *Type classes
#define TYPE(Class, Base) class Class##Type;
#include "clang/AST/TypeNodes.def"
/// Qualifiers - The collection of all-type qualifiers we support.
/// Clang supports five independent qualifiers:
/// * C99: const, volatile, and restrict
/// * Embedded C (TR18037): address spaces
/// * Objective C: the GC attributes (none, weak, or strong)
class Qualifiers {
public:
enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
Const = 0x1,
Restrict = 0x2,
Volatile = 0x4,
CVRMask = Const | Volatile | Restrict
};
enum GC {
GCNone = 0,
Weak,
Strong
};
enum ObjCLifetime {
/// There is no lifetime qualification on this type.
OCL_None,
/// This object can be modified without requiring retains or
/// releases.
OCL_ExplicitNone,
/// Assigning into this object requires the old value to be
/// released and the new value to be retained. The timing of the
/// release of the old value is inexact: it may be moved to
/// immediately after the last known point where the value is
/// live.
OCL_Strong,
/// Reading or writing from this object requires a barrier call.
OCL_Weak,
/// Assigning into this object requires a lifetime extension.
OCL_Autoreleasing
};
enum {
/// The maximum supported address space number.
/// 24 bits should be enough for anyone.
MaxAddressSpace = 0xffffffu,
/// The width of the "fast" qualifier mask.
FastWidth = 3,
/// The fast qualifier mask.
FastMask = (1 << FastWidth) - 1
};
Qualifiers() : Mask(0) {}
static Qualifiers fromFastMask(unsigned Mask) {
Qualifiers Qs;
Qs.addFastQualifiers(Mask);
return Qs;
}
static Qualifiers fromCVRMask(unsigned CVR) {
Qualifiers Qs;
Qs.addCVRQualifiers(CVR);
return Qs;
}
// Deserialize qualifiers from an opaque representation.
static Qualifiers fromOpaqueValue(unsigned opaque) {
Qualifiers Qs;
Qs.Mask = opaque;
return Qs;
}
// Serialize these qualifiers into an opaque representation.
unsigned getAsOpaqueValue() const {
return Mask;
}
bool hasConst() const { return Mask & Const; }
void setConst(bool flag) {
Mask = (Mask & ~Const) | (flag ? Const : 0);
}
void removeConst() { Mask &= ~Const; }
void addConst() { Mask |= Const; }
bool hasVolatile() const { return Mask & Volatile; }
void setVolatile(bool flag) {
Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
}
void removeVolatile() { Mask &= ~Volatile; }
void addVolatile() { Mask |= Volatile; }
bool hasRestrict() const { return Mask & Restrict; }
void setRestrict(bool flag) {
Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
}
void removeRestrict() { Mask &= ~Restrict; }
void addRestrict() { Mask |= Restrict; }
bool hasCVRQualifiers() const { return getCVRQualifiers(); }
unsigned getCVRQualifiers() const { return Mask & CVRMask; }
void setCVRQualifiers(unsigned mask) {
assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
Mask = (Mask & ~CVRMask) | mask;
}
void removeCVRQualifiers(unsigned mask) {
assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
Mask &= ~mask;
}
void removeCVRQualifiers() {
removeCVRQualifiers(CVRMask);
}
void addCVRQualifiers(unsigned mask) {
assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
Mask |= mask;
}
bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
void setObjCGCAttr(GC type) {
Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
}
void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
void addObjCGCAttr(GC type) {
assert(type);
setObjCGCAttr(type);
}
Qualifiers withoutObjCGCAttr() const {
Qualifiers qs = *this;
qs.removeObjCGCAttr();
return qs;
}
Qualifiers withoutObjCGLifetime() const {
Qualifiers qs = *this;
qs.removeObjCLifetime();
return qs;
}
bool hasObjCLifetime() const { return Mask & LifetimeMask; }
ObjCLifetime getObjCLifetime() const {
return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
}
void setObjCLifetime(ObjCLifetime type) {
Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
}
void removeObjCLifetime() { setObjCLifetime(OCL_None); }
void addObjCLifetime(ObjCLifetime type) {
assert(type);
setObjCLifetime(type);
}
/// True if the lifetime is neither None or ExplicitNone.
bool hasNonTrivialObjCLifetime() const {
ObjCLifetime lifetime = getObjCLifetime();
return (lifetime > OCL_ExplicitNone);
}
/// True if the lifetime is either strong or weak.
bool hasStrongOrWeakObjCLifetime() const {
ObjCLifetime lifetime = getObjCLifetime();
return (lifetime == OCL_Strong || lifetime == OCL_Weak);
}
bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
void setAddressSpace(unsigned space) {
assert(space <= MaxAddressSpace);
Mask = (Mask & ~AddressSpaceMask)
| (((uint32_t) space) << AddressSpaceShift);
}
void removeAddressSpace() { setAddressSpace(0); }
void addAddressSpace(unsigned space) {
assert(space);
setAddressSpace(space);
}
// Fast qualifiers are those that can be allocated directly
// on a QualType object.
bool hasFastQualifiers() const { return getFastQualifiers(); }
unsigned getFastQualifiers() const { return Mask & FastMask; }
void setFastQualifiers(unsigned mask) {
assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
Mask = (Mask & ~FastMask) | mask;
}
void removeFastQualifiers(unsigned mask) {
assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
Mask &= ~mask;
}
void removeFastQualifiers() {
removeFastQualifiers(FastMask);
}
void addFastQualifiers(unsigned mask) {
assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
Mask |= mask;
}
/// hasNonFastQualifiers - Return true if the set contains any
/// qualifiers which require an ExtQuals node to be allocated.
bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
Qualifiers getNonFastQualifiers() const {
Qualifiers Quals = *this;
Quals.setFastQualifiers(0);
return Quals;
}
/// hasQualifiers - Return true if the set contains any qualifiers.
bool hasQualifiers() const { return Mask; }
bool empty() const { return !Mask; }
/// \brief Add the qualifiers from the given set to this set.
void addQualifiers(Qualifiers Q) {
// If the other set doesn't have any non-boolean qualifiers, just
// bit-or it in.
if (!(Q.Mask & ~CVRMask))
Mask |= Q.Mask;
else {
Mask |= (Q.Mask & CVRMask);
if (Q.hasAddressSpace())
addAddressSpace(Q.getAddressSpace());
if (Q.hasObjCGCAttr())
addObjCGCAttr(Q.getObjCGCAttr());
if (Q.hasObjCLifetime())
addObjCLifetime(Q.getObjCLifetime());
}
}
/// \brief Add the qualifiers from the given set to this set, given that
/// they don't conflict.
void addConsistentQualifiers(Qualifiers qs) {
assert(getAddressSpace() == qs.getAddressSpace() ||
!hasAddressSpace() || !qs.hasAddressSpace());
assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
!hasObjCGCAttr() || !qs.hasObjCGCAttr());
assert(getObjCLifetime() == qs.getObjCLifetime() ||
!hasObjCLifetime() || !qs.hasObjCLifetime());
Mask |= qs.Mask;
}
/// \brief Determines if these qualifiers compatibly include another set.
/// Generally this answers the question of whether an object with the other
/// qualifiers can be safely used as an object with these qualifiers.
bool compatiblyIncludes(Qualifiers other) const {
return
// Address spaces must match exactly.
getAddressSpace() == other.getAddressSpace() &&
// ObjC GC qualifiers can match, be added, or be removed, but can't be
// changed.
(getObjCGCAttr() == other.getObjCGCAttr() ||
!hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
// ObjC lifetime qualifiers must match exactly.
getObjCLifetime() == other.getObjCLifetime() &&
// CVR qualifiers may subset.
(((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
}
/// \brief Determines if these qualifiers compatibly include another set of
/// qualifiers from the narrow perspective of Objective-C ARC lifetime.
///
/// One set of Objective-C lifetime qualifiers compatibly includes the other
/// if the lifetime qualifiers match, or if both are non-__weak and the
/// including set also contains the 'const' qualifier.
bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
if (getObjCLifetime() == other.getObjCLifetime())
return true;
if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
return false;
return hasConst();
}
bool isSupersetOf(Qualifiers Other) const;
/// \brief Determine whether this set of qualifiers is a strict superset of
/// another set of qualifiers, not considering qualifier compatibility.
bool isStrictSupersetOf(Qualifiers Other) const;
bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
operator bool() const { return hasQualifiers(); }
Qualifiers &operator+=(Qualifiers R) {
addQualifiers(R);
return *this;
}
// Union two qualifier sets. If an enumerated qualifier appears
// in both sets, use the one from the right.
friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
L += R;
return L;
}
Qualifiers &operator-=(Qualifiers R) {
Mask = Mask & ~(R.Mask);
return *this;
}
/// \brief Compute the difference between two qualifier sets.
friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
L -= R;
return L;
}
std::string getAsString() const;
std::string getAsString(const PrintingPolicy &Policy) const {
std::string Buffer;
getAsStringInternal(Buffer, Policy);
return Buffer;
}
void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(Mask);
}
private:
// bits: |0 1 2|3 .. 4|5 .. 7|8 ... 31|
// |C R V|GCAttr|Lifetime|AddressSpace|
uint32_t Mask;
static const uint32_t GCAttrMask = 0x18;
static const uint32_t GCAttrShift = 3;
static const uint32_t LifetimeMask = 0xE0;
static const uint32_t LifetimeShift = 5;
static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
static const uint32_t AddressSpaceShift = 8;
};
/// CallingConv - Specifies the calling convention that a function uses.
enum CallingConv {
CC_Default,
CC_C, // __attribute__((cdecl))
CC_X86StdCall, // __attribute__((stdcall))
CC_X86FastCall, // __attribute__((fastcall))
CC_X86ThisCall, // __attribute__((thiscall))
CC_X86Pascal, // __attribute__((pascal))
CC_AAPCS, // __attribute__((pcs("aapcs")))
CC_AAPCS_VFP // __attribute__((pcs("aapcs-vfp")))
};
typedef std::pair<const Type*, Qualifiers> SplitQualType;
/// QualType - For efficiency, we don't store CV-qualified types as nodes on
/// their own: instead each reference to a type stores the qualifiers. This
/// greatly reduces the number of nodes we need to allocate for types (for
/// example we only need one for 'int', 'const int', 'volatile int',
/// 'const volatile int', etc).
///
/// As an added efficiency bonus, instead of making this a pair, we
/// just store the two bits we care about in the low bits of the
/// pointer. To handle the packing/unpacking, we make QualType be a
/// simple wrapper class that acts like a smart pointer. A third bit
/// indicates whether there are extended qualifiers present, in which
/// case the pointer points to a special structure.
class QualType {
// Thankfully, these are efficiently composable.
llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
Qualifiers::FastWidth> Value;
const ExtQuals *getExtQualsUnsafe() const {
return Value.getPointer().get<const ExtQuals*>();
}
const Type *getTypePtrUnsafe() const {
return Value.getPointer().get<const Type*>();
}
const ExtQualsTypeCommonBase *getCommonPtr() const {
assert(!isNull() && "Cannot retrieve a NULL type pointer");
uintptr_t CommonPtrVal
= reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
}
friend class QualifierCollector;
public:
QualType() {}
QualType(const Type *Ptr, unsigned Quals)
: Value(Ptr, Quals) {}
QualType(const ExtQuals *Ptr, unsigned Quals)
: Value(Ptr, Quals) {}
unsigned getLocalFastQualifiers() const { return Value.getInt(); }
void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
/// Retrieves a pointer to the underlying (unqualified) type.
/// This should really return a const Type, but it's not worth
/// changing all the users right now.
///
/// This function requires that the type not be NULL. If the type might be
/// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
const Type *getTypePtr() const;
const Type *getTypePtrOrNull() const;
/// Retrieves a pointer to the name of the base type.
const IdentifierInfo *getBaseTypeIdentifier() const;
/// Divides a QualType into its unqualified type and a set of local
/// qualifiers.
SplitQualType split() const;
void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
static QualType getFromOpaquePtr(const void *Ptr) {
QualType T;
T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
return T;
}
const Type &operator*() const {
return *getTypePtr();
}
const Type *operator->() const {
return getTypePtr();
}
bool isCanonical() const;
bool isCanonicalAsParam() const;
/// isNull - Return true if this QualType doesn't point to a type yet.
bool isNull() const {
return Value.getPointer().isNull();
}
/// \brief Determine whether this particular QualType instance has the
/// "const" qualifier set, without looking through typedefs that may have
/// added "const" at a different level.
bool isLocalConstQualified() const {
return (getLocalFastQualifiers() & Qualifiers::Const);
}
/// \brief Determine whether this type is const-qualified.
bool isConstQualified() const;
/// \brief Determine whether this particular QualType instance has the
/// "restrict" qualifier set, without looking through typedefs that may have
/// added "restrict" at a different level.
bool isLocalRestrictQualified() const {
return (getLocalFastQualifiers() & Qualifiers::Restrict);
}
/// \brief Determine whether this type is restrict-qualified.
bool isRestrictQualified() const;
/// \brief Determine whether this particular QualType instance has the
/// "volatile" qualifier set, without looking through typedefs that may have
/// added "volatile" at a different level.
bool isLocalVolatileQualified() const {
return (getLocalFastQualifiers() & Qualifiers::Volatile);
}
/// \brief Determine whether this type is volatile-qualified.
bool isVolatileQualified() const;
/// \brief Determine whether this particular QualType instance has any
/// qualifiers, without looking through any typedefs that might add
/// qualifiers at a different level.
bool hasLocalQualifiers() const {
return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
}
/// \brief Determine whether this type has any qualifiers.
bool hasQualifiers() const;
/// \brief Determine whether this particular QualType instance has any
/// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
/// instance.
bool hasLocalNonFastQualifiers() const {
return Value.getPointer().is<const ExtQuals*>();
}
/// \brief Retrieve the set of qualifiers local to this particular QualType
/// instance, not including any qualifiers acquired through typedefs or
/// other sugar.
Qualifiers getLocalQualifiers() const;
/// \brief Retrieve the set of qualifiers applied to this type.
Qualifiers getQualifiers() const;
/// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
/// local to this particular QualType instance, not including any qualifiers
/// acquired through typedefs or other sugar.
unsigned getLocalCVRQualifiers() const {
return getLocalFastQualifiers();
}
/// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
/// applied to this type.
unsigned getCVRQualifiers() const;
bool isConstant(ASTContext& Ctx) const {
return QualType::isConstant(*this, Ctx);
}
/// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
bool isPODType(ASTContext &Context) const;
/// isCXX11PODType() - Return true if this is a POD type according to the
/// more relaxed rules of the C++11 standard, regardless of the current
/// compilation's language.
/// (C++0x [basic.types]p9)
bool isCXX11PODType(ASTContext &Context) const;
/// isTrivialType - Return true if this is a trivial type
/// (C++0x [basic.types]p9)
bool isTrivialType(ASTContext &Context) const;
/// isTriviallyCopyableType - Return true if this is a trivially
/// copyable type (C++0x [basic.types]p9)
bool isTriviallyCopyableType(ASTContext &Context) const;
// Don't promise in the API that anything besides 'const' can be
// easily added.
/// addConst - add the specified type qualifier to this QualType.
void addConst() {
addFastQualifiers(Qualifiers::Const);
}
QualType withConst() const {
return withFastQualifiers(Qualifiers::Const);
}
/// addVolatile - add the specified type qualifier to this QualType.
void addVolatile() {
addFastQualifiers(Qualifiers::Volatile);
}
QualType withVolatile() const {
return withFastQualifiers(Qualifiers::Volatile);
}
/// Add the restrict qualifier to this QualType.
void addRestrict() {
addFastQualifiers(Qualifiers::Restrict);
}
QualType withRestrict() const {
return withFastQualifiers(Qualifiers::Restrict);
}
QualType withCVRQualifiers(unsigned CVR) const {
return withFastQualifiers(CVR);
}
void addFastQualifiers(unsigned TQs) {
assert(!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!");
Value.setInt(Value.getInt() | TQs);
}
void removeLocalConst();
void removeLocalVolatile();
void removeLocalRestrict();
void removeLocalCVRQualifiers(unsigned Mask);
void removeLocalFastQualifiers() { Value.setInt(0); }
void removeLocalFastQualifiers(unsigned Mask) {
assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
Value.setInt(Value.getInt() & ~Mask);
}
// Creates a type with the given qualifiers in addition to any
// qualifiers already on this type.
QualType withFastQualifiers(unsigned TQs) const {
QualType T = *this;
T.addFastQualifiers(TQs);
return T;
}
// Creates a type with exactly the given fast qualifiers, removing
// any existing fast qualifiers.
QualType withExactLocalFastQualifiers(unsigned TQs) const {
return withoutLocalFastQualifiers().withFastQualifiers(TQs);
}
// Removes fast qualifiers, but leaves any extended qualifiers in place.
QualType withoutLocalFastQualifiers() const {
QualType T = *this;
T.removeLocalFastQualifiers();
return T;
}
QualType getCanonicalType() const;
/// \brief Return this type with all of the instance-specific qualifiers
/// removed, but without removing any qualifiers that may have been applied
/// through typedefs.
QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
/// \brief Retrieve the unqualified variant of the given type,
/// removing as little sugar as possible.
///
/// This routine looks through various kinds of sugar to find the
/// least-desugared type that is unqualified. For example, given:
///
/// \code
/// typedef int Integer;
/// typedef const Integer CInteger;
/// typedef CInteger DifferenceType;
/// \endcode
///
/// Executing \c getUnqualifiedType() on the type \c DifferenceType will
/// desugar until we hit the type \c Integer, which has no qualifiers on it.
///
/// The resulting type might still be qualified if it's an array
/// type. To strip qualifiers even from within an array type, use
/// ASTContext::getUnqualifiedArrayType.
inline QualType getUnqualifiedType() const;
/// getSplitUnqualifiedType - Retrieve the unqualified variant of the
/// given type, removing as little sugar as possible.
///
/// Like getUnqualifiedType(), but also returns the set of
/// qualifiers that were built up.
///
/// The resulting type might still be qualified if it's an array
/// type. To strip qualifiers even from within an array type, use
/// ASTContext::getUnqualifiedArrayType.
inline SplitQualType getSplitUnqualifiedType() const;
/// \brief Determine whether this type is more qualified than the other
/// given type, requiring exact equality for non-CVR qualifiers.
bool isMoreQualifiedThan(QualType Other) const;
/// \brief Determine whether this type is at least as qualified as the other
/// given type, requiring exact equality for non-CVR qualifiers.
bool isAtLeastAsQualifiedAs(QualType Other) const;
QualType getNonReferenceType() const;
/// \brief Determine the type of a (typically non-lvalue) expression with the
/// specified result type.
///
/// This routine should be used for expressions for which the return type is
/// explicitly specified (e.g., in a cast or call) and isn't necessarily
/// an lvalue. It removes a top-level reference (since there are no
/// expressions of reference type) and deletes top-level cvr-qualifiers
/// from non-class types (in C++) or all types (in C).
QualType getNonLValueExprType(ASTContext &Context) const;
/// getDesugaredType - Return the specified type with any "sugar" removed from
/// the type. This takes off typedefs, typeof's etc. If the outer level of
/// the type is already concrete, it returns it unmodified. This is similar
/// to getting the canonical type, but it doesn't remove *all* typedefs. For
/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
/// concrete.
///
/// Qualifiers are left in place.
QualType getDesugaredType(const ASTContext &Context) const {
return getDesugaredType(*this, Context);
}
SplitQualType getSplitDesugaredType() const {
return getSplitDesugaredType(*this);
}
/// \brief Return the specified type with one level of "sugar" removed from
/// the type.
///
/// This routine takes off the first typedef, typeof, etc. If the outer level
/// of the type is already concrete, it returns it unmodified.
QualType getSingleStepDesugaredType(const ASTContext &Context) const;
/// IgnoreParens - Returns the specified type after dropping any
/// outer-level parentheses.
QualType IgnoreParens() const {
if (isa<ParenType>(*this))
return QualType::IgnoreParens(*this);
return *this;
}
/// operator==/!= - Indicate whether the specified types and qualifiers are
/// identical.
friend bool operator==(const QualType &LHS, const QualType &RHS) {
return LHS.Value == RHS.Value;
}
friend bool operator!=(const QualType &LHS, const QualType &RHS) {
return LHS.Value != RHS.Value;
}
std::string getAsString() const {
return getAsString(split());
}
static std::string getAsString(SplitQualType split) {
return getAsString(split.first, split.second);
}
static std::string getAsString(const Type *ty, Qualifiers qs);
std::string getAsString(const PrintingPolicy &Policy) const {
std::string S;
getAsStringInternal(S, Policy);
return S;
}
void getAsStringInternal(std::string &Str,
const PrintingPolicy &Policy) const {
return getAsStringInternal(split(), Str, Policy);
}
static void getAsStringInternal(SplitQualType split, std::string &out,
const PrintingPolicy &policy) {
return getAsStringInternal(split.first, split.second, out, policy);
}
static void getAsStringInternal(const Type *ty, Qualifiers qs,
std::string &out,
const PrintingPolicy &policy);
void dump(const char *s) const;
void dump() const;
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddPointer(getAsOpaquePtr());
}
/// getAddressSpace - Return the address space of this type.
inline unsigned getAddressSpace() const;
/// getObjCGCAttr - Returns gc attribute of this type.
inline Qualifiers::GC getObjCGCAttr() const;
/// isObjCGCWeak true when Type is objc's weak.
bool isObjCGCWeak() const {
return getObjCGCAttr() == Qualifiers::Weak;
}
/// isObjCGCStrong true when Type is objc's strong.
bool isObjCGCStrong() const {
return getObjCGCAttr() == Qualifiers::Strong;
}
/// getObjCLifetime - Returns lifetime attribute of this type.
Qualifiers::ObjCLifetime getObjCLifetime() const {
return getQualifiers().getObjCLifetime();
}
bool hasNonTrivialObjCLifetime() const {
return getQualifiers().hasNonTrivialObjCLifetime();
}
bool hasStrongOrWeakObjCLifetime() const {
return getQualifiers().hasStrongOrWeakObjCLifetime();
}
enum DestructionKind {
DK_none,
DK_cxx_destructor,
DK_objc_strong_lifetime,
DK_objc_weak_lifetime
};
/// isDestructedType - nonzero if objects of this type require
/// non-trivial work to clean up after. Non-zero because it's
/// conceivable that qualifiers (objc_gc(weak)?) could make
/// something require destruction.
DestructionKind isDestructedType() const {
return isDestructedTypeImpl(*this);
}
/// \brief Determine whether expressions of the given type are forbidden
/// from being lvalues in C.
///
/// The expression types that are forbidden to be lvalues are:
/// - 'void', but not qualified void
/// - function types
///
/// The exact rule here is C99 6.3.2.1:
/// An lvalue is an expression with an object type or an incomplete
/// type other than void.
bool isCForbiddenLValueType() const;
/// \brief Determine whether this type has trivial copy/move-assignment
/// semantics.
bool hasTrivialAssignment(ASTContext &Context, bool Copying) const;
private:
// These methods are implemented in a separate translation unit;
// "static"-ize them to avoid creating temporary QualTypes in the
// caller.
static bool isConstant(QualType T, ASTContext& Ctx);
static QualType getDesugaredType(QualType T, const ASTContext &Context);
static SplitQualType getSplitDesugaredType(QualType T);
static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
static QualType IgnoreParens(QualType T);
static DestructionKind isDestructedTypeImpl(QualType type);
};
} // end clang.
namespace llvm {
/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
/// to a specific Type class.
template<> struct simplify_type<const ::clang::QualType> {
typedef const ::clang::Type *SimpleType;
static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
return Val.getTypePtr();
}
};
template<> struct simplify_type< ::clang::QualType>
: public simplify_type<const ::clang::QualType> {};
// Teach SmallPtrSet that QualType is "basically a pointer".
template<>
class PointerLikeTypeTraits<clang::QualType> {
public:
static inline void *getAsVoidPointer(clang::QualType P) {
return P.getAsOpaquePtr();
}
static inline clang::QualType getFromVoidPointer(void *P) {
return clang::QualType::getFromOpaquePtr(P);
}
// Various qualifiers go in low bits.
enum { NumLowBitsAvailable = 0 };
};
} // end namespace llvm
namespace clang {
/// \brief Base class that is common to both the \c ExtQuals and \c Type
/// classes, which allows \c QualType to access the common fields between the
/// two.
///
class ExtQualsTypeCommonBase {
ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
: BaseType(baseType), CanonicalType(canon) {}
/// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
/// a self-referential pointer (for \c Type).
///
/// This pointer allows an efficient mapping from a QualType to its
/// underlying type pointer.
const Type *const BaseType;
/// \brief The canonical type of this type. A QualType.
QualType CanonicalType;
friend class QualType;
friend class Type;
friend class ExtQuals;
};
/// ExtQuals - We can encode up to four bits in the low bits of a
/// type pointer, but there are many more type qualifiers that we want
/// to be able to apply to an arbitrary type. Therefore we have this
/// struct, intended to be heap-allocated and used by QualType to
/// store qualifiers.
///
/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
/// in three low bits on the QualType pointer; a fourth bit records whether
/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
/// Objective-C GC attributes) are much more rare.
class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
// NOTE: changing the fast qualifiers should be straightforward as
// long as you don't make 'const' non-fast.
// 1. Qualifiers:
// a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
// Fast qualifiers must occupy the low-order bits.
// b) Update Qualifiers::FastWidth and FastMask.
// 2. QualType:
// a) Update is{Volatile,Restrict}Qualified(), defined inline.
// b) Update remove{Volatile,Restrict}, defined near the end of
// this header.
// 3. ASTContext:
// a) Update get{Volatile,Restrict}Type.
/// Quals - the immutable set of qualifiers applied by this
/// node; always contains extended qualifiers.
Qualifiers Quals;
ExtQuals *this_() { return this; }
public:
ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
: ExtQualsTypeCommonBase(baseType,
canon.isNull() ? QualType(this_(), 0) : canon),
Quals(quals)
{
assert(Quals.hasNonFastQualifiers()
&& "ExtQuals created with no fast qualifiers");
assert(!Quals.hasFastQualifiers()
&& "ExtQuals created with fast qualifiers");
}
Qualifiers getQualifiers() const { return Quals; }
bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
Qualifiers::ObjCLifetime getObjCLifetime() const {
return Quals.getObjCLifetime();
}
bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
const Type *getBaseType() const { return BaseType; }
public:
void Profile(llvm::FoldingSetNodeID &ID) const {
Profile(ID, getBaseType(), Quals);
}
static void Profile(llvm::FoldingSetNodeID &ID,
const Type *BaseType,
Qualifiers Quals) {
assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
ID.AddPointer(BaseType);
Quals.Profile(ID);
}
};
/// \brief The kind of C++0x ref-qualifier associated with a function type,
/// which determines whether a member function's "this" object can be an
/// lvalue, rvalue, or neither.
enum RefQualifierKind {
/// \brief No ref-qualifier was provided.
RQ_None = 0,
/// \brief An lvalue ref-qualifier was provided (\c &).
RQ_LValue,
/// \brief An rvalue ref-qualifier was provided (\c &&).
RQ_RValue
};
/// Type - This is the base class of the type hierarchy. A central concept
/// with types is that each type always has a canonical type. A canonical type
/// is the type with any typedef names stripped out of it or the types it
/// references. For example, consider:
///
/// typedef int foo;
/// typedef foo* bar;
/// 'int *' 'foo *' 'bar'
///
/// There will be a Type object created for 'int'. Since int is canonical, its
/// canonicaltype pointer points to itself. There is also a Type for 'foo' (a
/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
/// there is a PointerType that represents 'int*', which, like 'int', is
/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
/// is also 'int*'.
///
/// Non-canonical types are useful for emitting diagnostics, without losing
/// information about typedefs being used. Canonical types are useful for type
/// comparisons (they allow by-pointer equality tests) and useful for reasoning
/// about whether something has a particular form (e.g. is a function type),
/// because they implicitly, recursively, strip all typedefs out of a type.
///
/// Types, once created, are immutable.
///
class Type : public ExtQualsTypeCommonBase {
public:
enum TypeClass {
#define TYPE(Class, Base) Class,
#define LAST_TYPE(Class) TypeLast = Class,
#define ABSTRACT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.def"
TagFirst = Record, TagLast = Enum
};
private:
Type(const Type&); // DO NOT IMPLEMENT.
void operator=(const Type&); // DO NOT IMPLEMENT.
/// Bitfields required by the Type class.
class TypeBitfields {
friend class Type;
template <class T> friend class TypePropertyCache;
/// TypeClass bitfield - Enum that specifies what subclass this belongs to.
unsigned TC : 8;
/// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
/// Note that this should stay at the end of the ivars for Type so that
/// subclasses can pack their bitfields into the same word.
unsigned Dependent : 1;
/// \brief Whether this type somehow involves a template parameter, even
/// if the resolution of the type does not depend on a template parameter.
unsigned InstantiationDependent : 1;
/// \brief Whether this type is a variably-modified type (C99 6.7.5).
unsigned VariablyModified : 1;
/// \brief Whether this type contains an unexpanded parameter pack
/// (for C++0x variadic templates).
unsigned ContainsUnexpandedParameterPack : 1;
/// \brief Nonzero if the cache (i.e. the bitfields here starting
/// with 'Cache') is valid. If so, then this is a
/// LangOptions::VisibilityMode+1.
mutable unsigned CacheValidAndVisibility : 2;
/// \brief True if the visibility was set explicitly in the source code.
mutable unsigned CachedExplicitVisibility : 1;
/// \brief Linkage of this type.
mutable unsigned CachedLinkage : 2;
/// \brief Whether this type involves and local or unnamed types.
mutable unsigned CachedLocalOrUnnamed : 1;
/// \brief FromAST - Whether this type comes from an AST file.
mutable unsigned FromAST : 1;
bool isCacheValid() const {
return (CacheValidAndVisibility != 0);
}
Visibility getVisibility() const {
assert(isCacheValid() && "getting linkage from invalid cache");
return static_cast<Visibility>(CacheValidAndVisibility-1);
}
bool isVisibilityExplicit() const {
assert(isCacheValid() && "getting linkage from invalid cache");
return CachedExplicitVisibility;
}
Linkage getLinkage() const {
assert(isCacheValid() && "getting linkage from invalid cache");
return static_cast<Linkage>(CachedLinkage);
}
bool hasLocalOrUnnamedType() const {
assert(isCacheValid() && "getting linkage from invalid cache");
return CachedLocalOrUnnamed;
}
};
enum { NumTypeBits = 19 };
protected:
// These classes allow subclasses to somewhat cleanly pack bitfields
// into Type.
class ArrayTypeBitfields {
friend class ArrayType;
unsigned : NumTypeBits;
/// IndexTypeQuals - CVR qualifiers from declarations like
/// 'int X[static restrict 4]'. For function parameters only.
unsigned IndexTypeQuals : 3;
/// SizeModifier - storage class qualifiers from declarations like
/// 'int X[static restrict 4]'. For function parameters only.
/// Actually an ArrayType::ArraySizeModifier.
unsigned SizeModifier : 3;
};
class BuiltinTypeBitfields {
friend class BuiltinType;
unsigned : NumTypeBits;
/// The kind (BuiltinType::Kind) of builtin type this is.
unsigned Kind : 8;
};
class FunctionTypeBitfields {
friend class FunctionType;
unsigned : NumTypeBits;
/// Extra information which affects how the function is called, like
/// regparm and the calling convention.
unsigned ExtInfo : 8;
/// Whether the function is variadic. Only used by FunctionProtoType.
unsigned Variadic : 1;
/// TypeQuals - Used only by FunctionProtoType, put here to pack with the
/// other bitfields.
/// The qualifiers are part of FunctionProtoType because...
///
/// C++ 8.3.5p4: The return type, the parameter type list and the
/// cv-qualifier-seq, [...], are part of the function type.
unsigned TypeQuals : 3;
/// \brief The ref-qualifier associated with a \c FunctionProtoType.
///
/// This is a value of type \c RefQualifierKind.
unsigned RefQualifier : 2;
};
class ObjCObjectTypeBitfields {
friend class ObjCObjectType;
unsigned : NumTypeBits;
/// NumProtocols - The number of protocols stored directly on this
/// object type.
unsigned NumProtocols : 32 - NumTypeBits;
};
class ReferenceTypeBitfields {
friend class ReferenceType;
unsigned : NumTypeBits;
/// True if the type was originally spelled with an lvalue sigil.
/// This is never true of rvalue references but can also be false
/// on lvalue references because of C++0x [dcl.typedef]p9,
/// as follows:
///
/// typedef int &ref; // lvalue, spelled lvalue
/// typedef int &&rvref; // rvalue
/// ref &a; // lvalue, inner ref, spelled lvalue
/// ref &&a; // lvalue, inner ref
/// rvref &a; // lvalue, inner ref, spelled lvalue
/// rvref &&a; // rvalue, inner ref
unsigned SpelledAsLValue : 1;
/// True if the inner type is a reference type. This only happens
/// in non-canonical forms.
unsigned InnerRef : 1;
};
class TypeWithKeywordBitfields {
friend class TypeWithKeyword;
unsigned : NumTypeBits;
/// An ElaboratedTypeKeyword. 8 bits for efficient access.
unsigned Keyword : 8;
};
class VectorTypeBitfields {
friend class VectorType;
unsigned : NumTypeBits;
/// VecKind - The kind of vector, either a generic vector type or some
/// target-specific vector type such as for AltiVec or Neon.
unsigned VecKind : 3;
/// NumElements - The number of elements in the vector.
unsigned NumElements : 29 - NumTypeBits;
};
class AttributedTypeBitfields {
friend class AttributedType;
unsigned : NumTypeBits;
/// AttrKind - an AttributedType::Kind
unsigned AttrKind : 32 - NumTypeBits;
};
union {
TypeBitfields TypeBits;
ArrayTypeBitfields ArrayTypeBits;
AttributedTypeBitfields AttributedTypeBits;
BuiltinTypeBitfields BuiltinTypeBits;
FunctionTypeBitfields FunctionTypeBits;
ObjCObjectTypeBitfields ObjCObjectTypeBits;
ReferenceTypeBitfields ReferenceTypeBits;
TypeWithKeywordBitfields TypeWithKeywordBits;
VectorTypeBitfields VectorTypeBits;
};
private:
/// \brief Set whether this type comes from an AST file.
void setFromAST(bool V = true) const {
TypeBits.FromAST = V;
}
template <class T> friend class TypePropertyCache;
protected:
// silence VC++ warning C4355: 'this' : used in base member initializer list
Type *this_() { return this; }
Type(TypeClass tc, QualType canon, bool Dependent,
bool InstantiationDependent, bool VariablyModified,
bool ContainsUnexpandedParameterPack)
: ExtQualsTypeCommonBase(this,
canon.isNull() ? QualType(this_(), 0) : canon) {
TypeBits.TC = tc;
TypeBits.Dependent = Dependent;
TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
TypeBits.VariablyModified = VariablyModified;
TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
TypeBits.CacheValidAndVisibility = 0;
TypeBits.CachedExplicitVisibility = false;
TypeBits.CachedLocalOrUnnamed = false;
TypeBits.CachedLinkage = NoLinkage;
TypeBits.FromAST = false;
}
friend class ASTContext;
void setDependent(bool D = true) {
TypeBits.Dependent = D;
if (D)
TypeBits.InstantiationDependent = true;
}
void setInstantiationDependent(bool D = true) {
TypeBits.InstantiationDependent = D; }
void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
}
void setContainsUnexpandedParameterPack(bool PP = true) {
TypeBits.ContainsUnexpandedParameterPack = PP;
}
public:
TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
/// \brief Whether this type comes from an AST file.
bool isFromAST() const { return TypeBits.FromAST; }
/// \brief Whether this type is or contains an unexpanded parameter
/// pack, used to support C++0x variadic templates.
///
/// A type that contains a parameter pack shall be expanded by the
/// ellipsis operator at some point. For example, the typedef in the
/// following example contains an unexpanded parameter pack 'T':
///
/// \code
/// template<typename ...T>
/// struct X {
/// typedef T* pointer_types; // ill-formed; T is a parameter pack.
/// };
/// \endcode
///
/// Note that this routine does not specify which
bool containsUnexpandedParameterPack() const {
return TypeBits.ContainsUnexpandedParameterPack;
}
/// Determines if this type would be canonical if it had no further
/// qualification.
bool isCanonicalUnqualified() const {
return CanonicalType == QualType(this, 0);
}
/// Types are partitioned into 3 broad categories (C99 6.2.5p1):
/// object types, function types, and incomplete types.
/// isIncompleteType - Return true if this is an incomplete type.
/// A type that can describe objects, but which lacks information needed to
/// determine its size (e.g. void, or a fwd declared struct). Clients of this
/// routine will need to determine if the size is actually required.
///
/// \brief Def If non-NULL, and the type refers to some kind of declaration
/// that can be completed (such as a C struct, C++ class, or Objective-C
/// class), will be set to the declaration.
bool isIncompleteType(NamedDecl **Def = 0) const;
/// isIncompleteOrObjectType - Return true if this is an incomplete or object
/// type, in other words, not a function type.
bool isIncompleteOrObjectType() const {
return !isFunctionType();
}
/// \brief Determine whether this type is an object type.
bool isObjectType() const {
// C++ [basic.types]p8:
// An object type is a (possibly cv-qualified) type that is not a
// function type, not a reference type, and not a void type.
return !isReferenceType() && !isFunctionType() && !isVoidType();
}
/// isLiteralType - Return true if this is a literal type
/// (C++0x [basic.types]p10)
bool isLiteralType() const;
/// \brief Test if this type is a standard-layout type.
/// (C++0x [basic.type]p9)
bool isStandardLayoutType() const;
/// Helper methods to distinguish type categories. All type predicates
/// operate on the canonical type, ignoring typedefs and qualifiers.
/// isBuiltinType - returns true if the type is a builtin type.
bool isBuiltinType() const;
/// isSpecificBuiltinType - Test for a particular builtin type.
bool isSpecificBuiltinType(unsigned K) const;
/// isPlaceholderType - Test for a type which does not represent an
/// actual type-system type but is instead used as a placeholder for
/// various convenient purposes within Clang. All such types are
/// BuiltinTypes.
bool isPlaceholderType() const;
const BuiltinType *getAsPlaceholderType() const;
/// isSpecificPlaceholderType - Test for a specific placeholder type.
bool isSpecificPlaceholderType(unsigned K) const;
/// isNonOverloadPlaceholderType - Test for a placeholder type
/// other than Overload; see BuiltinType::isNonOverloadPlaceholderType.
bool isNonOverloadPlaceholderType() const;
/// isIntegerType() does *not* include complex integers (a GCC extension).
/// isComplexIntegerType() can be used to test for complex integers.
bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
bool isEnumeralType() const;
bool isBooleanType() const;
bool isCharType() const;
bool isWideCharType() const;
bool isChar16Type() const;
bool isChar32Type() const;
bool isAnyCharacterType() const;
bool isIntegralType(ASTContext &Ctx) const;
/// \brief Determine whether this type is an integral or enumeration type.
bool isIntegralOrEnumerationType() const;
/// \brief Determine whether this type is an integral or unscoped enumeration
/// type.
bool isIntegralOrUnscopedEnumerationType() const;
/// Floating point categories.
bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
/// isComplexType() does *not* include complex integers (a GCC extension).
/// isComplexIntegerType() can be used to test for complex integers.
bool isComplexType() const; // C99 6.2.5p11 (complex)
bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
bool isVoidType() const; // C99 6.2.5p19
bool isDerivedType() const; // C99 6.2.5p20
bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
bool isAggregateType() const;
bool isFundamentalType() const;
bool isCompoundType() const;
// Type Predicates: Check to see if this type is structurally the specified
// type, ignoring typedefs and qualifiers.
bool isFunctionType() const;
bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
bool isPointerType() const;
bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
bool isBlockPointerType() const;
bool isVoidPointerType() const;
bool isReferenceType() const;
bool isLValueReferenceType() const;
bool isRValueReferenceType() const;
bool isFunctionPointerType() const;
bool isMemberPointerType() const;
bool isMemberFunctionPointerType() const;
bool isMemberDataPointerType() const;
bool isArrayType() const;
bool isConstantArrayType() const;
bool isIncompleteArrayType() const;
bool isVariableArrayType() const;
bool isDependentSizedArrayType() const;
bool isRecordType() const;
bool isClassType() const;
bool isStructureType() const;
bool isStructureOrClassType() const;
bool isUnionType() const;
bool isComplexIntegerType() const; // GCC _Complex integer type.
bool isVectorType() const; // GCC vector type.
bool isExtVectorType() const; // Extended vector type.
bool isObjCObjectPointerType() const; // pointer to ObjC object
bool isObjCRetainableType() const; // ObjC object or block pointer
bool isObjCLifetimeType() const; // (array of)* retainable type
bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
bool isObjCNSObjectType() const; // __attribute__((NSObject))
// FIXME: change this to 'raw' interface type, so we can used 'interface' type
// for the common case.
bool isObjCObjectType() const; // NSString or typeof(*(id)0)
bool isObjCQualifiedInterfaceType() const; // NSString<foo>
bool isObjCQualifiedIdType() const; // id<foo>
bool isObjCQualifiedClassType() const; // Class<foo>
bool isObjCObjectOrInterfaceType() const;
bool isObjCIdType() const; // id
bool isObjCClassType() const; // Class
bool isObjCSelType() const; // Class
bool isObjCBuiltinType() const; // 'id' or 'Class'
bool isObjCARCBridgableType() const;
bool isCARCBridgableType() const;
bool isTemplateTypeParmType() const; // C++ template type parameter
bool isNullPtrType() const; // C++0x nullptr_t
bool isAtomicType() const; // C11 _Atomic()
/// Determines if this type, which must satisfy
/// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
/// than implicitly __strong.
bool isObjCARCImplicitlyUnretainedType() const;
/// Return the implicit lifetime for this type, which must not be dependent.
Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
enum ScalarTypeKind {
STK_CPointer,
STK_BlockPointer,
STK_ObjCObjectPointer,
STK_MemberPointer,
STK_Bool,
STK_Integral,
STK_Floating,
STK_IntegralComplex,
STK_FloatingComplex
};
/// getScalarTypeKind - Given that this is a scalar type, classify it.
ScalarTypeKind getScalarTypeKind() const;
/// isDependentType - Whether this type is a dependent type, meaning
/// that its definition somehow depends on a template parameter
/// (C++ [temp.dep.type]).
bool isDependentType() const { return TypeBits.Dependent; }
/// \brief Determine whether this type is an instantiation-dependent type,
/// meaning that the type involves a template parameter (even if the
/// definition does not actually depend on the type substituted for that
/// template parameter).
bool isInstantiationDependentType() const {
return TypeBits.InstantiationDependent;
}
/// \brief Whether this type is a variably-modified type (C99 6.7.5).
bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
/// \brief Whether this type involves a variable-length array type
/// with a definite size.
bool hasSizedVLAType() const;
/// \brief Whether this type is or contains a local or unnamed type.
bool hasUnnamedOrLocalType() const;
bool isOverloadableType() const;
/// \brief Determine wither this type is a C++ elaborated-type-specifier.
bool isElaboratedTypeSpecifier() const;
bool canDecayToPointerType() const;
/// hasPointerRepresentation - Whether this type is represented
/// natively as a pointer; this includes pointers, references, block
/// pointers, and Objective-C interface, qualified id, and qualified
/// interface types, as well as nullptr_t.
bool hasPointerRepresentation() const;
/// hasObjCPointerRepresentation - Whether this type can represent
/// an objective pointer type for the purpose of GC'ability
bool hasObjCPointerRepresentation() const;
/// \brief Determine whether this type has an integer representation
/// of some sort, e.g., it is an integer type or a vector.
bool hasIntegerRepresentation() const;
/// \brief Determine whether this type has an signed integer representation
/// of some sort, e.g., it is an signed integer type or a vector.
bool hasSignedIntegerRepresentation() const;
/// \brief Determine whether this type has an unsigned integer representation
/// of some sort, e.g., it is an unsigned integer type or a vector.
bool hasUnsignedIntegerRepresentation() const;
/// \brief Determine whether this type has a floating-point representation
/// of some sort, e.g., it is a floating-point type or a vector thereof.
bool hasFloatingRepresentation() const;
// Type Checking Functions: Check to see if this type is structurally the
// specified type, ignoring typedefs and qualifiers, and return a pointer to
// the best type we can.
const RecordType *getAsStructureType() const;
/// NOTE: getAs*ArrayType are methods on ASTContext.
const RecordType *getAsUnionType() const;
const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
// The following is a convenience method that returns an ObjCObjectPointerType
// for object declared using an interface.
const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
/// \brief Retrieves the CXXRecordDecl that this type refers to, either
/// because the type is a RecordType or because it is the injected-class-name
/// type of a class template or class template partial specialization.
CXXRecordDecl *getAsCXXRecordDecl() const;
/// \brief Get the AutoType whose type will be deduced for a variable with
/// an initializer of this type. This looks through declarators like pointer
/// types, but not through decltype or typedefs.
AutoType *getContainedAutoType() const;
/// Member-template getAs<specific type>'. Look through sugar for
/// an instance of <specific type>. This scheme will eventually
/// replace the specific getAsXXXX methods above.
///
/// There are some specializations of this member template listed
/// immediately following this class.
template <typename T> const T *getAs() const;
/// A variant of getAs<> for array types which silently discards
/// qualifiers from the outermost type.
const ArrayType *getAsArrayTypeUnsafe() const;
/// Member-template castAs<specific type>. Look through sugar for
/// the underlying instance of <specific type>.
///
/// This method has the same relationship to getAs<T> as cast<T> has
/// to dyn_cast<T>; which is to say, the underlying type *must*
/// have the intended type, and this method will never return null.
template <typename T> const T *castAs() const;
/// A variant of castAs<> for array type which silently discards
/// qualifiers from the outermost type.
const ArrayType *castAsArrayTypeUnsafe() const;
/// getBaseElementTypeUnsafe - Get the base element type of this
/// type, potentially discarding type qualifiers. This method
/// should never be used when type qualifiers are meaningful.
const Type *getBaseElementTypeUnsafe() const;
/// getArrayElementTypeNoTypeQual - If this is an array type, return the
/// element type of the array, potentially with type qualifiers missing.
/// This method should never be used when type qualifiers are meaningful.
const Type *getArrayElementTypeNoTypeQual() const;
/// getPointeeType - If this is a pointer, ObjC object pointer, or block
/// pointer, this returns the respective pointee.
QualType getPointeeType() const;
/// getUnqualifiedDesugaredType() - Return the specified type with
/// any "sugar" removed from the type, removing any typedefs,
/// typeofs, etc., as well as any qualifiers.
const Type *getUnqualifiedDesugaredType() const;
/// More type predicates useful for type checking/promotion
bool isPromotableIntegerType() const; // C99 6.3.1.1p2
/// isSignedIntegerType - Return true if this is an integer type that is
/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
/// or an enum decl which has a signed representation.
bool isSignedIntegerType() const;
/// isUnsignedIntegerType - Return true if this is an integer type that is
/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
/// or an enum decl which has an unsigned representation.
bool isUnsignedIntegerType() const;
/// Determines whether this is an integer type that is signed or an
/// enumeration types whose underlying type is a signed integer type.
bool isSignedIntegerOrEnumerationType() const;
/// Determines whether this is an integer type that is unsigned or an
/// enumeration types whose underlying type is a unsigned integer type.
bool isUnsignedIntegerOrEnumerationType() const;
/// isConstantSizeType - Return true if this is not a variable sized type,
/// according to the rules of C99 6.7.5p3. It is not legal to call this on
/// incomplete types.
bool isConstantSizeType() const;
/// isSpecifierType - Returns true if this type can be represented by some
/// set of type specifiers.
bool isSpecifierType() const;
/// \brief Determine the linkage of this type.
Linkage getLinkage() const;
/// \brief Determine the visibility of this type.
Visibility getVisibility() const;
/// \brief Return true if the visibility was explicitly set is the code.
bool isVisibilityExplicit() const;
/// \brief Determine the linkage and visibility of this type.
std::pair<Linkage,Visibility> getLinkageAndVisibility() const;
/// \brief Note that the linkage is no longer known.
void ClearLinkageCache();
const char *getTypeClassName() const;
QualType getCanonicalTypeInternal() const {
return CanonicalType;
}
CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
void dump() const;
static bool classof(const Type *) { return true; }
friend class ASTReader;
friend class ASTWriter;
};
template <> inline const TypedefType *Type::getAs() const {
return dyn_cast<TypedefType>(this);
}
// We can do canonical leaf types faster, because we don't have to
// worry about preserving child type decoration.
#define TYPE(Class, Base)
#define LEAF_TYPE(Class) \
template <> inline const Class##Type *Type::getAs() const { \
return dyn_cast<Class##Type>(CanonicalType); \
} \
template <> inline const Class##Type *Type::castAs() const { \
return cast<Class##Type>(CanonicalType); \
}
#include "clang/AST/TypeNodes.def"
/// BuiltinType - This class is used for builtin types like 'int'. Builtin
/// types are always canonical and have a literal name field.
class BuiltinType : public Type {
public:
enum Kind {
#define BUILTIN_TYPE(Id, SingletonId) Id,
#define LAST_BUILTIN_TYPE(Id) LastKind = Id
#include "clang/AST/BuiltinTypes.def"
};
public:
BuiltinType(Kind K)
: Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
/*InstantiationDependent=*/(K == Dependent),
/*VariablyModified=*/false,
/*Unexpanded paramter pack=*/false) {
BuiltinTypeBits.Kind = K;
}
Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
const char *getName(const PrintingPolicy &Policy) const;
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
bool isInteger() const {
return getKind() >= Bool && getKind() <= Int128;
}
bool isSignedInteger() const {
return getKind() >= Char_S && getKind() <= Int128;
}
bool isUnsignedInteger() const {
return getKind() >= Bool && getKind() <= UInt128;
}
bool isFloatingPoint() const {
return getKind() >= Half && getKind() <= LongDouble;
}
/// Determines whether the given kind corresponds to a placeholder type.
static bool isPlaceholderTypeKind(Kind K) {
return K >= Overload;
}
/// Determines whether this type is a placeholder type, i.e. a type
/// which cannot appear in arbitrary positions in a fully-formed
/// expression.
bool isPlaceholderType() const {
return isPlaceholderTypeKind(getKind());
}
/// Determines whether this type is a placeholder type other than
/// Overload. Most placeholder types require only syntactic
/// information about their context in order to be resolved (e.g.
/// whether it is a call expression), which means they can (and
/// should) be resolved in an earlier "phase" of analysis.
/// Overload expressions sometimes pick up further information
/// from their context, like whether the context expects a
/// specific function-pointer type, and so frequently need
/// special treatment.
bool isNonOverloadPlaceholderType() const {
return getKind() > Overload;
}
static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
static bool classof(const BuiltinType *) { return true; }
};
/// ComplexType - C99 6.2.5p11 - Complex values. This supports the C99 complex
/// types (_Complex float etc) as well as the GCC integer complex extensions.
///
class ComplexType : public Type, public llvm::FoldingSetNode {
QualType ElementType;
ComplexType(QualType Element, QualType CanonicalPtr) :
Type(Complex, CanonicalPtr, Element->isDependentType(),
Element->isInstantiationDependentType(),
Element->isVariablyModifiedType(),
Element->containsUnexpandedParameterPack()),
ElementType(Element) {
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getElementType() const { return ElementType; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getElementType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
ID.AddPointer(Element.getAsOpaquePtr());
}
static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
static bool classof(const ComplexType *) { return true; }
};
/// ParenType - Sugar for parentheses used when specifying types.
///
class ParenType : public Type, public llvm::FoldingSetNode {
QualType Inner;
ParenType(QualType InnerType, QualType CanonType) :
Type(Paren, CanonType, InnerType->isDependentType(),
InnerType->isInstantiationDependentType(),
InnerType->isVariablyModifiedType(),
InnerType->containsUnexpandedParameterPack()),
Inner(InnerType) {
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getInnerType() const { return Inner; }
bool isSugared() const { return true; }
QualType desugar() const { return getInnerType(); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getInnerType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
Inner.Profile(ID);
}
static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
static bool classof(const ParenType *) { return true; }
};
/// PointerType - C99 6.7.5.1 - Pointer Declarators.
///
class PointerType : public Type, public llvm::FoldingSetNode {
QualType PointeeType;
PointerType(QualType Pointee, QualType CanonicalPtr) :
Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
Pointee->isInstantiationDependentType(),
Pointee->isVariablyModifiedType(),
Pointee->containsUnexpandedParameterPack()),
PointeeType(Pointee) {
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getPointeeType() const { return PointeeType; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPointeeType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
ID.AddPointer(Pointee.getAsOpaquePtr());
}
static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
static bool classof(const PointerType *) { return true; }
};
/// BlockPointerType - pointer to a block type.
/// This type is to represent types syntactically represented as
/// "void (^)(int)", etc. Pointee is required to always be a function type.
///
class BlockPointerType : public Type, public llvm::FoldingSetNode {
QualType PointeeType; // Block is some kind of pointer type
BlockPointerType(QualType Pointee, QualType CanonicalCls) :
Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
Pointee->isInstantiationDependentType(),
Pointee->isVariablyModifiedType(),
Pointee->containsUnexpandedParameterPack()),
PointeeType(Pointee) {
}
friend class ASTContext; // ASTContext creates these.
public:
// Get the pointee type. Pointee is required to always be a function type.
QualType getPointeeType() const { return PointeeType; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPointeeType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
ID.AddPointer(Pointee.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == BlockPointer;
}
static bool classof(const BlockPointerType *) { return true; }
};
/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
///
class ReferenceType : public Type, public llvm::FoldingSetNode {
QualType PointeeType;
protected:
ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
bool SpelledAsLValue) :
Type(tc, CanonicalRef, Referencee->isDependentType(),
Referencee->isInstantiationDependentType(),
Referencee->isVariablyModifiedType(),
Referencee->containsUnexpandedParameterPack()),
PointeeType(Referencee)
{
ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
}
public:
bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
QualType getPointeeTypeAsWritten() const { return PointeeType; }
QualType getPointeeType() const {
// FIXME: this might strip inner qualifiers; okay?
const ReferenceType *T = this;
while (T->isInnerRef())
T = T->PointeeType->castAs<ReferenceType>();
return T->PointeeType;
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, PointeeType, isSpelledAsLValue());
}
static void Profile(llvm::FoldingSetNodeID &ID,
QualType Referencee,
bool SpelledAsLValue) {
ID.AddPointer(Referencee.getAsOpaquePtr());
ID.AddBoolean(SpelledAsLValue);
}
static bool classof(const Type *T) {
return T->getTypeClass() == LValueReference ||
T->getTypeClass() == RValueReference;
}
static bool classof(const ReferenceType *) { return true; }
};
/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
///
class LValueReferenceType : public ReferenceType {
LValueReferenceType(QualType Referencee, QualType CanonicalRef,
bool SpelledAsLValue) :
ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
{}
friend class ASTContext; // ASTContext creates these
public:
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == LValueReference;
}
static bool classof(const LValueReferenceType *) { return true; }
};
/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
///
class RValueReferenceType : public ReferenceType {
RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
}
friend class ASTContext; // ASTContext creates these
public:
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == RValueReference;
}
static bool classof(const RValueReferenceType *) { return true; }
};
/// MemberPointerType - C++ 8.3.3 - Pointers to members
///
class MemberPointerType : public Type, public llvm::FoldingSetNode {
QualType PointeeType;
/// The class of which the pointee is a member. Must ultimately be a
/// RecordType, but could be a typedef or a template parameter too.
const Type *Class;
MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
Type(MemberPointer, CanonicalPtr,
Cls->isDependentType() || Pointee->isDependentType(),
(Cls->isInstantiationDependentType() ||
Pointee->isInstantiationDependentType()),
Pointee->isVariablyModifiedType(),
(Cls->containsUnexpandedParameterPack() ||
Pointee->containsUnexpandedParameterPack())),
PointeeType(Pointee), Class(Cls) {
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getPointeeType() const { return PointeeType; }
/// Returns true if the member type (i.e. the pointee type) is a
/// function type rather than a data-member type.
bool isMemberFunctionPointer() const {
return PointeeType->isFunctionProtoType();
}
/// Returns true if the member type (i.e. the pointee type) is a
/// data type rather than a function type.
bool isMemberDataPointer() const {
return !PointeeType->isFunctionProtoType();
}
const Type *getClass() const { return Class; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPointeeType(), getClass());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
const Type *Class) {
ID.AddPointer(Pointee.getAsOpaquePtr());
ID.AddPointer(Class);
}
static bool classof(const Type *T) {
return T->getTypeClass() == MemberPointer;
}
static bool classof(const MemberPointerType *) { return true; }
};
/// ArrayType - C99 6.7.5.2 - Array Declarators.
///
class ArrayType : public Type, public llvm::FoldingSetNode {
public:
/// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
/// an array with a static size (e.g. int X[static 4]), or an array
/// with a star size (e.g. int X[*]).
/// 'static' is only allowed on function parameters.
enum ArraySizeModifier {
Normal, Static, Star
};
private:
/// ElementType - The element type of the array.
QualType ElementType;
protected:
// C++ [temp.dep.type]p1:
// A type is dependent if it is...
// - an array type constructed from any dependent type or whose
// size is specified by a constant expression that is
// value-dependent,
ArrayType(TypeClass tc, QualType et, QualType can,
ArraySizeModifier sm, unsigned tq,
bool ContainsUnexpandedParameterPack)
: Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
et->isInstantiationDependentType() || tc == DependentSizedArray,
(tc == VariableArray || et->isVariablyModifiedType()),
ContainsUnexpandedParameterPack),
ElementType(et) {
ArrayTypeBits.IndexTypeQuals = tq;
ArrayTypeBits.SizeModifier = sm;
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getElementType() const { return ElementType; }
ArraySizeModifier getSizeModifier() const {
return ArraySizeModifier(ArrayTypeBits.SizeModifier);
}
Qualifiers getIndexTypeQualifiers() const {
return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
}
unsigned getIndexTypeCVRQualifiers() const {
return ArrayTypeBits.IndexTypeQuals;
}
static bool classof(const Type *T) {
return T->getTypeClass() == ConstantArray ||
T->getTypeClass() == VariableArray ||
T->getTypeClass() == IncompleteArray ||
T->getTypeClass() == DependentSizedArray;
}
static bool classof(const ArrayType *) { return true; }
};
/// ConstantArrayType - This class represents the canonical version of
/// C arrays with a specified constant size. For example, the canonical
/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
/// type is 'int' and the size is 404.
class ConstantArrayType : public ArrayType {
llvm::APInt Size; // Allows us to unique the type.
ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
ArraySizeModifier sm, unsigned tq)
: ArrayType(ConstantArray, et, can, sm, tq,
et->containsUnexpandedParameterPack()),
Size(size) {}
protected:
ConstantArrayType(TypeClass tc, QualType et, QualType can,
const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
: ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
Size(size) {}
friend class ASTContext; // ASTContext creates these.
public:
const llvm::APInt &getSize() const { return Size; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
/// \brief Determine the number of bits required to address a member of
// an array with the given element type and number of elements.
static unsigned getNumAddressingBits(ASTContext &Context,
QualType ElementType,
const llvm::APInt &NumElements);
/// \brief Determine the maximum number of active bits that an array's size
/// can require, which limits the maximum size of the array.
static unsigned getMaxSizeBits(ASTContext &Context);
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getElementType(), getSize(),
getSizeModifier(), getIndexTypeCVRQualifiers());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
unsigned TypeQuals) {
ID.AddPointer(ET.getAsOpaquePtr());
ID.AddInteger(ArraySize.getZExtValue());
ID.AddInteger(SizeMod);
ID.AddInteger(TypeQuals);
}
static bool classof(const Type *T) {
return T->getTypeClass() == ConstantArray;
}
static bool classof(const ConstantArrayType *) { return true; }
};
/// IncompleteArrayType - This class represents C arrays with an unspecified
/// size. For example 'int A[]' has an IncompleteArrayType where the element
/// type is 'int' and the size is unspecified.
class IncompleteArrayType : public ArrayType {
IncompleteArrayType(QualType et, QualType can,
ArraySizeModifier sm, unsigned tq)
: ArrayType(IncompleteArray, et, can, sm, tq,
et->containsUnexpandedParameterPack()) {}
friend class ASTContext; // ASTContext creates these.
public:
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == IncompleteArray;
}
static bool classof(const IncompleteArrayType *) { return true; }
friend class StmtIteratorBase;
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getElementType(), getSizeModifier(),
getIndexTypeCVRQualifiers());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
ArraySizeModifier SizeMod, unsigned TypeQuals) {
ID.AddPointer(ET.getAsOpaquePtr());
ID.AddInteger(SizeMod);
ID.AddInteger(TypeQuals);
}
};
/// VariableArrayType - This class represents C arrays with a specified size
/// which is not an integer-constant-expression. For example, 'int s[x+foo()]'.
/// Since the size expression is an arbitrary expression, we store it as such.
///
/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
/// should not be: two lexically equivalent variable array types could mean
/// different things, for example, these variables do not have the same type
/// dynamically:
///
/// void foo(int x) {
/// int Y[x];
/// ++x;
/// int Z[x];
/// }
///
class VariableArrayType : public ArrayType {
/// SizeExpr - An assignment expression. VLA's are only permitted within
/// a function block.
Stmt *SizeExpr;
/// Brackets - The left and right array brackets.
SourceRange Brackets;
VariableArrayType(QualType et, QualType can, Expr *e,
ArraySizeModifier sm, unsigned tq,
SourceRange brackets)
: ArrayType(VariableArray, et, can, sm, tq,
et->containsUnexpandedParameterPack()),
SizeExpr((Stmt*) e), Brackets(brackets) {}
friend class ASTContext; // ASTContext creates these.
public:
Expr *getSizeExpr() const {
// We use C-style casts instead of cast<> here because we do not wish
// to have a dependency of Type.h on Stmt.h/Expr.h.
return (Expr*) SizeExpr;
}
SourceRange getBracketsRange() const { return Brackets; }
SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == VariableArray;
}
static bool classof(const VariableArrayType *) { return true; }
friend class StmtIteratorBase;
void Profile(llvm::FoldingSetNodeID &ID) {
llvm_unreachable("Cannot unique VariableArrayTypes.");
}
};
/// DependentSizedArrayType - This type represents an array type in
/// C++ whose size is a value-dependent expression. For example:
///
/// \code
/// template<typename T, int Size>
/// class array {
/// T data[Size];
/// };
/// \endcode
///
/// For these types, we won't actually know what the array bound is
/// until template instantiation occurs, at which point this will
/// become either a ConstantArrayType or a VariableArrayType.
class DependentSizedArrayType : public ArrayType {
const ASTContext &Context;
/// \brief An assignment expression that will instantiate to the
/// size of the array.
///
/// The expression itself might be NULL, in which case the array
/// type will have its size deduced from an initializer.
Stmt *SizeExpr;
/// Brackets - The left and right array brackets.
SourceRange Brackets;
DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
Expr *e, ArraySizeModifier sm, unsigned tq,
SourceRange brackets);
friend class ASTContext; // ASTContext creates these.
public:
Expr *getSizeExpr() const {
// We use C-style casts instead of cast<> here because we do not wish
// to have a dependency of Type.h on Stmt.h/Expr.h.
return (Expr*) SizeExpr;
}
SourceRange getBracketsRange() const { return Brackets; }
SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == DependentSizedArray;
}
static bool classof(const DependentSizedArrayType *) { return true; }
friend class StmtIteratorBase;
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, Context, getElementType(),
getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
}
static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
QualType ET, ArraySizeModifier SizeMod,
unsigned TypeQuals, Expr *E);
};
/// DependentSizedExtVectorType - This type represent an extended vector type
/// where either the type or size is dependent. For example:
/// @code
/// template<typename T, int Size>
/// class vector {
/// typedef T __attribute__((ext_vector_type(Size))) type;
/// }
/// @endcode
class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
const ASTContext &Context;
Expr *SizeExpr;
/// ElementType - The element type of the array.
QualType ElementType;
SourceLocation loc;
DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
QualType can, Expr *SizeExpr, SourceLocation loc);
friend class ASTContext;
public:
Expr *getSizeExpr() const { return SizeExpr; }
QualType getElementType() const { return ElementType; }
SourceLocation getAttributeLoc() const { return loc; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == DependentSizedExtVector;
}
static bool classof(const DependentSizedExtVectorType *) { return true; }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, Context, getElementType(), getSizeExpr());
}
static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
QualType ElementType, Expr *SizeExpr);
};
/// VectorType - GCC generic vector type. This type is created using
/// __attribute__((vector_size(n)), where "n" specifies the vector size in
/// bytes; or from an Altivec __vector or vector declaration.
/// Since the constructor takes the number of vector elements, the
/// client is responsible for converting the size into the number of elements.
class VectorType : public Type, public llvm::FoldingSetNode {
public:
enum VectorKind {
GenericVector, // not a target-specific vector type
AltiVecVector, // is AltiVec vector
AltiVecPixel, // is AltiVec 'vector Pixel'
AltiVecBool, // is AltiVec 'vector bool ...'
NeonVector, // is ARM Neon vector
NeonPolyVector // is ARM Neon polynomial vector
};
protected:
/// ElementType - The element type of the vector.
QualType ElementType;
VectorType(QualType vecType, unsigned nElements, QualType canonType,
VectorKind vecKind);
VectorType(TypeClass tc, QualType vecType, unsigned nElements,
QualType canonType, VectorKind vecKind);
friend class ASTContext; // ASTContext creates these.
public:
QualType getElementType() const { return ElementType; }
unsigned getNumElements() const { return VectorTypeBits.NumElements; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
VectorKind getVectorKind() const {
return VectorKind(VectorTypeBits.VecKind);
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getElementType(), getNumElements(),
getTypeClass(), getVectorKind());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
unsigned NumElements, TypeClass TypeClass,
VectorKind VecKind) {
ID.AddPointer(ElementType.getAsOpaquePtr());
ID.AddInteger(NumElements);
ID.AddInteger(TypeClass);
ID.AddInteger(VecKind);
}
static bool classof(const Type *T) {
return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
}
static bool classof(const VectorType *) { return true; }
};
/// ExtVectorType - Extended vector type. This type is created using
/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
/// class enables syntactic extensions, like Vector Components for accessing
/// points, colors, and textures (modeled after OpenGL Shading Language).
class ExtVectorType : public VectorType {
ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
friend class ASTContext; // ASTContext creates these.
public:
static int getPointAccessorIdx(char c) {
switch (c) {
default: return -1;
case 'x': return 0;
case 'y': return 1;
case 'z': return 2;
case 'w': return 3;
}
}
static int getNumericAccessorIdx(char c) {
switch (c) {
default: return -1;
case '0': return 0;
case '1': return 1;
case '2': return 2;
case '3': return 3;
case '4': return 4;
case '5': return 5;
case '6': return 6;
case '7': return 7;
case '8': return 8;
case '9': return 9;
case 'A':
case 'a': return 10;
case 'B':
case 'b': return 11;
case 'C':
case 'c': return 12;
case 'D':
case 'd': return 13;
case 'E':
case 'e': return 14;
case 'F':
case 'f': return 15;
}
}
static int getAccessorIdx(char c) {
if (int idx = getPointAccessorIdx(c)+1) return idx-1;
return getNumericAccessorIdx(c);
}
bool isAccessorWithinNumElements(char c) const {
if (int idx = getAccessorIdx(c)+1)
return unsigned(idx-1) < getNumElements();
return false;
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == ExtVector;
}
static bool classof(const ExtVectorType *) { return true; }
};
/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
/// class of FunctionNoProtoType and FunctionProtoType.
///
class FunctionType : public Type {
// The type returned by the function.
QualType ResultType;
public:
/// ExtInfo - A class which abstracts out some details necessary for
/// making a call.
///
/// It is not actually used directly for storing this information in
/// a FunctionType, although FunctionType does currently use the
/// same bit-pattern.
///
// If you add a field (say Foo), other than the obvious places (both,
// constructors, compile failures), what you need to update is
// * Operator==
// * getFoo
// * withFoo
// * functionType. Add Foo, getFoo.
// * ASTContext::getFooType
// * ASTContext::mergeFunctionTypes
// * FunctionNoProtoType::Profile
// * FunctionProtoType::Profile
// * TypePrinter::PrintFunctionProto
// * AST read and write
// * Codegen
class ExtInfo {
// Feel free to rearrange or add bits, but if you go over 8,
// you'll need to adjust both the Bits field below and
// Type::FunctionTypeBitfields.
// | CC |noreturn|produces|regparm|
// |0 .. 2| 3 | 4 | 5 .. 7|
//
// regparm is either 0 (no regparm attribute) or the regparm value+1.
enum { CallConvMask = 0x7 };
enum { NoReturnMask = 0x8 };
enum { ProducesResultMask = 0x10 };
enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
RegParmOffset = 5 }; // Assumed to be the last field
uint16_t Bits;
ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
friend class FunctionType;
public:
// Constructor with no defaults. Use this when you know that you
// have all the elements (when reading an AST file for example).
ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
bool producesResult) {
assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
Bits = ((unsigned) cc) |
(noReturn ? NoReturnMask : 0) |
(producesResult ? ProducesResultMask : 0) |
(hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
}
// Constructor with all defaults. Use when for example creating a
// function know to use defaults.
ExtInfo() : Bits(0) {}
bool getNoReturn() const { return Bits & NoReturnMask; }
bool getProducesResult() const { return Bits & ProducesResultMask; }
bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
unsigned getRegParm() const {
unsigned RegParm = Bits >> RegParmOffset;
if (RegParm > 0)
--RegParm;
return RegParm;
}
CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
bool operator==(ExtInfo Other) const {
return Bits == Other.Bits;
}
bool operator!=(ExtInfo Other) const {
return Bits != Other.Bits;
}
// Note that we don't have setters. That is by design, use
// the following with methods instead of mutating these objects.
ExtInfo withNoReturn(bool noReturn) const {
if (noReturn)
return ExtInfo(Bits | NoReturnMask);
else
return ExtInfo(Bits & ~NoReturnMask);
}
ExtInfo withProducesResult(bool producesResult) const {
if (producesResult)
return ExtInfo(Bits | ProducesResultMask);
else
return ExtInfo(Bits & ~ProducesResultMask);
}
ExtInfo withRegParm(unsigned RegParm) const {
assert(RegParm < 7 && "Invalid regparm value");
return ExtInfo((Bits & ~RegParmMask) |
((RegParm + 1) << RegParmOffset));
}
ExtInfo withCallingConv(CallingConv cc) const {
return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
}
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(Bits);
}
};
protected:
FunctionType(TypeClass tc, QualType res, bool variadic,
unsigned typeQuals, RefQualifierKind RefQualifier,
QualType Canonical, bool Dependent,
bool InstantiationDependent,
bool VariablyModified, bool ContainsUnexpandedParameterPack,
ExtInfo Info)
: Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
ContainsUnexpandedParameterPack),
ResultType(res) {
FunctionTypeBits.ExtInfo = Info.Bits;
FunctionTypeBits.Variadic = variadic;
FunctionTypeBits.TypeQuals = typeQuals;
FunctionTypeBits.RefQualifier = static_cast<unsigned>(RefQualifier);
}
bool isVariadic() const { return FunctionTypeBits.Variadic; }
unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
RefQualifierKind getRefQualifier() const {
return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
}
public:
QualType getResultType() const { return ResultType; }
bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
CallingConv getCallConv() const { return getExtInfo().getCC(); }
ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
/// \brief Determine the type of an expression that calls a function of
/// this type.
QualType getCallResultType(ASTContext &Context) const {
return getResultType().getNonLValueExprType(Context);
}
static StringRef getNameForCallConv(CallingConv CC);
static bool classof(const Type *T) {
return T->getTypeClass() == FunctionNoProto ||
T->getTypeClass() == FunctionProto;
}
static bool classof(const FunctionType *) { return true; }
};
/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
/// no information available about its arguments.
class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
: FunctionType(FunctionNoProto, Result, false, 0, RQ_None, Canonical,
/*Dependent=*/false, /*InstantiationDependent=*/false,
Result->isVariablyModifiedType(),
/*ContainsUnexpandedParameterPack=*/false, Info) {}
friend class ASTContext; // ASTContext creates these.
public:
// No additional state past what FunctionType provides.
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getResultType(), getExtInfo());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
ExtInfo Info) {
Info.Profile(ID);
ID.AddPointer(ResultType.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == FunctionNoProto;
}
static bool classof(const FunctionNoProtoType *) { return true; }
};
/// FunctionProtoType - Represents a prototype with argument type info, e.g.
/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
/// arguments, not as having a single void argument. Such a type can have an
/// exception specification, but this specification is not part of the canonical
/// type.
class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
public:
/// ExtProtoInfo - Extra information about a function prototype.
struct ExtProtoInfo {
ExtProtoInfo() :
Variadic(false), ExceptionSpecType(EST_None), TypeQuals(0),
RefQualifier(RQ_None), NumExceptions(0), Exceptions(0), NoexceptExpr(0),
ConsumedArguments(0) {}
FunctionType::ExtInfo ExtInfo;
bool Variadic;
ExceptionSpecificationType ExceptionSpecType;
unsigned char TypeQuals;
RefQualifierKind RefQualifier;
unsigned NumExceptions;
const QualType *Exceptions;
Expr *NoexceptExpr;
const bool *ConsumedArguments;
};
private:
/// \brief Determine whether there are any argument types that
/// contain an unexpanded parameter pack.
static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
unsigned numArgs) {
for (unsigned Idx = 0; Idx < numArgs; ++Idx)
if (ArgArray[Idx]->containsUnexpandedParameterPack())
return true;
return false;
}
FunctionProtoType(QualType result, const QualType *args, unsigned numArgs,
QualType canonical, const ExtProtoInfo &epi);
/// NumArgs - The number of arguments this function has, not counting '...'.
unsigned NumArgs : 19;
/// NumExceptions - The number of types in the exception spec, if any.
unsigned NumExceptions : 9;
/// ExceptionSpecType - The type of exception specification this function has.
unsigned ExceptionSpecType : 3;
/// HasAnyConsumedArgs - Whether this function has any consumed arguments.
unsigned HasAnyConsumedArgs : 1;
// ArgInfo - There is an variable size array after the class in memory that
// holds the argument types.
// Exceptions - There is another variable size array after ArgInfo that
// holds the exception types.
// NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
// to the expression in the noexcept() specifier.
// ConsumedArgs - A variable size array, following Exceptions
// and of length NumArgs, holding flags indicating which arguments
// are consumed. This only appears if HasAnyConsumedArgs is true.
friend class ASTContext; // ASTContext creates these.
const bool *getConsumedArgsBuffer() const {
assert(hasAnyConsumedArgs());
// Find the end of the exceptions.
Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
if (getExceptionSpecType() != EST_ComputedNoexcept)
eh_end += NumExceptions;
else
eh_end += 1; // NoexceptExpr
return reinterpret_cast<const bool*>(eh_end);
}
public:
unsigned getNumArgs() const { return NumArgs; }
QualType getArgType(unsigned i) const {
assert(i < NumArgs && "Invalid argument number!");
return arg_type_begin()[i];
}
ExtProtoInfo getExtProtoInfo() const {
ExtProtoInfo EPI;
EPI.ExtInfo = getExtInfo();
EPI.Variadic = isVariadic();
EPI.ExceptionSpecType = getExceptionSpecType();
EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
EPI.RefQualifier = getRefQualifier();
if (EPI.ExceptionSpecType == EST_Dynamic) {
EPI.NumExceptions = NumExceptions;
EPI.Exceptions = exception_begin();
} else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
EPI.NoexceptExpr = getNoexceptExpr();
}
if (hasAnyConsumedArgs())
EPI.ConsumedArguments = getConsumedArgsBuffer();
return EPI;
}
/// \brief Get the kind of exception specification on this function.
ExceptionSpecificationType getExceptionSpecType() const {
return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
}
/// \brief Return whether this function has any kind of exception spec.
bool hasExceptionSpec() const {
return getExceptionSpecType() != EST_None;
}
/// \brief Return whether this function has a dynamic (throw) exception spec.
bool hasDynamicExceptionSpec() const {
return isDynamicExceptionSpec(getExceptionSpecType());
}
/// \brief Return whether this function has a noexcept exception spec.
bool hasNoexceptExceptionSpec() const {
return isNoexceptExceptionSpec(getExceptionSpecType());
}
/// \brief Result type of getNoexceptSpec().
enum NoexceptResult {
NR_NoNoexcept, ///< There is no noexcept specifier.
NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
NR_Dependent, ///< The noexcept specifier is dependent.
NR_Throw, ///< The noexcept specifier evaluates to false.
NR_Nothrow ///< The noexcept specifier evaluates to true.
};
/// \brief Get the meaning of the noexcept spec on this function, if any.
NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
unsigned getNumExceptions() const { return NumExceptions; }
QualType getExceptionType(unsigned i) const {
assert(i < NumExceptions && "Invalid exception number!");
return exception_begin()[i];
}
Expr *getNoexceptExpr() const {
if (getExceptionSpecType() != EST_ComputedNoexcept)
return 0;
// NoexceptExpr sits where the arguments end.
return *reinterpret_cast<Expr *const *>(arg_type_end());
}
bool isNothrow(ASTContext &Ctx) const {
ExceptionSpecificationType EST = getExceptionSpecType();
assert(EST != EST_Delayed);
if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
return true;
if (EST != EST_ComputedNoexcept)
return false;
return getNoexceptSpec(Ctx) == NR_Nothrow;
}
using FunctionType::isVariadic;
/// \brief Determines whether this function prototype contains a
/// parameter pack at the end.
///
/// A function template whose last parameter is a parameter pack can be
/// called with an arbitrary number of arguments, much like a variadic
/// function. However,
bool isTemplateVariadic() const;
unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
/// \brief Retrieve the ref-qualifier associated with this function type.
RefQualifierKind getRefQualifier() const {
return FunctionType::getRefQualifier();
}
typedef const QualType *arg_type_iterator;
arg_type_iterator arg_type_begin() const {
return reinterpret_cast<const QualType *>(this+1);
}
arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
typedef const QualType *exception_iterator;
exception_iterator exception_begin() const {
// exceptions begin where arguments end
return arg_type_end();
}
exception_iterator exception_end() const {
if (getExceptionSpecType() != EST_Dynamic)
return exception_begin();
return exception_begin() + NumExceptions;
}
bool hasAnyConsumedArgs() const {
return HasAnyConsumedArgs;
}
bool isArgConsumed(unsigned I) const {
assert(I < getNumArgs() && "argument index out of range!");
if (hasAnyConsumedArgs())
return getConsumedArgsBuffer()[I];
return false;
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == FunctionProto;
}
static bool classof(const FunctionProtoType *) { return true; }
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
arg_type_iterator ArgTys, unsigned NumArgs,
const ExtProtoInfo &EPI, const ASTContext &Context);
};
/// \brief Represents the dependent type named by a dependently-scoped
/// typename using declaration, e.g.
/// using typename Base<T>::foo;
/// Template instantiation turns these into the underlying type.
class UnresolvedUsingType : public Type {
UnresolvedUsingTypenameDecl *Decl;
UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
: Type(UnresolvedUsing, QualType(), true, true, false,
/*ContainsUnexpandedParameterPack=*/false),
Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
friend class ASTContext; // ASTContext creates these.
public:
UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == UnresolvedUsing;
}
static bool classof(const UnresolvedUsingType *) { return true; }
void Profile(llvm::FoldingSetNodeID &ID) {
return Profile(ID, Decl);
}
static void Profile(llvm::FoldingSetNodeID &ID,
UnresolvedUsingTypenameDecl *D) {
ID.AddPointer(D);
}
};
class TypedefType : public Type {
TypedefNameDecl *Decl;
protected:
TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
: Type(tc, can, can->isDependentType(),
can->isInstantiationDependentType(),
can->isVariablyModifiedType(),
/*ContainsUnexpandedParameterPack=*/false),
Decl(const_cast<TypedefNameDecl*>(D)) {
assert(!isa<TypedefType>(can) && "Invalid canonical type");
}
friend class ASTContext; // ASTContext creates these.
public:
TypedefNameDecl *getDecl() const { return Decl; }
bool isSugared() const { return true; }
QualType desugar() const;
static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
static bool classof(const TypedefType *) { return true; }
};
/// TypeOfExprType (GCC extension).
class TypeOfExprType : public Type {
Expr *TOExpr;
protected:
TypeOfExprType(Expr *E, QualType can = QualType());
friend class ASTContext; // ASTContext creates these.
public:
Expr *getUnderlyingExpr() const { return TOExpr; }
/// \brief Remove a single level of sugar.
QualType desugar() const;
/// \brief Returns whether this type directly provides sugar.
bool isSugared() const;
static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
static bool classof(const TypeOfExprType *) { return true; }
};
/// \brief Internal representation of canonical, dependent
/// typeof(expr) types.
///
/// This class is used internally by the ASTContext to manage
/// canonical, dependent types, only. Clients will only see instances
/// of this class via TypeOfExprType nodes.
class DependentTypeOfExprType
: public TypeOfExprType, public llvm::FoldingSetNode {
const ASTContext &Context;
public:
DependentTypeOfExprType(const ASTContext &Context, Expr *E)
: TypeOfExprType(E), Context(Context) { }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, Context, getUnderlyingExpr());
}
static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
Expr *E);
};
/// TypeOfType (GCC extension).
class TypeOfType : public Type {
QualType TOType;
TypeOfType(QualType T, QualType can)
: Type(TypeOf, can, T->isDependentType(),
T->isInstantiationDependentType(),
T->isVariablyModifiedType(),
T->containsUnexpandedParameterPack()),
TOType(T) {
assert(!isa<TypedefType>(can) && "Invalid canonical type");
}
friend class ASTContext; // ASTContext creates these.
public:
QualType getUnderlyingType() const { return TOType; }
/// \brief Remove a single level of sugar.
QualType desugar() const { return getUnderlyingType(); }
/// \brief Returns whether this type directly provides sugar.
bool isSugared() const { return true; }
static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
static bool classof(const TypeOfType *) { return true; }
};
/// DecltypeType (C++0x)
class DecltypeType : public Type {
Expr *E;
// FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
// Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
// from it.
QualType UnderlyingType;
protected:
DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
friend class ASTContext; // ASTContext creates these.
public:
Expr *getUnderlyingExpr() const { return E; }
QualType getUnderlyingType() const { return UnderlyingType; }
/// \brief Remove a single level of sugar.
QualType desugar() const;
/// \brief Returns whether this type directly provides sugar.
bool isSugared() const;
static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
static bool classof(const DecltypeType *) { return true; }
};
/// \brief Internal representation of canonical, dependent
/// decltype(expr) types.
///
/// This class is used internally by the ASTContext to manage
/// canonical, dependent types, only. Clients will only see instances
/// of this class via DecltypeType nodes.
class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
const ASTContext &Context;
public:
DependentDecltypeType(const ASTContext &Context, Expr *E);
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, Context, getUnderlyingExpr());
}
static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
Expr *E);
};
/// \brief A unary type transform, which is a type constructed from another
class UnaryTransformType : public Type {
public:
enum UTTKind {
EnumUnderlyingType
};
private:
/// The untransformed type.
QualType BaseType;
/// The transformed type if not dependent, otherwise the same as BaseType.
QualType UnderlyingType;
UTTKind UKind;
protected:
UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
QualType CanonicalTy);
friend class ASTContext;
public:
bool isSugared() const { return !isDependentType(); }
QualType desugar() const { return UnderlyingType; }
QualType getUnderlyingType() const { return UnderlyingType; }
QualType getBaseType() const { return BaseType; }
UTTKind getUTTKind() const { return UKind; }
static bool classof(const Type *T) {
return T->getTypeClass() == UnaryTransform;
}
static bool classof(const UnaryTransformType *) { return true; }
};
class TagType : public Type {
/// Stores the TagDecl associated with this type. The decl may point to any
/// TagDecl that declares the entity.
TagDecl * decl;
friend class ASTReader;
protected:
TagType(TypeClass TC, const TagDecl *D, QualType can);
public:
TagDecl *getDecl() const;
/// @brief Determines whether this type is in the process of being
/// defined.
bool isBeingDefined() const;
static bool classof(const Type *T) {
return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
}
static bool classof(const TagType *) { return true; }
};
/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
/// to detect TagType objects of structs/unions/classes.
class RecordType : public TagType {
protected:
explicit RecordType(const RecordDecl *D)
: TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
explicit RecordType(TypeClass TC, RecordDecl *D)
: TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
friend class ASTContext; // ASTContext creates these.
public:
RecordDecl *getDecl() const {
return reinterpret_cast<RecordDecl*>(TagType::getDecl());
}
// FIXME: This predicate is a helper to QualType/Type. It needs to
// recursively check all fields for const-ness. If any field is declared
// const, it needs to return false.
bool hasConstFields() const { return false; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) { return T->getTypeClass() == Record; }
static bool classof(const RecordType *) { return true; }
};
/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
/// to detect TagType objects of enums.
class EnumType : public TagType {
explicit EnumType(const EnumDecl *D)
: TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
friend class ASTContext; // ASTContext creates these.
public:
EnumDecl *getDecl() const {
return reinterpret_cast<EnumDecl*>(TagType::getDecl());
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
static bool classof(const EnumType *) { return true; }
};
/// AttributedType - An attributed type is a type to which a type
/// attribute has been applied. The "modified type" is the
/// fully-sugared type to which the attributed type was applied;
/// generally it is not canonically equivalent to the attributed type.
/// The "equivalent type" is the minimally-desugared type which the
/// type is canonically equivalent to.
///
/// For example, in the following attributed type:
/// int32_t __attribute__((vector_size(16)))
/// - the modified type is the TypedefType for int32_t
/// - the equivalent type is VectorType(16, int32_t)
/// - the canonical type is VectorType(16, int)
class AttributedType : public Type, public llvm::FoldingSetNode {
public:
// It is really silly to have yet another attribute-kind enum, but
// clang::attr::Kind doesn't currently cover the pure type attrs.
enum Kind {
// Expression operand.
attr_address_space,
attr_regparm,
attr_vector_size,
attr_neon_vector_type,
attr_neon_polyvector_type,
FirstExprOperandKind = attr_address_space,
LastExprOperandKind = attr_neon_polyvector_type,
// Enumerated operand (string or keyword).
attr_objc_gc,
attr_objc_ownership,
attr_pcs,
FirstEnumOperandKind = attr_objc_gc,
LastEnumOperandKind = attr_pcs,
// No operand.
attr_noreturn,
attr_cdecl,
attr_fastcall,
attr_stdcall,
attr_thiscall,
attr_pascal
};
private:
QualType ModifiedType;
QualType EquivalentType;
friend class ASTContext; // creates these
AttributedType(QualType canon, Kind attrKind,
QualType modified, QualType equivalent)
: Type(Attributed, canon, canon->isDependentType(),
canon->isInstantiationDependentType(),
canon->isVariablyModifiedType(),
canon->containsUnexpandedParameterPack()),
ModifiedType(modified), EquivalentType(equivalent) {
AttributedTypeBits.AttrKind = attrKind;
}
public:
Kind getAttrKind() const {
return static_cast<Kind>(AttributedTypeBits.AttrKind);
}
QualType getModifiedType() const { return ModifiedType; }
QualType getEquivalentType() const { return EquivalentType; }
bool isSugared() const { return true; }
QualType desugar() const { return getEquivalentType(); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
}
static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
QualType modified, QualType equivalent) {
ID.AddInteger(attrKind);
ID.AddPointer(modified.getAsOpaquePtr());
ID.AddPointer(equivalent.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == Attributed;
}
static bool classof(const AttributedType *T) { return true; }
};
class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
// Helper data collector for canonical types.
struct CanonicalTTPTInfo {
unsigned Depth : 15;
unsigned ParameterPack : 1;
unsigned Index : 16;
};
union {
// Info for the canonical type.
CanonicalTTPTInfo CanTTPTInfo;
// Info for the non-canonical type.
TemplateTypeParmDecl *TTPDecl;
};
/// Build a non-canonical type.
TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
: Type(TemplateTypeParm, Canon, /*Dependent=*/true,
/*InstantiationDependent=*/true,
/*VariablyModified=*/false,
Canon->containsUnexpandedParameterPack()),
TTPDecl(TTPDecl) { }
/// Build the canonical type.
TemplateTypeParmType(unsigned D, unsigned I, bool PP)
: Type(TemplateTypeParm, QualType(this, 0),
/*Dependent=*/true,
/*InstantiationDependent=*/true,
/*VariablyModified=*/false, PP) {
CanTTPTInfo.Depth = D;
CanTTPTInfo.Index = I;
CanTTPTInfo.ParameterPack = PP;
}
friend class ASTContext; // ASTContext creates these
const CanonicalTTPTInfo& getCanTTPTInfo() const {
QualType Can = getCanonicalTypeInternal();
return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
}
public:
unsigned getDepth() const { return getCanTTPTInfo().Depth; }
unsigned getIndex() const { return getCanTTPTInfo().Index; }
bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
TemplateTypeParmDecl *getDecl() const {
return isCanonicalUnqualified() ? 0 : TTPDecl;
}
IdentifierInfo *getIdentifier() const;
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
}
static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
unsigned Index, bool ParameterPack,
TemplateTypeParmDecl *TTPDecl) {
ID.AddInteger(Depth);
ID.AddInteger(Index);
ID.AddBoolean(ParameterPack);
ID.AddPointer(TTPDecl);
}
static bool classof(const Type *T) {
return T->getTypeClass() == TemplateTypeParm;
}
static bool classof(const TemplateTypeParmType *T) { return true; }
};
/// \brief Represents the result of substituting a type for a template
/// type parameter.
///
/// Within an instantiated template, all template type parameters have
/// been replaced with these. They are used solely to record that a
/// type was originally written as a template type parameter;
/// therefore they are never canonical.
class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
// The original type parameter.
const TemplateTypeParmType *Replaced;
SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
: Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
Canon->isInstantiationDependentType(),
Canon->isVariablyModifiedType(),
Canon->containsUnexpandedParameterPack()),
Replaced(Param) { }
friend class ASTContext;
public:
/// Gets the template parameter that was substituted for.
const TemplateTypeParmType *getReplacedParameter() const {
return Replaced;
}
/// Gets the type that was substituted for the template
/// parameter.
QualType getReplacementType() const {
return getCanonicalTypeInternal();
}
bool isSugared() const { return true; }
QualType desugar() const { return getReplacementType(); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getReplacedParameter(), getReplacementType());
}
static void Profile(llvm::FoldingSetNodeID &ID,
const TemplateTypeParmType *Replaced,
QualType Replacement) {
ID.AddPointer(Replaced);
ID.AddPointer(Replacement.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == SubstTemplateTypeParm;
}
static bool classof(const SubstTemplateTypeParmType *T) { return true; }
};
/// \brief Represents the result of substituting a set of types for a template
/// type parameter pack.
///
/// When a pack expansion in the source code contains multiple parameter packs
/// and those parameter packs correspond to different levels of template
/// parameter lists, this type node is used to represent a template type
/// parameter pack from an outer level, which has already had its argument pack
/// substituted but that still lives within a pack expansion that itself
/// could not be instantiated. When actually performing a substitution into
/// that pack expansion (e.g., when all template parameters have corresponding
/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
/// at the current pack substitution index.
class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
/// \brief The original type parameter.
const TemplateTypeParmType *Replaced;
/// \brief A pointer to the set of template arguments that this
/// parameter pack is instantiated with.
const TemplateArgument *Arguments;
/// \brief The number of template arguments in \c Arguments.
unsigned NumArguments;
SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
QualType Canon,
const TemplateArgument &ArgPack);
friend class ASTContext;
public:
IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
/// Gets the template parameter that was substituted for.
const TemplateTypeParmType *getReplacedParameter() const {
return Replaced;
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
TemplateArgument getArgumentPack() const;
void Profile(llvm::FoldingSetNodeID &ID);
static void Profile(llvm::FoldingSetNodeID &ID,
const TemplateTypeParmType *Replaced,
const TemplateArgument &ArgPack);
static bool classof(const Type *T) {
return T->getTypeClass() == SubstTemplateTypeParmPack;
}
static bool classof(const SubstTemplateTypeParmPackType *T) { return true; }
};
/// \brief Represents a C++0x auto type.
///
/// These types are usually a placeholder for a deduced type. However, within
/// templates and before the initializer is attached, there is no deduced type
/// and an auto type is type-dependent and canonical.
class AutoType : public Type, public llvm::FoldingSetNode {
AutoType(QualType DeducedType)
: Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
/*Dependent=*/DeducedType.isNull(),
/*InstantiationDependent=*/DeducedType.isNull(),
/*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
"deduced a dependent type for auto");
}
friend class ASTContext; // ASTContext creates these
public:
bool isSugared() const { return isDeduced(); }
QualType desugar() const { return getCanonicalTypeInternal(); }
QualType getDeducedType() const {
return isDeduced() ? getCanonicalTypeInternal() : QualType();
}
bool isDeduced() const {
return !isDependentType();
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getDeducedType());
}
static void Profile(llvm::FoldingSetNodeID &ID,
QualType Deduced) {
ID.AddPointer(Deduced.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == Auto;
}
static bool classof(const AutoType *T) { return true; }
};
/// \brief Represents a type template specialization; the template
/// must be a class template, a type alias template, or a template
/// template parameter. A template which cannot be resolved to one of
/// these, e.g. because it is written with a dependent scope
/// specifier, is instead represented as a
/// @c DependentTemplateSpecializationType.
///
/// A non-dependent template specialization type is always "sugar",
/// typically for a @c RecordType. For example, a class template
/// specialization type of @c vector<int> will refer to a tag type for
/// the instantiation @c std::vector<int, std::allocator<int>>
///
/// Template specializations are dependent if either the template or
/// any of the template arguments are dependent, in which case the
/// type may also be canonical.
///
/// Instances of this type are allocated with a trailing array of
/// TemplateArguments, followed by a QualType representing the
/// non-canonical aliased type when the template is a type alias
/// template.
class TemplateSpecializationType
: public Type, public llvm::FoldingSetNode {
/// \brief The name of the template being specialized. This is
/// either a TemplateName::Template (in which case it is a
/// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
/// TypeAliasTemplateDecl*), a
/// TemplateName::SubstTemplateTemplateParmPack, or a
/// TemplateName::SubstTemplateTemplateParm (in which case the
/// replacement must, recursively, be one of these).
TemplateName Template;
/// \brief - The number of template arguments named in this class
/// template specialization.
unsigned NumArgs : 31;
/// \brief Whether this template specialization type is a substituted
/// type alias.
bool TypeAlias : 1;
TemplateSpecializationType(TemplateName T,
const TemplateArgument *Args,
unsigned NumArgs, QualType Canon,
QualType Aliased);
friend class ASTContext; // ASTContext creates these
public:
/// \brief Determine whether any of the given template arguments are
/// dependent.
static bool anyDependentTemplateArguments(const TemplateArgument *Args,
unsigned NumArgs,
bool &InstantiationDependent);
static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
unsigned NumArgs,
bool &InstantiationDependent);
static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
bool &InstantiationDependent);
/// \brief Print a template argument list, including the '<' and '>'
/// enclosing the template arguments.
static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
unsigned NumArgs,
const PrintingPolicy &Policy,
bool SkipBrackets = false);
static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
unsigned NumArgs,
const PrintingPolicy &Policy);
static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
const PrintingPolicy &Policy);
/// True if this template specialization type matches a current
/// instantiation in the context in which it is found.
bool isCurrentInstantiation() const {
return isa<InjectedClassNameType>(getCanonicalTypeInternal());
}
/// \brief Determine if this template specialization type is for a type alias
/// template that has been substituted.
///
/// Nearly every template specialization type whose template is an alias
/// template will be substituted. However, this is not the case when
/// the specialization contains a pack expansion but the template alias
/// does not have a corresponding parameter pack, e.g.,
///
/// \code
/// template<typename T, typename U, typename V> struct S;
/// template<typename T, typename U> using A = S<T, int, U>;
/// template<typename... Ts> struct X {
/// typedef A<Ts...> type; // not a type alias
/// };
/// \endcode
bool isTypeAlias() const { return TypeAlias; }
/// Get the aliased type, if this is a specialization of a type alias
/// template.
QualType getAliasedType() const {
assert(isTypeAlias() && "not a type alias template specialization");
return *reinterpret_cast<const QualType*>(end());
}
typedef const TemplateArgument * iterator;
iterator begin() const { return getArgs(); }
iterator end() const; // defined inline in TemplateBase.h
/// \brief Retrieve the name of the template that we are specializing.
TemplateName getTemplateName() const { return Template; }
/// \brief Retrieve the template arguments.
const TemplateArgument *getArgs() const {
return reinterpret_cast<const TemplateArgument *>(this + 1);
}
/// \brief Retrieve the number of template arguments.
unsigned getNumArgs() const { return NumArgs; }
/// \brief Retrieve a specific template argument as a type.
/// \precondition @c isArgType(Arg)
const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
bool isSugared() const {
return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
}
QualType desugar() const { return getCanonicalTypeInternal(); }
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
Profile(ID, Template, getArgs(), NumArgs, Ctx);
if (isTypeAlias())
getAliasedType().Profile(ID);
}
static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
const TemplateArgument *Args,
unsigned NumArgs,
const ASTContext &Context);
static bool classof(const Type *T) {
return T->getTypeClass() == TemplateSpecialization;
}
static bool classof(const TemplateSpecializationType *T) { return true; }
};
/// \brief The injected class name of a C++ class template or class
/// template partial specialization. Used to record that a type was
/// spelled with a bare identifier rather than as a template-id; the
/// equivalent for non-templated classes is just RecordType.
///
/// Injected class name types are always dependent. Template
/// instantiation turns these into RecordTypes.
///
/// Injected class name types are always canonical. This works
/// because it is impossible to compare an injected class name type
/// with the corresponding non-injected template type, for the same
/// reason that it is impossible to directly compare template
/// parameters from different dependent contexts: injected class name
/// types can only occur within the scope of a particular templated
/// declaration, and within that scope every template specialization
/// will canonicalize to the injected class name (when appropriate
/// according to the rules of the language).
class InjectedClassNameType : public Type {
CXXRecordDecl *Decl;
/// The template specialization which this type represents.
/// For example, in
/// template <class T> class A { ... };
/// this is A<T>, whereas in
/// template <class X, class Y> class A<B<X,Y> > { ... };
/// this is A<B<X,Y> >.
///
/// It is always unqualified, always a template specialization type,
/// and always dependent.
QualType InjectedType;
friend class ASTContext; // ASTContext creates these.
friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
// currently suitable for AST reading, too much
// interdependencies.
InjectedClassNameType(CXXRecordDecl *D, QualType TST)
: Type(InjectedClassName, QualType(), /*Dependent=*/true,
/*InstantiationDependent=*/true,
/*VariablyModified=*/false,
/*ContainsUnexpandedParameterPack=*/false),
Decl(D), InjectedType(TST) {
assert(isa<TemplateSpecializationType>(TST));
assert(!TST.hasQualifiers());
assert(TST->isDependentType());
}
public:
QualType getInjectedSpecializationType() const { return InjectedType; }
const TemplateSpecializationType *getInjectedTST() const {
return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
}
CXXRecordDecl *getDecl() const;
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == InjectedClassName;
}
static bool classof(const InjectedClassNameType *T) { return true; }
};
/// \brief The kind of a tag type.
enum TagTypeKind {
/// \brief The "struct" keyword.
TTK_Struct,
/// \brief The "union" keyword.
TTK_Union,
/// \brief The "class" keyword.
TTK_Class,
/// \brief The "enum" keyword.
TTK_Enum
};
/// \brief The elaboration keyword that precedes a qualified type name or
/// introduces an elaborated-type-specifier.
enum ElaboratedTypeKeyword {
/// \brief The "struct" keyword introduces the elaborated-type-specifier.
ETK_Struct,
/// \brief The "union" keyword introduces the elaborated-type-specifier.
ETK_Union,
/// \brief The "class" keyword introduces the elaborated-type-specifier.
ETK_Class,
/// \brief The "enum" keyword introduces the elaborated-type-specifier.
ETK_Enum,
/// \brief The "typename" keyword precedes the qualified type name, e.g.,
/// \c typename T::type.
ETK_Typename,
/// \brief No keyword precedes the qualified type name.
ETK_None
};
/// A helper class for Type nodes having an ElaboratedTypeKeyword.
/// The keyword in stored in the free bits of the base class.
/// Also provides a few static helpers for converting and printing
/// elaborated type keyword and tag type kind enumerations.
class TypeWithKeyword : public Type {
protected:
TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
QualType Canonical, bool Dependent,
bool InstantiationDependent, bool VariablyModified,
bool ContainsUnexpandedParameterPack)
: Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
ContainsUnexpandedParameterPack) {
TypeWithKeywordBits.Keyword = Keyword;
}
public:
ElaboratedTypeKeyword getKeyword() const {
return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
}
/// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
/// into an elaborated type keyword.
static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
/// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
/// into a tag type kind. It is an error to provide a type specifier
/// which *isn't* a tag kind here.
static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
/// getKeywordForTagDeclKind - Converts a TagTypeKind into an
/// elaborated type keyword.
static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
/// getTagTypeKindForKeyword - Converts an elaborated type keyword into
// a TagTypeKind. It is an error to provide an elaborated type keyword
/// which *isn't* a tag kind here.
static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
static const char *getTagTypeKindName(TagTypeKind Kind) {
return getKeywordName(getKeywordForTagTypeKind(Kind));
}
class CannotCastToThisType {};
static CannotCastToThisType classof(const Type *);
};
/// \brief Represents a type that was referred to using an elaborated type
/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
/// or both.
///
/// This type is used to keep track of a type name as written in the
/// source code, including tag keywords and any nested-name-specifiers.
/// The type itself is always "sugar", used to express what was written
/// in the source code but containing no additional semantic information.
class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
/// \brief The nested name specifier containing the qualifier.
NestedNameSpecifier *NNS;
/// \brief The type that this qualified name refers to.
QualType NamedType;
ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
QualType NamedType, QualType CanonType)
: TypeWithKeyword(Keyword, Elaborated, CanonType,
NamedType->isDependentType(),
NamedType->isInstantiationDependentType(),
NamedType->isVariablyModifiedType(),
NamedType->containsUnexpandedParameterPack()),
NNS(NNS), NamedType(NamedType) {
assert(!(Keyword == ETK_None && NNS == 0) &&
"ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.");
}
friend class ASTContext; // ASTContext creates these
public:
~ElaboratedType();
/// \brief Retrieve the qualification on this type.
NestedNameSpecifier *getQualifier() const { return NNS; }
/// \brief Retrieve the type named by the qualified-id.
QualType getNamedType() const { return NamedType; }
/// \brief Remove a single level of sugar.
QualType desugar() const { return getNamedType(); }
/// \brief Returns whether this type directly provides sugar.
bool isSugared() const { return true; }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getKeyword(), NNS, NamedType);
}
static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS, QualType NamedType) {
ID.AddInteger(Keyword);
ID.AddPointer(NNS);
NamedType.Profile(ID);
}
static bool classof(const Type *T) {
return T->getTypeClass() == Elaborated;
}
static bool classof(const ElaboratedType *T) { return true; }
};
/// \brief Represents a qualified type name for which the type name is
/// dependent.
///
/// DependentNameType represents a class of dependent types that involve a
/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
/// name of a type. The DependentNameType may start with a "typename" (for a
/// typename-specifier), "class", "struct", "union", or "enum" (for a
/// dependent elaborated-type-specifier), or nothing (in contexts where we
/// know that we must be referring to a type, e.g., in a base class specifier).
class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
/// \brief The nested name specifier containing the qualifier.
NestedNameSpecifier *NNS;
/// \brief The type that this typename specifier refers to.
const IdentifierInfo *Name;
DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
const IdentifierInfo *Name, QualType CanonType)
: TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
/*InstantiationDependent=*/true,
/*VariablyModified=*/false,
NNS->containsUnexpandedParameterPack()),
NNS(NNS), Name(Name) {
assert(NNS->isDependent() &&
"DependentNameType requires a dependent nested-name-specifier");
}
friend class ASTContext; // ASTContext creates these
public:
/// \brief Retrieve the qualification on this type.
NestedNameSpecifier *getQualifier() const { return NNS; }
/// \brief Retrieve the type named by the typename specifier as an
/// identifier.
///
/// This routine will return a non-NULL identifier pointer when the
/// form of the original typename was terminated by an identifier,
/// e.g., "typename T::type".
const IdentifierInfo *getIdentifier() const {
return Name;
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getKeyword(), NNS, Name);
}
static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
ID.AddInteger(Keyword);
ID.AddPointer(NNS);
ID.AddPointer(Name);
}
static bool classof(const Type *T) {
return T->getTypeClass() == DependentName;
}
static bool classof(const DependentNameType *T) { return true; }
};
/// DependentTemplateSpecializationType - Represents a template
/// specialization type whose template cannot be resolved, e.g.
/// A<T>::template B<T>
class DependentTemplateSpecializationType :
public TypeWithKeyword, public llvm::FoldingSetNode {
/// \brief The nested name specifier containing the qualifier.
NestedNameSpecifier *NNS;
/// \brief The identifier of the template.
const IdentifierInfo *Name;
/// \brief - The number of template arguments named in this class
/// template specialization.
unsigned NumArgs;
const TemplateArgument *getArgBuffer() const {
return reinterpret_cast<const TemplateArgument*>(this+1);
}
TemplateArgument *getArgBuffer() {
return reinterpret_cast<TemplateArgument*>(this+1);
}
DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS,
const IdentifierInfo *Name,
unsigned NumArgs,
const TemplateArgument *Args,
QualType Canon);
friend class ASTContext; // ASTContext creates these
public:
NestedNameSpecifier *getQualifier() const { return NNS; }
const IdentifierInfo *getIdentifier() const { return Name; }
/// \brief Retrieve the template arguments.
const TemplateArgument *getArgs() const {
return getArgBuffer();
}
/// \brief Retrieve the number of template arguments.
unsigned getNumArgs() const { return NumArgs; }
const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
typedef const TemplateArgument * iterator;
iterator begin() const { return getArgs(); }
iterator end() const; // inline in TemplateBase.h
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
}
static void Profile(llvm::FoldingSetNodeID &ID,
const ASTContext &Context,
ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *Qualifier,
const IdentifierInfo *Name,
unsigned NumArgs,
const TemplateArgument *Args);
static bool classof(const Type *T) {
return T->getTypeClass() == DependentTemplateSpecialization;
}
static bool classof(const DependentTemplateSpecializationType *T) {
return true;
}
};
/// \brief Represents a pack expansion of types.
///
/// Pack expansions are part of C++0x variadic templates. A pack
/// expansion contains a pattern, which itself contains one or more
/// "unexpanded" parameter packs. When instantiated, a pack expansion
/// produces a series of types, each instantiated from the pattern of
/// the expansion, where the Ith instantiation of the pattern uses the
/// Ith arguments bound to each of the unexpanded parameter packs. The
/// pack expansion is considered to "expand" these unexpanded
/// parameter packs.
///
/// \code
/// template<typename ...Types> struct tuple;
///
/// template<typename ...Types>
/// struct tuple_of_references {
/// typedef tuple<Types&...> type;
/// };
/// \endcode
///
/// Here, the pack expansion \c Types&... is represented via a
/// PackExpansionType whose pattern is Types&.
class PackExpansionType : public Type, public llvm::FoldingSetNode {
/// \brief The pattern of the pack expansion.
QualType Pattern;
/// \brief The number of expansions that this pack expansion will
/// generate when substituted (+1), or indicates that
///
/// This field will only have a non-zero value when some of the parameter
/// packs that occur within the pattern have been substituted but others have
/// not.
unsigned NumExpansions;
PackExpansionType(QualType Pattern, QualType Canon,
llvm::Optional<unsigned> NumExpansions)
: Type(PackExpansion, Canon, /*Dependent=*/true,
/*InstantiationDependent=*/true,
/*VariableModified=*/Pattern->isVariablyModifiedType(),
/*ContainsUnexpandedParameterPack=*/false),
Pattern(Pattern),
NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
friend class ASTContext; // ASTContext creates these
public:
/// \brief Retrieve the pattern of this pack expansion, which is the
/// type that will be repeatedly instantiated when instantiating the
/// pack expansion itself.
QualType getPattern() const { return Pattern; }
/// \brief Retrieve the number of expansions that this pack expansion will
/// generate, if known.
llvm::Optional<unsigned> getNumExpansions() const {
if (NumExpansions)
return NumExpansions - 1;
return llvm::Optional<unsigned>();
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPattern(), getNumExpansions());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
llvm::Optional<unsigned> NumExpansions) {
ID.AddPointer(Pattern.getAsOpaquePtr());
ID.AddBoolean(NumExpansions);
if (NumExpansions)
ID.AddInteger(*NumExpansions);
}
static bool classof(const Type *T) {
return T->getTypeClass() == PackExpansion;
}
static bool classof(const PackExpansionType *T) {
return true;
}
};
/// ObjCObjectType - Represents a class type in Objective C.
/// Every Objective C type is a combination of a base type and a
/// list of protocols.
///
/// Given the following declarations:
/// @class C;
/// @protocol P;
///
/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
/// with base C and no protocols.
///
/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
///
/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
/// and no protocols.
///
/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
/// this should get its own sugar class to better represent the source.
class ObjCObjectType : public Type {
// ObjCObjectType.NumProtocols - the number of protocols stored
// after the ObjCObjectPointerType node.
//
// These protocols are those written directly on the type. If
// protocol qualifiers ever become additive, the iterators will need
// to get kindof complicated.
//
// In the canonical object type, these are sorted alphabetically
// and uniqued.
/// Either a BuiltinType or an InterfaceType or sugar for either.
QualType BaseType;
ObjCProtocolDecl * const *getProtocolStorage() const {
return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
}
ObjCProtocolDecl **getProtocolStorage();
protected:
ObjCObjectType(QualType Canonical, QualType Base,
ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
enum Nonce_ObjCInterface { Nonce_ObjCInterface };
ObjCObjectType(enum Nonce_ObjCInterface)
: Type(ObjCInterface, QualType(), false, false, false, false),
BaseType(QualType(this_(), 0)) {
ObjCObjectTypeBits.NumProtocols = 0;
}
public:
/// getBaseType - Gets the base type of this object type. This is
/// always (possibly sugar for) one of:
/// - the 'id' builtin type (as opposed to the 'id' type visible to the
/// user, which is a typedef for an ObjCPointerType)
/// - the 'Class' builtin type (same caveat)
/// - an ObjCObjectType (currently always an ObjCInterfaceType)
QualType getBaseType() const { return BaseType; }
bool isObjCId() const {
return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
}
bool isObjCClass() const {
return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
}
bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
bool isObjCUnqualifiedIdOrClass() const {
if (!qual_empty()) return false;
if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
return T->getKind() == BuiltinType::ObjCId ||
T->getKind() == BuiltinType::ObjCClass;
return false;
}
bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
/// Gets the interface declaration for this object type, if the base type
/// really is an interface.
ObjCInterfaceDecl *getInterface() const;
typedef ObjCProtocolDecl * const *qual_iterator;
qual_iterator qual_begin() const { return getProtocolStorage(); }
qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
bool qual_empty() const { return getNumProtocols() == 0; }
/// getNumProtocols - Return the number of qualifying protocols in this
/// interface type, or 0 if there are none.
unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
/// \brief Fetch a protocol by index.
ObjCProtocolDecl *getProtocol(unsigned I) const {
assert(I < getNumProtocols() && "Out-of-range protocol access");
return qual_begin()[I];
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == ObjCObject ||
T->getTypeClass() == ObjCInterface;
}
static bool classof(const ObjCObjectType *) { return true; }
};
/// ObjCObjectTypeImpl - A class providing a concrete implementation
/// of ObjCObjectType, so as to not increase the footprint of
/// ObjCInterfaceType. Code outside of ASTContext and the core type
/// system should not reference this type.
class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
friend class ASTContext;
// If anyone adds fields here, ObjCObjectType::getProtocolStorage()
// will need to be modified.
ObjCObjectTypeImpl(QualType Canonical, QualType Base,
ObjCProtocolDecl * const *Protocols,
unsigned NumProtocols)
: ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
public:
void Profile(llvm::FoldingSetNodeID &ID);
static void Profile(llvm::FoldingSetNodeID &ID,
QualType Base,
ObjCProtocolDecl *const *protocols,
unsigned NumProtocols);
};
inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
return reinterpret_cast<ObjCProtocolDecl**>(
static_cast<ObjCObjectTypeImpl*>(this) + 1);
}
/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
/// object oriented design. They basically correspond to C++ classes. There
/// are two kinds of interface types, normal interfaces like "NSString" and
/// qualified interfaces, which are qualified with a protocol list like
/// "NSString<NSCopyable, NSAmazing>".
///
/// ObjCInterfaceType guarantees the following properties when considered
/// as a subtype of its superclass, ObjCObjectType:
/// - There are no protocol qualifiers. To reinforce this, code which
/// tries to invoke the protocol methods via an ObjCInterfaceType will
/// fail to compile.
/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
/// T->getBaseType() == QualType(T, 0).
class ObjCInterfaceType : public ObjCObjectType {
mutable ObjCInterfaceDecl *Decl;
ObjCInterfaceType(const ObjCInterfaceDecl *D)
: ObjCObjectType(Nonce_ObjCInterface),
Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
friend class ASTContext; // ASTContext creates these.
friend class ASTReader;
friend class ObjCInterfaceDecl;
public:
/// getDecl - Get the declaration of this interface.
ObjCInterfaceDecl *getDecl() const { return Decl; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
static bool classof(const Type *T) {
return T->getTypeClass() == ObjCInterface;
}
static bool classof(const ObjCInterfaceType *) { return true; }
// Nonsense to "hide" certain members of ObjCObjectType within this
// class. People asking for protocols on an ObjCInterfaceType are
// not going to get what they want: ObjCInterfaceTypes are
// guaranteed to have no protocols.
enum {
qual_iterator,
qual_begin,
qual_end,
getNumProtocols,
getProtocol
};
};
inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
if (const ObjCInterfaceType *T =
getBaseType()->getAs<ObjCInterfaceType>())
return T->getDecl();
return 0;
}
/// ObjCObjectPointerType - Used to represent a pointer to an
/// Objective C object. These are constructed from pointer
/// declarators when the pointee type is an ObjCObjectType (or sugar
/// for one). In addition, the 'id' and 'Class' types are typedefs
/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
/// are translated into these.
///
/// Pointers to pointers to Objective C objects are still PointerTypes;
/// only the first level of pointer gets it own type implementation.
class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
QualType PointeeType;
ObjCObjectPointerType(QualType Canonical, QualType Pointee)
: Type(ObjCObjectPointer, Canonical, false, false, false, false),
PointeeType(Pointee) {}
friend class ASTContext; // ASTContext creates these.
public:
/// getPointeeType - Gets the type pointed to by this ObjC pointer.
/// The result will always be an ObjCObjectType or sugar thereof.
QualType getPointeeType() const { return PointeeType; }
/// getObjCObjectType - Gets the type pointed to by this ObjC
/// pointer. This method always returns non-null.
///
/// This method is equivalent to getPointeeType() except that
/// it discards any typedefs (or other sugar) between this
/// type and the "outermost" object type. So for:
/// @class A; @protocol P; @protocol Q;
/// typedef A<P> AP;
/// typedef A A1;
/// typedef A1<P> A1P;
/// typedef A1P<Q> A1PQ;
/// For 'A*', getObjectType() will return 'A'.
/// For 'A<P>*', getObjectType() will return 'A<P>'.
/// For 'AP*', getObjectType() will return 'A<P>'.
/// For 'A1*', getObjectType() will return 'A'.
/// For 'A1<P>*', getObjectType() will return 'A1<P>'.
/// For 'A1P*', getObjectType() will return 'A1<P>'.
/// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
/// adding protocols to a protocol-qualified base discards the
/// old qualifiers (for now). But if it didn't, getObjectType()
/// would return 'A1P<Q>' (and we'd have to make iterating over
/// qualifiers more complicated).
const ObjCObjectType *getObjectType() const {
return PointeeType->castAs<ObjCObjectType>();
}
/// getInterfaceType - If this pointer points to an Objective C
/// @interface type, gets the type for that interface. Any protocol
/// qualifiers on the interface are ignored.
///
/// \return null if the base type for this pointer is 'id' or 'Class'
const ObjCInterfaceType *getInterfaceType() const {
return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
}
/// getInterfaceDecl - If this pointer points to an Objective @interface
/// type, gets the declaration for that interface.
///
/// \return null if the base type for this pointer is 'id' or 'Class'
ObjCInterfaceDecl *getInterfaceDecl() const {
return getObjectType()->getInterface();
}
/// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
/// its object type is the primitive 'id' type with no protocols.
bool isObjCIdType() const {
return getObjectType()->isObjCUnqualifiedId();
}
/// isObjCClassType - True if this is equivalent to the 'Class' type,
/// i.e. if its object tive is the primitive 'Class' type with no protocols.
bool isObjCClassType() const {
return getObjectType()->isObjCUnqualifiedClass();
}
/// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
/// non-empty set of protocols.
bool isObjCQualifiedIdType() const {
return getObjectType()->isObjCQualifiedId();
}
/// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
/// some non-empty set of protocols.
bool isObjCQualifiedClassType() const {
return getObjectType()->isObjCQualifiedClass();
}
/// An iterator over the qualifiers on the object type. Provided
/// for convenience. This will always iterate over the full set of
/// protocols on a type, not just those provided directly.
typedef ObjCObjectType::qual_iterator qual_iterator;
qual_iterator qual_begin() const {
return getObjectType()->qual_begin();
}
qual_iterator qual_end() const {
return getObjectType()->qual_end();
}
bool qual_empty() const { return getObjectType()->qual_empty(); }
/// getNumProtocols - Return the number of qualifying protocols on
/// the object type.
unsigned getNumProtocols() const {
return getObjectType()->getNumProtocols();
}
/// \brief Retrieve a qualifying protocol by index on the object
/// type.
ObjCProtocolDecl *getProtocol(unsigned I) const {
return getObjectType()->getProtocol(I);
}
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getPointeeType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
ID.AddPointer(T.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == ObjCObjectPointer;
}
static bool classof(const ObjCObjectPointerType *) { return true; }
};
class AtomicType : public Type, public llvm::FoldingSetNode {
QualType ValueType;
AtomicType(QualType ValTy, QualType Canonical)
: Type(Atomic, Canonical, ValTy->isDependentType(),
ValTy->isInstantiationDependentType(),
ValTy->isVariablyModifiedType(),
ValTy->containsUnexpandedParameterPack()),
ValueType(ValTy) {}
friend class ASTContext; // ASTContext creates these.
public:
/// getValueType - Gets the type contained by this atomic type, i.e.
/// the type returned by performing an atomic load of this atomic type.
QualType getValueType() const { return ValueType; }
bool isSugared() const { return false; }
QualType desugar() const { return QualType(this, 0); }
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getValueType());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
ID.AddPointer(T.getAsOpaquePtr());
}
static bool classof(const Type *T) {
return T->getTypeClass() == Atomic;
}
static bool classof(const AtomicType *) { return true; }
};
/// A qualifier set is used to build a set of qualifiers.
class QualifierCollector : public Qualifiers {
public:
QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
/// Collect any qualifiers on the given type and return an
/// unqualified type. The qualifiers are assumed to be consistent
/// with those already in the type.
const Type *strip(QualType type) {
addFastQualifiers(type.getLocalFastQualifiers());
if (!type.hasLocalNonFastQualifiers())
return type.getTypePtrUnsafe();
const ExtQuals *extQuals = type.getExtQualsUnsafe();
addConsistentQualifiers(extQuals->getQualifiers());
return extQuals->getBaseType();
}
/// Apply the collected qualifiers to the given type.
QualType apply(const ASTContext &Context, QualType QT) const;
/// Apply the collected qualifiers to the given type.
QualType apply(const ASTContext &Context, const Type* T) const;
};
// Inline function definitions.
inline const Type *QualType::getTypePtr() const {
return getCommonPtr()->BaseType;
}
inline const Type *QualType::getTypePtrOrNull() const {
return (isNull() ? 0 : getCommonPtr()->BaseType);
}
inline SplitQualType QualType::split() const {
if (!hasLocalNonFastQualifiers())
return SplitQualType(getTypePtrUnsafe(),
Qualifiers::fromFastMask(getLocalFastQualifiers()));
const ExtQuals *eq = getExtQualsUnsafe();
Qualifiers qs = eq->getQualifiers();
qs.addFastQualifiers(getLocalFastQualifiers());
return SplitQualType(eq->getBaseType(), qs);
}
inline Qualifiers QualType::getLocalQualifiers() const {
Qualifiers Quals;
if (hasLocalNonFastQualifiers())
Quals = getExtQualsUnsafe()->getQualifiers();
Quals.addFastQualifiers(getLocalFastQualifiers());
return Quals;
}
inline Qualifiers QualType::getQualifiers() const {
Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
quals.addFastQualifiers(getLocalFastQualifiers());
return quals;
}
inline unsigned QualType::getCVRQualifiers() const {
unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
cvr |= getLocalCVRQualifiers();
return cvr;
}
inline QualType QualType::getCanonicalType() const {
QualType canon = getCommonPtr()->CanonicalType;
return canon.withFastQualifiers(getLocalFastQualifiers());
}
inline bool QualType::isCanonical() const {
return getTypePtr()->isCanonicalUnqualified();
}
inline bool QualType::isCanonicalAsParam() const {
if (!isCanonical()) return false;
if (hasLocalQualifiers()) return false;
const Type *T = getTypePtr();
if (T->isVariablyModifiedType() && T->hasSizedVLAType())
return false;
return !isa<FunctionType>(T) && !isa<ArrayType>(T);
}
inline bool QualType::isConstQualified() const {
return isLocalConstQualified() ||
getCommonPtr()->CanonicalType.isLocalConstQualified();
}
inline bool QualType::isRestrictQualified() const {
return isLocalRestrictQualified() ||
getCommonPtr()->CanonicalType.isLocalRestrictQualified();
}
inline bool QualType::isVolatileQualified() const {
return isLocalVolatileQualified() ||
getCommonPtr()->CanonicalType.isLocalVolatileQualified();
}
inline bool QualType::hasQualifiers() const {
return hasLocalQualifiers() ||
getCommonPtr()->CanonicalType.hasLocalQualifiers();
}
inline QualType QualType::getUnqualifiedType() const {
if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
return QualType(getTypePtr(), 0);
return QualType(getSplitUnqualifiedTypeImpl(*this).first, 0);
}
inline SplitQualType QualType::getSplitUnqualifiedType() const {
if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
return split();
return getSplitUnqualifiedTypeImpl(*this);
}
inline void QualType::removeLocalConst() {
removeLocalFastQualifiers(Qualifiers::Const);
}
inline void QualType::removeLocalRestrict() {
removeLocalFastQualifiers(Qualifiers::Restrict);
}
inline void QualType::removeLocalVolatile() {
removeLocalFastQualifiers(Qualifiers::Volatile);
}
inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
// Fast path: we don't need to touch the slow qualifiers.
removeLocalFastQualifiers(Mask);
}
/// getAddressSpace - Return the address space of this type.
inline unsigned QualType::getAddressSpace() const {
return getQualifiers().getAddressSpace();
}
/// getObjCGCAttr - Return the gc attribute of this type.
inline Qualifiers::GC QualType::getObjCGCAttr() const {
return getQualifiers().getObjCGCAttr();
}
inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
if (const PointerType *PT = t.getAs<PointerType>()) {
if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
return FT->getExtInfo();
} else if (const FunctionType *FT = t.getAs<FunctionType>())
return FT->getExtInfo();
return FunctionType::ExtInfo();
}
inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
return getFunctionExtInfo(*t);
}
/// isMoreQualifiedThan - Determine whether this type is more
/// qualified than the Other type. For example, "const volatile int"
/// is more qualified than "const int", "volatile int", and
/// "int". However, it is not more qualified than "const volatile
/// int".
inline bool QualType::isMoreQualifiedThan(QualType other) const {
Qualifiers myQuals = getQualifiers();
Qualifiers otherQuals = other.getQualifiers();
return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
}
/// isAtLeastAsQualifiedAs - Determine whether this type is at last
/// as qualified as the Other type. For example, "const volatile
/// int" is at least as qualified as "const int", "volatile int",
/// "int", and "const volatile int".
inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
return getQualifiers().compatiblyIncludes(other.getQualifiers());
}
/// getNonReferenceType - If Type is a reference type (e.g., const
/// int&), returns the type that the reference refers to ("const
/// int"). Otherwise, returns the type itself. This routine is used
/// throughout Sema to implement C++ 5p6:
///
/// If an expression initially has the type "reference to T" (8.3.2,
/// 8.5.3), the type is adjusted to "T" prior to any further
/// analysis, the expression designates the object or function
/// denoted by the reference, and the expression is an lvalue.
inline QualType QualType::getNonReferenceType() const {
if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
return RefType->getPointeeType();
else
return *this;
}
inline bool QualType::isCForbiddenLValueType() const {
return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
getTypePtr()->isFunctionType());
}
/// \brief Tests whether the type is categorized as a fundamental type.
///
/// \returns True for types specified in C++0x [basic.fundamental].
inline bool Type::isFundamentalType() const {
return isVoidType() ||
// FIXME: It's really annoying that we don't have an
// 'isArithmeticType()' which agrees with the standard definition.
(isArithmeticType() && !isEnumeralType());
}
/// \brief Tests whether the type is categorized as a compound type.
///
/// \returns True for types specified in C++0x [basic.compound].
inline bool Type::isCompoundType() const {
// C++0x [basic.compound]p1:
// Compound types can be constructed in the following ways:
// -- arrays of objects of a given type [...];
return isArrayType() ||
// -- functions, which have parameters of given types [...];
isFunctionType() ||
// -- pointers to void or objects or functions [...];
isPointerType() ||
// -- references to objects or functions of a given type. [...]
isReferenceType() ||
// -- classes containing a sequence of objects of various types, [...];
isRecordType() ||
// -- unions, which are classes capable of containing objects of different
// types at different times;
isUnionType() ||
// -- enumerations, which comprise a set of named constant values. [...];
isEnumeralType() ||
// -- pointers to non-static class members, [...].
isMemberPointerType();
}
inline bool Type::isFunctionType() const {
return isa<FunctionType>(CanonicalType);
}
inline bool Type::isPointerType() const {
return isa<PointerType>(CanonicalType);
}
inline bool Type::isAnyPointerType() const {
return isPointerType() || isObjCObjectPointerType();
}
inline bool Type::isBlockPointerType() const {
return isa<BlockPointerType>(CanonicalType);
}
inline bool Type::isReferenceType() const {
return isa<ReferenceType>(CanonicalType);
}
inline bool Type::isLValueReferenceType() const {
return isa<LValueReferenceType>(CanonicalType);
}
inline bool Type::isRValueReferenceType() const {
return isa<RValueReferenceType>(CanonicalType);
}
inline bool Type::isFunctionPointerType() const {
if (const PointerType *T = getAs<PointerType>())
return T->getPointeeType()->isFunctionType();
else
return false;
}
inline bool Type::isMemberPointerType() const {
return isa<MemberPointerType>(CanonicalType);
}
inline bool Type::isMemberFunctionPointerType() const {
if (const MemberPointerType* T = getAs<MemberPointerType>())
return T->isMemberFunctionPointer();
else
return false;
}
inline bool Type::isMemberDataPointerType() const {
if (const MemberPointerType* T = getAs<MemberPointerType>())
return T->isMemberDataPointer();
else
return false;
}
inline bool Type::isArrayType() const {
return isa<ArrayType>(CanonicalType);
}
inline bool Type::isConstantArrayType() const {
return isa<ConstantArrayType>(CanonicalType);
}
inline bool Type::isIncompleteArrayType() const {
return isa<IncompleteArrayType>(CanonicalType);
}
inline bool Type::isVariableArrayType() const {
return isa<VariableArrayType>(CanonicalType);
}
inline bool Type::isDependentSizedArrayType() const {
return isa<DependentSizedArrayType>(CanonicalType);
}
inline bool Type::isBuiltinType() const {
return isa<BuiltinType>(CanonicalType);
}
inline bool Type::isRecordType() const {
return isa<RecordType>(CanonicalType);
}
inline bool Type::isEnumeralType() const {
return isa<EnumType>(CanonicalType);
}
inline bool Type::isAnyComplexType() const {
return isa<ComplexType>(CanonicalType);
}
inline bool Type::isVectorType() const {
return isa<VectorType>(CanonicalType);
}
inline bool Type::isExtVectorType() const {
return isa<ExtVectorType>(CanonicalType);
}
inline bool Type::isObjCObjectPointerType() const {
return isa<ObjCObjectPointerType>(CanonicalType);
}
inline bool Type::isObjCObjectType() const {
return isa<ObjCObjectType>(CanonicalType);
}
inline bool Type::isObjCObjectOrInterfaceType() const {
return isa<ObjCInterfaceType>(CanonicalType) ||
isa<ObjCObjectType>(CanonicalType);
}
inline bool Type::isAtomicType() const {
return isa<AtomicType>(CanonicalType);
}
inline bool Type::isObjCQualifiedIdType() const {
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
return OPT->isObjCQualifiedIdType();
return false;
}
inline bool Type::isObjCQualifiedClassType() const {
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
return OPT->isObjCQualifiedClassType();
return false;
}
inline bool Type::isObjCIdType() const {
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
return OPT->isObjCIdType();
return false;
}
inline bool Type::isObjCClassType() const {
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
return OPT->isObjCClassType();
return false;
}
inline bool Type::isObjCSelType() const {
if (const PointerType *OPT = getAs<PointerType>())
return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
return false;
}
inline bool Type::isObjCBuiltinType() const {
return isObjCIdType() || isObjCClassType() || isObjCSelType();
}
inline bool Type::isTemplateTypeParmType() const {
return isa<TemplateTypeParmType>(CanonicalType);
}
inline bool Type::isSpecificBuiltinType(unsigned K) const {
if (const BuiltinType *BT = getAs<BuiltinType>())
if (BT->getKind() == (BuiltinType::Kind) K)
return true;
return false;
}
inline bool Type::isPlaceholderType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
return BT->isPlaceholderType();
return false;
}
inline const BuiltinType *Type::getAsPlaceholderType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
if (BT->isPlaceholderType())
return BT;
return 0;
}
inline bool Type::isSpecificPlaceholderType(unsigned K) const {
assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
return (BT->getKind() == (BuiltinType::Kind) K);
return false;
}
inline bool Type::isNonOverloadPlaceholderType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
return BT->isNonOverloadPlaceholderType();
return false;
}
/// \brief Determines whether this is a type for which one can define
/// an overloaded operator.
inline bool Type::isOverloadableType() const {
return isDependentType() || isRecordType() || isEnumeralType();
}
/// \brief Determines whether this type can decay to a pointer type.
inline bool Type::canDecayToPointerType() const {
return isFunctionType() || isArrayType();
}
inline bool Type::hasPointerRepresentation() const {
return (isPointerType() || isReferenceType() || isBlockPointerType() ||
isObjCObjectPointerType() || isNullPtrType());
}
inline bool Type::hasObjCPointerRepresentation() const {
return isObjCObjectPointerType();
}
inline const Type *Type::getBaseElementTypeUnsafe() const {
const Type *type = this;
while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
type = arrayType->getElementType().getTypePtr();
return type;
}
/// Insertion operator for diagnostics. This allows sending QualType's into a
/// diagnostic with <<.
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
QualType T) {
DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
DiagnosticsEngine::ak_qualtype);
return DB;
}
/// Insertion operator for partial diagnostics. This allows sending QualType's
/// into a diagnostic with <<.
inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
QualType T) {
PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
DiagnosticsEngine::ak_qualtype);
return PD;
}
// Helper class template that is used by Type::getAs to ensure that one does
// not try to look through a qualified type to get to an array type.
template<typename T,
bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
llvm::is_base_of<ArrayType, T>::value)>
struct ArrayType_cannot_be_used_with_getAs { };
template<typename T>
struct ArrayType_cannot_be_used_with_getAs<T, true>;
/// Member-template getAs<specific type>'.
template <typename T> const T *Type::getAs() const {
ArrayType_cannot_be_used_with_getAs<T> at;
(void)at;
// If this is directly a T type, return it.
if (const T *Ty = dyn_cast<T>(this))
return Ty;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<T>(CanonicalType))
return 0;
// If this is a typedef for the type, strip the typedef off without
// losing all typedef information.
return cast<T>(getUnqualifiedDesugaredType());
}
inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
// If this is directly an array type, return it.
if (const ArrayType *arr = dyn_cast<ArrayType>(this))
return arr;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<ArrayType>(CanonicalType))
return 0;
// If this is a typedef for the type, strip the typedef off without
// losing all typedef information.
return cast<ArrayType>(getUnqualifiedDesugaredType());
}
template <typename T> const T *Type::castAs() const {
ArrayType_cannot_be_used_with_getAs<T> at;
(void) at;
assert(isa<T>(CanonicalType));
if (const T *ty = dyn_cast<T>(this)) return ty;
return cast<T>(getUnqualifiedDesugaredType());
}
inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
assert(isa<ArrayType>(CanonicalType));
if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
return cast<ArrayType>(getUnqualifiedDesugaredType());
}
} // end namespace clang
#endif