blob: 395dcda72f334bccd18453551d6f036f6d360247 [file] [log] [blame]
//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Expr interface and subclasses for C++ expressions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_EXPRCXX_H
#define LLVM_CLANG_AST_EXPRCXX_H
#include "clang/AST/Expr.h"
#include "clang/AST/UnresolvedSet.h"
#include "clang/AST/TemplateBase.h"
#include "clang/Basic/ExpressionTraits.h"
#include "clang/Basic/Lambda.h"
#include "clang/Basic/TypeTraits.h"
namespace clang {
class CXXConstructorDecl;
class CXXDestructorDecl;
class CXXMethodDecl;
class CXXTemporary;
class TemplateArgumentListInfo;
//===--------------------------------------------------------------------===//
// C++ Expressions.
//===--------------------------------------------------------------------===//
/// \brief A call to an overloaded operator written using operator
/// syntax.
///
/// Represents a call to an overloaded operator written using operator
/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
/// normal call, this AST node provides better information about the
/// syntactic representation of the call.
///
/// In a C++ template, this expression node kind will be used whenever
/// any of the arguments are type-dependent. In this case, the
/// function itself will be a (possibly empty) set of functions and
/// function templates that were found by name lookup at template
/// definition time.
class CXXOperatorCallExpr : public CallExpr {
/// \brief The overloaded operator.
OverloadedOperatorKind Operator;
public:
CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
Expr **args, unsigned numargs, QualType t,
ExprValueKind VK, SourceLocation operatorloc)
: CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, numargs, t, VK,
operatorloc),
Operator(Op) {}
explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
CallExpr(C, CXXOperatorCallExprClass, Empty) { }
/// getOperator - Returns the kind of overloaded operator that this
/// expression refers to.
OverloadedOperatorKind getOperator() const { return Operator; }
void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
/// getOperatorLoc - Returns the location of the operator symbol in
/// the expression. When @c getOperator()==OO_Call, this is the
/// location of the right parentheses; when @c
/// getOperator()==OO_Subscript, this is the location of the right
/// bracket.
SourceLocation getOperatorLoc() const { return getRParenLoc(); }
SourceRange getSourceRange() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXOperatorCallExprClass;
}
static bool classof(const CXXOperatorCallExpr *) { return true; }
};
/// CXXMemberCallExpr - Represents a call to a member function that
/// may be written either with member call syntax (e.g., "obj.func()"
/// or "objptr->func()") or with normal function-call syntax
/// ("func()") within a member function that ends up calling a member
/// function. The callee in either case is a MemberExpr that contains
/// both the object argument and the member function, while the
/// arguments are the arguments within the parentheses (not including
/// the object argument).
class CXXMemberCallExpr : public CallExpr {
public:
CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
QualType t, ExprValueKind VK, SourceLocation RP)
: CallExpr(C, CXXMemberCallExprClass, fn, 0, args, numargs, t, VK, RP) {}
CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
: CallExpr(C, CXXMemberCallExprClass, Empty) { }
/// getImplicitObjectArgument - Retrieves the implicit object
/// argument for the member call. For example, in "x.f(5)", this
/// operation would return "x".
Expr *getImplicitObjectArgument() const;
/// Retrieves the declaration of the called method.
CXXMethodDecl *getMethodDecl() const;
/// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
/// the implicit object argument. Note that this is may not be the same
/// declaration as that of the class context of the CXXMethodDecl which this
/// function is calling.
/// FIXME: Returns 0 for member pointer call exprs.
CXXRecordDecl *getRecordDecl();
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXMemberCallExprClass;
}
static bool classof(const CXXMemberCallExpr *) { return true; }
};
/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
class CUDAKernelCallExpr : public CallExpr {
private:
enum { CONFIG, END_PREARG };
public:
CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
Expr **args, unsigned numargs, QualType t,
ExprValueKind VK, SourceLocation RP)
: CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, numargs, t, VK,
RP) {
setConfig(Config);
}
CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
: CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
const CallExpr *getConfig() const {
return cast_or_null<CallExpr>(getPreArg(CONFIG));
}
CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CUDAKernelCallExprClass;
}
static bool classof(const CUDAKernelCallExpr *) { return true; }
};
/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
/// const_cast.
///
/// This abstract class is inherited by all of the classes
/// representing "named" casts, e.g., CXXStaticCastExpr,
/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
class CXXNamedCastExpr : public ExplicitCastExpr {
private:
SourceLocation Loc; // the location of the casting op
SourceLocation RParenLoc; // the location of the right parenthesis
protected:
CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
CastKind kind, Expr *op, unsigned PathSize,
TypeSourceInfo *writtenTy, SourceLocation l,
SourceLocation RParenLoc)
: ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
RParenLoc(RParenLoc) {}
explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
: ExplicitCastExpr(SC, Shell, PathSize) { }
friend class ASTStmtReader;
public:
const char *getCastName() const;
/// \brief Retrieve the location of the cast operator keyword, e.g.,
/// "static_cast".
SourceLocation getOperatorLoc() const { return Loc; }
/// \brief Retrieve the location of the closing parenthesis.
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceRange getSourceRange() const {
return SourceRange(Loc, RParenLoc);
}
static bool classof(const Stmt *T) {
switch (T->getStmtClass()) {
case CXXStaticCastExprClass:
case CXXDynamicCastExprClass:
case CXXReinterpretCastExprClass:
case CXXConstCastExprClass:
return true;
default:
return false;
}
}
static bool classof(const CXXNamedCastExpr *) { return true; }
};
/// CXXStaticCastExpr - A C++ @c static_cast expression
/// (C++ [expr.static.cast]).
///
/// This expression node represents a C++ static cast, e.g.,
/// @c static_cast<int>(1.0).
class CXXStaticCastExpr : public CXXNamedCastExpr {
CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
unsigned pathSize, TypeSourceInfo *writtenTy,
SourceLocation l, SourceLocation RParenLoc)
: CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
writtenTy, l, RParenLoc) {}
explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
: CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
public:
static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
ExprValueKind VK, CastKind K, Expr *Op,
const CXXCastPath *Path,
TypeSourceInfo *Written, SourceLocation L,
SourceLocation RParenLoc);
static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
unsigned PathSize);
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXStaticCastExprClass;
}
static bool classof(const CXXStaticCastExpr *) { return true; }
};
/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
/// determine how to perform the type cast.
///
/// This expression node represents a dynamic cast, e.g.,
/// @c dynamic_cast<Derived*>(BasePtr).
class CXXDynamicCastExpr : public CXXNamedCastExpr {
CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
SourceLocation l, SourceLocation RParenLoc)
: CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
writtenTy, l, RParenLoc) {}
explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
: CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
public:
static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
ExprValueKind VK, CastKind Kind, Expr *Op,
const CXXCastPath *Path,
TypeSourceInfo *Written, SourceLocation L,
SourceLocation RParenLoc);
static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
unsigned pathSize);
bool isAlwaysNull() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXDynamicCastExprClass;
}
static bool classof(const CXXDynamicCastExpr *) { return true; }
};
/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
/// [expr.reinterpret.cast]), which provides a differently-typed view
/// of a value but performs no actual work at run time.
///
/// This expression node represents a reinterpret cast, e.g.,
/// @c reinterpret_cast<int>(VoidPtr).
class CXXReinterpretCastExpr : public CXXNamedCastExpr {
CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
Expr *op, unsigned pathSize,
TypeSourceInfo *writtenTy, SourceLocation l,
SourceLocation RParenLoc)
: CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
pathSize, writtenTy, l, RParenLoc) {}
CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
: CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
public:
static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
ExprValueKind VK, CastKind Kind,
Expr *Op, const CXXCastPath *Path,
TypeSourceInfo *WrittenTy, SourceLocation L,
SourceLocation RParenLoc);
static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
unsigned pathSize);
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXReinterpretCastExprClass;
}
static bool classof(const CXXReinterpretCastExpr *) { return true; }
};
/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
/// which can remove type qualifiers but does not change the underlying value.
///
/// This expression node represents a const cast, e.g.,
/// @c const_cast<char*>(PtrToConstChar).
class CXXConstCastExpr : public CXXNamedCastExpr {
CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
TypeSourceInfo *writtenTy, SourceLocation l,
SourceLocation RParenLoc)
: CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
0, writtenTy, l, RParenLoc) {}
explicit CXXConstCastExpr(EmptyShell Empty)
: CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
public:
static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
ExprValueKind VK, Expr *Op,
TypeSourceInfo *WrittenTy, SourceLocation L,
SourceLocation RParenLoc);
static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXConstCastExprClass;
}
static bool classof(const CXXConstCastExpr *) { return true; }
};
/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
///
class CXXBoolLiteralExpr : public Expr {
bool Value;
SourceLocation Loc;
public:
CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
false, false),
Value(val), Loc(l) {}
explicit CXXBoolLiteralExpr(EmptyShell Empty)
: Expr(CXXBoolLiteralExprClass, Empty) { }
bool getValue() const { return Value; }
void setValue(bool V) { Value = V; }
SourceRange getSourceRange() const { return SourceRange(Loc); }
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXBoolLiteralExprClass;
}
static bool classof(const CXXBoolLiteralExpr *) { return true; }
// Iterators
child_range children() { return child_range(); }
};
/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
class CXXNullPtrLiteralExpr : public Expr {
SourceLocation Loc;
public:
CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
false, false),
Loc(l) {}
explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
: Expr(CXXNullPtrLiteralExprClass, Empty) { }
SourceRange getSourceRange() const { return SourceRange(Loc); }
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXNullPtrLiteralExprClass;
}
static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
child_range children() { return child_range(); }
};
/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
/// the type_info that corresponds to the supplied type, or the (possibly
/// dynamic) type of the supplied expression.
///
/// This represents code like @c typeid(int) or @c typeid(*objPtr)
class CXXTypeidExpr : public Expr {
private:
llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
SourceRange Range;
public:
CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
: Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
// typeid is never type-dependent (C++ [temp.dep.expr]p4)
false,
// typeid is value-dependent if the type or expression are dependent
Operand->getType()->isDependentType(),
Operand->getType()->isInstantiationDependentType(),
Operand->getType()->containsUnexpandedParameterPack()),
Operand(Operand), Range(R) { }
CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
: Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
// typeid is never type-dependent (C++ [temp.dep.expr]p4)
false,
// typeid is value-dependent if the type or expression are dependent
Operand->isTypeDependent() || Operand->isValueDependent(),
Operand->isInstantiationDependent(),
Operand->containsUnexpandedParameterPack()),
Operand(Operand), Range(R) { }
CXXTypeidExpr(EmptyShell Empty, bool isExpr)
: Expr(CXXTypeidExprClass, Empty) {
if (isExpr)
Operand = (Expr*)0;
else
Operand = (TypeSourceInfo*)0;
}
bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
/// \brief Retrieves the type operand of this typeid() expression after
/// various required adjustments (removing reference types, cv-qualifiers).
QualType getTypeOperand() const;
/// \brief Retrieve source information for the type operand.
TypeSourceInfo *getTypeOperandSourceInfo() const {
assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
return Operand.get<TypeSourceInfo *>();
}
void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
Operand = TSI;
}
Expr *getExprOperand() const {
assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
return static_cast<Expr*>(Operand.get<Stmt *>());
}
void setExprOperand(Expr *E) {
assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
Operand = E;
}
SourceRange getSourceRange() const { return Range; }
void setSourceRange(SourceRange R) { Range = R; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXTypeidExprClass;
}
static bool classof(const CXXTypeidExpr *) { return true; }
// Iterators
child_range children() {
if (isTypeOperand()) return child_range();
Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
return child_range(begin, begin + 1);
}
};
/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
/// the _GUID that corresponds to the supplied type or expression.
///
/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
class CXXUuidofExpr : public Expr {
private:
llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
SourceRange Range;
public:
CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
: Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
false, Operand->getType()->isDependentType(),
Operand->getType()->isInstantiationDependentType(),
Operand->getType()->containsUnexpandedParameterPack()),
Operand(Operand), Range(R) { }
CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
: Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
false, Operand->isTypeDependent(),
Operand->isInstantiationDependent(),
Operand->containsUnexpandedParameterPack()),
Operand(Operand), Range(R) { }
CXXUuidofExpr(EmptyShell Empty, bool isExpr)
: Expr(CXXUuidofExprClass, Empty) {
if (isExpr)
Operand = (Expr*)0;
else
Operand = (TypeSourceInfo*)0;
}
bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
/// \brief Retrieves the type operand of this __uuidof() expression after
/// various required adjustments (removing reference types, cv-qualifiers).
QualType getTypeOperand() const;
/// \brief Retrieve source information for the type operand.
TypeSourceInfo *getTypeOperandSourceInfo() const {
assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
return Operand.get<TypeSourceInfo *>();
}
void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
Operand = TSI;
}
Expr *getExprOperand() const {
assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
return static_cast<Expr*>(Operand.get<Stmt *>());
}
void setExprOperand(Expr *E) {
assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
Operand = E;
}
SourceRange getSourceRange() const { return Range; }
void setSourceRange(SourceRange R) { Range = R; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXUuidofExprClass;
}
static bool classof(const CXXUuidofExpr *) { return true; }
// Iterators
child_range children() {
if (isTypeOperand()) return child_range();
Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
return child_range(begin, begin + 1);
}
};
/// CXXThisExpr - Represents the "this" expression in C++, which is a
/// pointer to the object on which the current member function is
/// executing (C++ [expr.prim]p3). Example:
///
/// @code
/// class Foo {
/// public:
/// void bar();
/// void test() { this->bar(); }
/// };
/// @endcode
class CXXThisExpr : public Expr {
SourceLocation Loc;
bool Implicit : 1;
public:
CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
: Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
// 'this' is type-dependent if the class type of the enclosing
// member function is dependent (C++ [temp.dep.expr]p2)
Type->isDependentType(), Type->isDependentType(),
Type->isInstantiationDependentType(),
/*ContainsUnexpandedParameterPack=*/false),
Loc(L), Implicit(isImplicit) { }
CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
SourceRange getSourceRange() const { return SourceRange(Loc); }
bool isImplicit() const { return Implicit; }
void setImplicit(bool I) { Implicit = I; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXThisExprClass;
}
static bool classof(const CXXThisExpr *) { return true; }
// Iterators
child_range children() { return child_range(); }
};
/// CXXThrowExpr - [C++ 15] C++ Throw Expression. This handles
/// 'throw' and 'throw' assignment-expression. When
/// assignment-expression isn't present, Op will be null.
///
class CXXThrowExpr : public Expr {
Stmt *Op;
SourceLocation ThrowLoc;
/// \brief Whether the thrown variable (if any) is in scope.
unsigned IsThrownVariableInScope : 1;
friend class ASTStmtReader;
public:
// Ty is the void type which is used as the result type of the
// exepression. The l is the location of the throw keyword. expr
// can by null, if the optional expression to throw isn't present.
CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
bool IsThrownVariableInScope) :
Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
expr && expr->isInstantiationDependent(),
expr && expr->containsUnexpandedParameterPack()),
Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
SourceLocation getThrowLoc() const { return ThrowLoc; }
/// \brief Determines whether the variable thrown by this expression (if any!)
/// is within the innermost try block.
///
/// This information is required to determine whether the NRVO can apply to
/// this variable.
bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
SourceRange getSourceRange() const {
if (getSubExpr() == 0)
return SourceRange(ThrowLoc, ThrowLoc);
return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXThrowExprClass;
}
static bool classof(const CXXThrowExpr *) { return true; }
// Iterators
child_range children() {
return child_range(&Op, Op ? &Op+1 : &Op);
}
};
/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
/// function call argument that was created from the corresponding
/// parameter's default argument, when the call did not explicitly
/// supply arguments for all of the parameters.
class CXXDefaultArgExpr : public Expr {
/// \brief The parameter whose default is being used.
///
/// When the bit is set, the subexpression is stored after the
/// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
/// actual default expression is the subexpression.
llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
/// \brief The location where the default argument expression was used.
SourceLocation Loc;
CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
: Expr(SC,
param->hasUnparsedDefaultArg()
? param->getType().getNonReferenceType()
: param->getDefaultArg()->getType(),
param->getDefaultArg()->getValueKind(),
param->getDefaultArg()->getObjectKind(), false, false, false, false),
Param(param, false), Loc(Loc) { }
CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
Expr *SubExpr)
: Expr(SC, SubExpr->getType(),
SubExpr->getValueKind(), SubExpr->getObjectKind(),
false, false, false, false),
Param(param, true), Loc(Loc) {
*reinterpret_cast<Expr **>(this + 1) = SubExpr;
}
public:
CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
// Param is the parameter whose default argument is used by this
// expression.
static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
ParmVarDecl *Param) {
return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
}
// Param is the parameter whose default argument is used by this
// expression, and SubExpr is the expression that will actually be used.
static CXXDefaultArgExpr *Create(ASTContext &C,
SourceLocation Loc,
ParmVarDecl *Param,
Expr *SubExpr);
// Retrieve the parameter that the argument was created from.
const ParmVarDecl *getParam() const { return Param.getPointer(); }
ParmVarDecl *getParam() { return Param.getPointer(); }
// Retrieve the actual argument to the function call.
const Expr *getExpr() const {
if (Param.getInt())
return *reinterpret_cast<Expr const * const*> (this + 1);
return getParam()->getDefaultArg();
}
Expr *getExpr() {
if (Param.getInt())
return *reinterpret_cast<Expr **> (this + 1);
return getParam()->getDefaultArg();
}
/// \brief Retrieve the location where this default argument was actually
/// used.
SourceLocation getUsedLocation() const { return Loc; }
SourceRange getSourceRange() const {
// Default argument expressions have no representation in the
// source, so they have an empty source range.
return SourceRange();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXDefaultArgExprClass;
}
static bool classof(const CXXDefaultArgExpr *) { return true; }
// Iterators
child_range children() { return child_range(); }
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// CXXTemporary - Represents a C++ temporary.
class CXXTemporary {
/// Destructor - The destructor that needs to be called.
const CXXDestructorDecl *Destructor;
CXXTemporary(const CXXDestructorDecl *destructor)
: Destructor(destructor) { }
public:
static CXXTemporary *Create(ASTContext &C,
const CXXDestructorDecl *Destructor);
const CXXDestructorDecl *getDestructor() const { return Destructor; }
};
/// \brief Represents binding an expression to a temporary.
///
/// This ensures the destructor is called for the temporary. It should only be
/// needed for non-POD, non-trivially destructable class types. For example:
///
/// \code
/// struct S {
/// S() { } // User defined constructor makes S non-POD.
/// ~S() { } // User defined destructor makes it non-trivial.
/// };
/// void test() {
/// const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
/// }
/// \endcode
class CXXBindTemporaryExpr : public Expr {
CXXTemporary *Temp;
Stmt *SubExpr;
CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
: Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
SubExpr->isValueDependent(),
SubExpr->isInstantiationDependent(),
SubExpr->containsUnexpandedParameterPack()),
Temp(temp), SubExpr(SubExpr) { }
public:
CXXBindTemporaryExpr(EmptyShell Empty)
: Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
Expr* SubExpr);
CXXTemporary *getTemporary() { return Temp; }
const CXXTemporary *getTemporary() const { return Temp; }
void setTemporary(CXXTemporary *T) { Temp = T; }
const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
Expr *getSubExpr() { return cast<Expr>(SubExpr); }
void setSubExpr(Expr *E) { SubExpr = E; }
SourceRange getSourceRange() const {
return SubExpr->getSourceRange();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXBindTemporaryExprClass;
}
static bool classof(const CXXBindTemporaryExpr *) { return true; }
// Iterators
child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
};
/// CXXConstructExpr - Represents a call to a C++ constructor.
class CXXConstructExpr : public Expr {
public:
enum ConstructionKind {
CK_Complete,
CK_NonVirtualBase,
CK_VirtualBase,
CK_Delegating
};
private:
CXXConstructorDecl *Constructor;
SourceLocation Loc;
SourceRange ParenRange;
unsigned NumArgs : 16;
bool Elidable : 1;
bool HadMultipleCandidates : 1;
bool ZeroInitialization : 1;
unsigned ConstructKind : 2;
Stmt **Args;
protected:
CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
SourceLocation Loc,
CXXConstructorDecl *d, bool elidable,
Expr **args, unsigned numargs,
bool HadMultipleCandidates,
bool ZeroInitialization = false,
ConstructionKind ConstructKind = CK_Complete,
SourceRange ParenRange = SourceRange());
/// \brief Construct an empty C++ construction expression.
CXXConstructExpr(StmtClass SC, EmptyShell Empty)
: Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(0),
HadMultipleCandidates(false), ZeroInitialization(0),
ConstructKind(0), Args(0) { }
public:
/// \brief Construct an empty C++ construction expression.
explicit CXXConstructExpr(EmptyShell Empty)
: Expr(CXXConstructExprClass, Empty), Constructor(0),
NumArgs(0), Elidable(0), HadMultipleCandidates(false),
ZeroInitialization(0), ConstructKind(0), Args(0) { }
static CXXConstructExpr *Create(ASTContext &C, QualType T,
SourceLocation Loc,
CXXConstructorDecl *D, bool Elidable,
Expr **Args, unsigned NumArgs,
bool HadMultipleCandidates,
bool ZeroInitialization = false,
ConstructionKind ConstructKind = CK_Complete,
SourceRange ParenRange = SourceRange());
CXXConstructorDecl* getConstructor() const { return Constructor; }
void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation Loc) { this->Loc = Loc; }
/// \brief Whether this construction is elidable.
bool isElidable() const { return Elidable; }
void setElidable(bool E) { Elidable = E; }
/// \brief Whether the referred constructor was resolved from
/// an overloaded set having size greater than 1.
bool hadMultipleCandidates() const { return HadMultipleCandidates; }
void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
/// \brief Whether this construction first requires
/// zero-initialization before the initializer is called.
bool requiresZeroInitialization() const { return ZeroInitialization; }
void setRequiresZeroInitialization(bool ZeroInit) {
ZeroInitialization = ZeroInit;
}
/// \brief Determines whether this constructor is actually constructing
/// a base class (rather than a complete object).
ConstructionKind getConstructionKind() const {
return (ConstructionKind)ConstructKind;
}
void setConstructionKind(ConstructionKind CK) {
ConstructKind = CK;
}
typedef ExprIterator arg_iterator;
typedef ConstExprIterator const_arg_iterator;
arg_iterator arg_begin() { return Args; }
arg_iterator arg_end() { return Args + NumArgs; }
const_arg_iterator arg_begin() const { return Args; }
const_arg_iterator arg_end() const { return Args + NumArgs; }
Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
unsigned getNumArgs() const { return NumArgs; }
/// getArg - Return the specified argument.
Expr *getArg(unsigned Arg) {
assert(Arg < NumArgs && "Arg access out of range!");
return cast<Expr>(Args[Arg]);
}
const Expr *getArg(unsigned Arg) const {
assert(Arg < NumArgs && "Arg access out of range!");
return cast<Expr>(Args[Arg]);
}
/// setArg - Set the specified argument.
void setArg(unsigned Arg, Expr *ArgExpr) {
assert(Arg < NumArgs && "Arg access out of range!");
Args[Arg] = ArgExpr;
}
SourceRange getSourceRange() const;
SourceRange getParenRange() const { return ParenRange; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXConstructExprClass ||
T->getStmtClass() == CXXTemporaryObjectExprClass;
}
static bool classof(const CXXConstructExpr *) { return true; }
// Iterators
child_range children() {
return child_range(&Args[0], &Args[0]+NumArgs);
}
friend class ASTStmtReader;
};
/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
/// x = int(0.5);
class CXXFunctionalCastExpr : public ExplicitCastExpr {
SourceLocation TyBeginLoc;
SourceLocation RParenLoc;
CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
TypeSourceInfo *writtenTy,
SourceLocation tyBeginLoc, CastKind kind,
Expr *castExpr, unsigned pathSize,
SourceLocation rParenLoc)
: ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
castExpr, pathSize, writtenTy),
TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
: ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
public:
static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
ExprValueKind VK,
TypeSourceInfo *Written,
SourceLocation TyBeginLoc,
CastKind Kind, Expr *Op,
const CXXCastPath *Path,
SourceLocation RPLoc);
static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
unsigned PathSize);
SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceRange getSourceRange() const {
return SourceRange(TyBeginLoc, RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXFunctionalCastExprClass;
}
static bool classof(const CXXFunctionalCastExpr *) { return true; }
};
/// @brief Represents a C++ functional cast expression that builds a
/// temporary object.
///
/// This expression type represents a C++ "functional" cast
/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
/// constructor to build a temporary object. With N == 1 arguments the
/// functional cast expression will be represented by CXXFunctionalCastExpr.
/// Example:
/// @code
/// struct X { X(int, float); }
///
/// X create_X() {
/// return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
/// };
/// @endcode
class CXXTemporaryObjectExpr : public CXXConstructExpr {
TypeSourceInfo *Type;
public:
CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
TypeSourceInfo *Type,
Expr **Args,unsigned NumArgs,
SourceRange parenRange,
bool HadMultipleCandidates,
bool ZeroInitialization = false);
explicit CXXTemporaryObjectExpr(EmptyShell Empty)
: CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
TypeSourceInfo *getTypeSourceInfo() const { return Type; }
SourceRange getSourceRange() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXTemporaryObjectExprClass;
}
static bool classof(const CXXTemporaryObjectExpr *) { return true; }
friend class ASTStmtReader;
};
/// \brief A C++ lambda expression, which produces a function object
/// (of unspecified type) that can be invoked later.
///
/// Example:
/// \code
/// void low_pass_filter(std::vector<double> &values, double cutoff) {
/// values.erase(std::remove_if(values.begin(), values.end(),
// [=](double value) { return value > cutoff; });
/// }
/// \endcode
///
/// Lambda expressions can capture local variables, either by copying
/// the values of those local variables at the time the function
/// object is constructed (not when it is called!) or by holding a
/// reference to the local variable. These captures can occur either
/// implicitly or can be written explicitly between the square
/// brackets ([...]) that start the lambda expression.
class LambdaExpr : public Expr {
enum {
/// \brief Flag used by the Capture class to indicate that the given
/// capture was implicit.
Capture_Implicit = 0x01,
/// \brief Flag used by the Capture class to indciate that the
/// given capture was by-copy.
Capture_ByCopy = 0x02
};
/// \brief The source range that covers the lambda introducer ([...]).
SourceRange IntroducerRange;
/// \brief The number of captures in this lambda.
unsigned NumCaptures : 16;
/// \brief The number of explicit captures in this lambda.
unsigned NumExplicitCaptures : 13;
/// \brief The default capture kind, which is a value of type
/// LambdaCaptureDefault.
unsigned CaptureDefault : 2;
/// \brief Whether this lambda had an explicit parameter list vs. an
/// implicit (and empty) parameter list.
unsigned ExplicitParams : 1;
/// \brief The location of the closing brace ('}') that completes
/// the lambda.
///
/// The location of the brace is also available by looking up the
/// function call operator in the lambda class. However, it is
/// stored here to improve the performance of getSourceRange(), and
/// to avoid having to deserialize the function call operator from a
/// module file just to determine the source range.
SourceLocation ClosingBrace;
// Note: The Create method allocates storage after the LambdaExpr
// object, which contains the captures, followed by the capture
// initializers, and finally the body of the lambda. The capture
// initializers and lambda body are placed next to each other so
// that the children() function can visit all of them easily.
public:
/// \brief Describes the capture of either a variable or 'this'.
class Capture {
llvm::PointerIntPair<VarDecl *, 2> VarAndBits;
SourceLocation Loc;
SourceLocation EllipsisLoc;
friend class ASTStmtReader;
friend class ASTStmtWriter;
public:
/// \brief Create a new capture.
///
/// \param Loc The source location associated with this capture.
///
/// \param Kind The kind of capture (this, byref, bycopy).
///
/// \param Implicit Whether the capture was implicit or explicit.
///
/// \param Var The local variable being captured, or null if capturing this.
///
/// \param EllipsisLoc The location of the ellipsis (...) for a
/// capture that is a pack expansion, or an invalid source
/// location to indicate that this is not a pack expansion.
Capture(SourceLocation Loc, bool Implicit,
LambdaCaptureKind Kind, VarDecl *Var = 0,
SourceLocation EllipsisLoc = SourceLocation());
/// \brief Determine the kind of capture.
LambdaCaptureKind getCaptureKind() const;
/// \brief Determine whether this capture handles the C++ 'this'
/// pointer.
bool capturesThis() const { return VarAndBits.getPointer() == 0; }
/// \brief Determine whether this capture handles a variable.
bool capturesVariable() const { return VarAndBits.getPointer() != 0; }
/// \brief Retrieve the declaration of the local variable being
/// captured.
///
/// This operation is only valid if this capture does not capture
/// 'this'.
VarDecl *getCapturedVar() const {
assert(!capturesThis() && "No variable available for 'this' capture");
return VarAndBits.getPointer();
}
/// \brief Determine whether this was an implicit capture (not
/// written between the square brackets introducing the lambda).
bool isImplicit() const { return VarAndBits.getInt() & Capture_Implicit; }
/// \brief Determine whether this was an explicit capture, written
/// between the square brackets introducing the lambda.
bool isExplicit() const { return !isImplicit(); }
/// \brief Retrieve the source location of the capture.
///
/// For an explicit capture, this returns the location of the
/// explicit capture in the source. For an implicit capture, this
/// returns the location at which the variable or 'this' was first
/// used.
SourceLocation getLocation() const { return Loc; }
/// \brief Determine whether this capture is a pack expansion,
/// which captures a function parameter pack.
bool isPackExpansion() const { return EllipsisLoc.isValid(); }
/// \brief Retrieve the location of the ellipsis for a capture
/// that is a pack expansion.
SourceLocation getEllipsisLoc() const {
assert(isPackExpansion() && "No ellipsis location for a non-expansion");
return EllipsisLoc;
}
};
private:
/// \brief Construct a lambda expression.
LambdaExpr(QualType T, SourceRange IntroducerRange,
LambdaCaptureDefault CaptureDefault,
ArrayRef<Capture> Captures,
bool ExplicitParams,
ArrayRef<Expr *> CaptureInits,
SourceLocation ClosingBrace);
Stmt **getStoredStmts() const {
LambdaExpr *This = const_cast<LambdaExpr *>(this);
return reinterpret_cast<Stmt **>(reinterpret_cast<Capture *>(This + 1)
+ NumCaptures);
}
public:
/// \brief Construct a new lambda expression.
static LambdaExpr *Create(ASTContext &C,
CXXRecordDecl *Class,
SourceRange IntroducerRange,
LambdaCaptureDefault CaptureDefault,
ArrayRef<Capture> Captures,
bool ExplicitParams,
ArrayRef<Expr *> CaptureInits,
SourceLocation ClosingBrace);
/// \brief Determine the default capture kind for this lambda.
LambdaCaptureDefault getCaptureDefault() const {
return static_cast<LambdaCaptureDefault>(CaptureDefault);
}
/// \brief An iterator that walks over the captures of the lambda,
/// both implicit and explicit.
typedef const Capture *capture_iterator;
/// \brief Retrieve an iterator pointing to the first lambda capture.
capture_iterator capture_begin() const {
return reinterpret_cast<const Capture *>(this + 1);
}
/// \brief Retrieve an iterator pointing past the end of the
/// sequence of lambda captures.
capture_iterator capture_end() const {
return capture_begin() + NumCaptures;
}
/// \brief Retrieve an iterator pointing to the first explicit
/// lambda capture.
capture_iterator explicit_capture_begin() const {
return capture_begin();
}
/// \brief Retrieve an iterator pointing past the end of the sequence of
/// explicit lambda captures.
capture_iterator explicit_capture_end() const {
return capture_begin() + NumExplicitCaptures;
}
/// \brief Retrieve an iterator pointing to the first implicit
/// lambda capture.
capture_iterator implicit_capture_begin() const {
return explicit_capture_end();
}
/// \brief Retrieve an iterator pointing past the end of the sequence of
/// implicit lambda captures.
capture_iterator implicit_capture_end() const {
return capture_end();
}
/// \brief Iterator that walks over the capture initialization
/// arguments.
typedef Expr **capture_init_iterator;
/// \brief Retrieve the first initialization argument for this
/// lambda expression (which initializes the first capture field).
capture_init_iterator capture_init_begin() const {
return reinterpret_cast<Expr **>(getStoredStmts());
}
/// \brief Retrieve the iterator pointing one past the last
/// initialization argument for this lambda expression.
capture_init_iterator capture_init_end() const {
return capture_init_begin() + NumCaptures;
}
/// \brief Retrieve the source range covering the lambda introducer,
/// which contains the explicit capture list surrounded by square
/// brackets ([...]).
SourceRange getIntroducerRange() const { return IntroducerRange; }
/// \brief Retrieve the class that corresponds to the lambda, which
/// stores the captures in its fields and provides the various
/// operations permitted on a lambda (copying, calling).
CXXRecordDecl *getLambdaClass() const;
/// \brief Retrieve the function call operator associated with this
/// lambda expression.
CXXMethodDecl *getCallOperator() const;
/// \brief Retrieve the body of the lambda.
CompoundStmt *getBody() const {
return reinterpret_cast<CompoundStmt *>(getStoredStmts()[NumCaptures]);
}
/// \brief Determine whether the lambda is mutable, meaning that any
/// captures values can be modified.
bool isMutable() const;
/// \brief Determine whether this lambda has an explicit parameter
/// list vs. an implicit (empty) parameter list.
bool hasExplicitParameters() const { return ExplicitParams; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == LambdaExprClass;
}
static bool classof(const LambdaExpr *) { return true; }
SourceRange getSourceRange() const {
return SourceRange(IntroducerRange.getBegin(), ClosingBrace);
}
child_range children() {
return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
}
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
/// Expression "T()" which creates a value-initialized rvalue of type
/// T, which is a non-class type.
///
class CXXScalarValueInitExpr : public Expr {
SourceLocation RParenLoc;
TypeSourceInfo *TypeInfo;
friend class ASTStmtReader;
public:
/// \brief Create an explicitly-written scalar-value initialization
/// expression.
CXXScalarValueInitExpr(QualType Type,
TypeSourceInfo *TypeInfo,
SourceLocation rParenLoc ) :
Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
false, false, Type->isInstantiationDependentType(), false),
RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
explicit CXXScalarValueInitExpr(EmptyShell Shell)
: Expr(CXXScalarValueInitExprClass, Shell) { }
TypeSourceInfo *getTypeSourceInfo() const {
return TypeInfo;
}
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceRange getSourceRange() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXScalarValueInitExprClass;
}
static bool classof(const CXXScalarValueInitExpr *) { return true; }
// Iterators
child_range children() { return child_range(); }
};
/// CXXNewExpr - A new expression for memory allocation and constructor calls,
/// e.g: "new CXXNewExpr(foo)".
class CXXNewExpr : public Expr {
// Was the usage ::new, i.e. is the global new to be used?
bool GlobalNew : 1;
// Is there an initializer? If not, built-ins are uninitialized, else they're
// value-initialized.
bool Initializer : 1;
// Do we allocate an array? If so, the first SubExpr is the size expression.
bool Array : 1;
// If this is an array allocation, does the usual deallocation
// function for the allocated type want to know the allocated size?
bool UsualArrayDeleteWantsSize : 1;
// Whether the referred constructor (if any) was resolved from an
// overload set having size greater than 1.
bool HadMultipleCandidates : 1;
// The number of placement new arguments.
unsigned NumPlacementArgs : 13;
// The number of constructor arguments. This may be 1 even for non-class
// types; use the pseudo copy constructor.
unsigned NumConstructorArgs : 14;
// Contains an optional array size expression, any number of optional
// placement arguments, and any number of optional constructor arguments,
// in that order.
Stmt **SubExprs;
// Points to the allocation function used.
FunctionDecl *OperatorNew;
// Points to the deallocation function used in case of error. May be null.
FunctionDecl *OperatorDelete;
// Points to the constructor used. Cannot be null if AllocType is a record;
// it would still point at the default constructor (even an implicit one).
// Must be null for all other types.
CXXConstructorDecl *Constructor;
/// \brief The allocated type-source information, as written in the source.
TypeSourceInfo *AllocatedTypeInfo;
/// \brief If the allocated type was expressed as a parenthesized type-id,
/// the source range covering the parenthesized type-id.
SourceRange TypeIdParens;
SourceLocation StartLoc;
SourceLocation EndLoc;
SourceLocation ConstructorLParen;
SourceLocation ConstructorRParen;
friend class ASTStmtReader;
public:
CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
Expr **placementArgs, unsigned numPlaceArgs,
SourceRange TypeIdParens,
Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
Expr **constructorArgs, unsigned numConsArgs,
bool HadMultipleCandidates,
FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
QualType ty, TypeSourceInfo *AllocatedTypeInfo,
SourceLocation startLoc, SourceLocation endLoc,
SourceLocation constructorLParen,
SourceLocation constructorRParen);
explicit CXXNewExpr(EmptyShell Shell)
: Expr(CXXNewExprClass, Shell), SubExprs(0) { }
void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
unsigned numConsArgs);
QualType getAllocatedType() const {
assert(getType()->isPointerType());
return getType()->getAs<PointerType>()->getPointeeType();
}
TypeSourceInfo *getAllocatedTypeSourceInfo() const {
return AllocatedTypeInfo;
}
/// \brief True if the allocation result needs to be null-checked.
/// C++0x [expr.new]p13:
/// If the allocation function returns null, initialization shall
/// not be done, the deallocation function shall not be called,
/// and the value of the new-expression shall be null.
/// An allocation function is not allowed to return null unless it
/// has a non-throwing exception-specification. The '03 rule is
/// identical except that the definition of a non-throwing
/// exception specification is just "is it throw()?".
bool shouldNullCheckAllocation(ASTContext &Ctx) const;
FunctionDecl *getOperatorNew() const { return OperatorNew; }
void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
CXXConstructorDecl *getConstructor() const { return Constructor; }
void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
bool isArray() const { return Array; }
Expr *getArraySize() {
return Array ? cast<Expr>(SubExprs[0]) : 0;
}
const Expr *getArraySize() const {
return Array ? cast<Expr>(SubExprs[0]) : 0;
}
unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
Expr **getPlacementArgs() {
return reinterpret_cast<Expr **>(SubExprs + Array);
}
Expr *getPlacementArg(unsigned i) {
assert(i < NumPlacementArgs && "Index out of range");
return cast<Expr>(SubExprs[Array + i]);
}
const Expr *getPlacementArg(unsigned i) const {
assert(i < NumPlacementArgs && "Index out of range");
return cast<Expr>(SubExprs[Array + i]);
}
bool isParenTypeId() const { return TypeIdParens.isValid(); }
SourceRange getTypeIdParens() const { return TypeIdParens; }
bool isGlobalNew() const { return GlobalNew; }
bool hasInitializer() const { return Initializer; }
/// Answers whether the usual array deallocation function for the
/// allocated type expects the size of the allocation as a
/// parameter.
bool doesUsualArrayDeleteWantSize() const {
return UsualArrayDeleteWantsSize;
}
unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
Expr **getConstructorArgs() {
return reinterpret_cast<Expr **>(SubExprs + Array + NumPlacementArgs);
}
Expr *getConstructorArg(unsigned i) {
assert(i < NumConstructorArgs && "Index out of range");
return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
}
const Expr *getConstructorArg(unsigned i) const {
assert(i < NumConstructorArgs && "Index out of range");
return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
}
/// \brief Whether the new expression refers a constructor that was
/// resolved from an overloaded set having size greater than 1.
bool hadMultipleCandidates() const { return HadMultipleCandidates; }
void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
typedef ExprIterator arg_iterator;
typedef ConstExprIterator const_arg_iterator;
arg_iterator placement_arg_begin() {
return SubExprs + Array;
}
arg_iterator placement_arg_end() {
return SubExprs + Array + getNumPlacementArgs();
}
const_arg_iterator placement_arg_begin() const {
return SubExprs + Array;
}
const_arg_iterator placement_arg_end() const {
return SubExprs + Array + getNumPlacementArgs();
}
arg_iterator constructor_arg_begin() {
return SubExprs + Array + getNumPlacementArgs();
}
arg_iterator constructor_arg_end() {
return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
}
const_arg_iterator constructor_arg_begin() const {
return SubExprs + Array + getNumPlacementArgs();
}
const_arg_iterator constructor_arg_end() const {
return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
}
typedef Stmt **raw_arg_iterator;
raw_arg_iterator raw_arg_begin() { return SubExprs; }
raw_arg_iterator raw_arg_end() {
return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
}
const_arg_iterator raw_arg_begin() const { return SubExprs; }
const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
SourceLocation getStartLoc() const { return StartLoc; }
SourceLocation getEndLoc() const { return EndLoc; }
SourceLocation getConstructorLParen() const { return ConstructorLParen; }
SourceLocation getConstructorRParen() const { return ConstructorRParen; }
SourceRange getSourceRange() const {
return SourceRange(StartLoc, EndLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXNewExprClass;
}
static bool classof(const CXXNewExpr *) { return true; }
// Iterators
child_range children() {
return child_range(&SubExprs[0],
&SubExprs[0] + Array + getNumPlacementArgs()
+ getNumConstructorArgs());
}
};
/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
/// calls, e.g. "delete[] pArray".
class CXXDeleteExpr : public Expr {
// Is this a forced global delete, i.e. "::delete"?
bool GlobalDelete : 1;
// Is this the array form of delete, i.e. "delete[]"?
bool ArrayForm : 1;
// ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
// to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
// will be true).
bool ArrayFormAsWritten : 1;
// Does the usual deallocation function for the element type require
// a size_t argument?
bool UsualArrayDeleteWantsSize : 1;
// Points to the operator delete overload that is used. Could be a member.
FunctionDecl *OperatorDelete;
// The pointer expression to be deleted.
Stmt *Argument;
// Location of the expression.
SourceLocation Loc;
public:
CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
: Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
arg->isInstantiationDependent(),
arg->containsUnexpandedParameterPack()),
GlobalDelete(globalDelete),
ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize),
OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
explicit CXXDeleteExpr(EmptyShell Shell)
: Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
bool isGlobalDelete() const { return GlobalDelete; }
bool isArrayForm() const { return ArrayForm; }
bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
/// Answers whether the usual array deallocation function for the
/// allocated type expects the size of the allocation as a
/// parameter. This can be true even if the actual deallocation
/// function that we're using doesn't want a size.
bool doesUsualArrayDeleteWantSize() const {
return UsualArrayDeleteWantsSize;
}
FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
Expr *getArgument() { return cast<Expr>(Argument); }
const Expr *getArgument() const { return cast<Expr>(Argument); }
/// \brief Retrieve the type being destroyed. If the type being
/// destroyed is a dependent type which may or may not be a pointer,
/// return an invalid type.
QualType getDestroyedType() const;
SourceRange getSourceRange() const {
return SourceRange(Loc, Argument->getLocEnd());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXDeleteExprClass;
}
static bool classof(const CXXDeleteExpr *) { return true; }
// Iterators
child_range children() { return child_range(&Argument, &Argument+1); }
friend class ASTStmtReader;
};
/// \brief Structure used to store the type being destroyed by a
/// pseudo-destructor expression.
class PseudoDestructorTypeStorage {
/// \brief Either the type source information or the name of the type, if
/// it couldn't be resolved due to type-dependence.
llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
/// \brief The starting source location of the pseudo-destructor type.
SourceLocation Location;
public:
PseudoDestructorTypeStorage() { }
PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
: Type(II), Location(Loc) { }
PseudoDestructorTypeStorage(TypeSourceInfo *Info);
TypeSourceInfo *getTypeSourceInfo() const {
return Type.dyn_cast<TypeSourceInfo *>();
}
IdentifierInfo *getIdentifier() const {
return Type.dyn_cast<IdentifierInfo *>();
}
SourceLocation getLocation() const { return Location; }
};
/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
///
/// A pseudo-destructor is an expression that looks like a member access to a
/// destructor of a scalar type, except that scalar types don't have
/// destructors. For example:
///
/// \code
/// typedef int T;
/// void f(int *p) {
/// p->T::~T();
/// }
/// \endcode
///
/// Pseudo-destructors typically occur when instantiating templates such as:
///
/// \code
/// template<typename T>
/// void destroy(T* ptr) {
/// ptr->T::~T();
/// }
/// \endcode
///
/// for scalar types. A pseudo-destructor expression has no run-time semantics
/// beyond evaluating the base expression.
class CXXPseudoDestructorExpr : public Expr {
/// \brief The base expression (that is being destroyed).
Stmt *Base;
/// \brief Whether the operator was an arrow ('->'); otherwise, it was a
/// period ('.').
bool IsArrow : 1;
/// \brief The location of the '.' or '->' operator.
SourceLocation OperatorLoc;
/// \brief The nested-name-specifier that follows the operator, if present.
NestedNameSpecifierLoc QualifierLoc;
/// \brief The type that precedes the '::' in a qualified pseudo-destructor
/// expression.
TypeSourceInfo *ScopeType;
/// \brief The location of the '::' in a qualified pseudo-destructor
/// expression.
SourceLocation ColonColonLoc;
/// \brief The location of the '~'.
SourceLocation TildeLoc;
/// \brief The type being destroyed, or its name if we were unable to
/// resolve the name.
PseudoDestructorTypeStorage DestroyedType;
friend class ASTStmtReader;
public:
CXXPseudoDestructorExpr(ASTContext &Context,
Expr *Base, bool isArrow, SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
TypeSourceInfo *ScopeType,
SourceLocation ColonColonLoc,
SourceLocation TildeLoc,
PseudoDestructorTypeStorage DestroyedType);
explicit CXXPseudoDestructorExpr(EmptyShell Shell)
: Expr(CXXPseudoDestructorExprClass, Shell),
Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
Expr *getBase() const { return cast<Expr>(Base); }
/// \brief Determines whether this member expression actually had
/// a C++ nested-name-specifier prior to the name of the member, e.g.,
/// x->Base::foo.
bool hasQualifier() const { return QualifierLoc; }
/// \brief Retrieves the nested-name-specifier that qualifies the type name,
/// with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// \brief If the member name was qualified, retrieves the
/// nested-name-specifier that precedes the member name. Otherwise, returns
/// NULL.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
/// \brief Determine whether this pseudo-destructor expression was written
/// using an '->' (otherwise, it used a '.').
bool isArrow() const { return IsArrow; }
/// \brief Retrieve the location of the '.' or '->' operator.
SourceLocation getOperatorLoc() const { return OperatorLoc; }
/// \brief Retrieve the scope type in a qualified pseudo-destructor
/// expression.
///
/// Pseudo-destructor expressions can have extra qualification within them
/// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
/// Here, if the object type of the expression is (or may be) a scalar type,
/// \p T may also be a scalar type and, therefore, cannot be part of a
/// nested-name-specifier. It is stored as the "scope type" of the pseudo-
/// destructor expression.
TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
/// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
/// expression.
SourceLocation getColonColonLoc() const { return ColonColonLoc; }
/// \brief Retrieve the location of the '~'.
SourceLocation getTildeLoc() const { return TildeLoc; }
/// \brief Retrieve the source location information for the type
/// being destroyed.
///
/// This type-source information is available for non-dependent
/// pseudo-destructor expressions and some dependent pseudo-destructor
/// expressions. Returns NULL if we only have the identifier for a
/// dependent pseudo-destructor expression.
TypeSourceInfo *getDestroyedTypeInfo() const {
return DestroyedType.getTypeSourceInfo();
}
/// \brief In a dependent pseudo-destructor expression for which we do not
/// have full type information on the destroyed type, provides the name
/// of the destroyed type.
IdentifierInfo *getDestroyedTypeIdentifier() const {
return DestroyedType.getIdentifier();
}
/// \brief Retrieve the type being destroyed.
QualType getDestroyedType() const;
/// \brief Retrieve the starting location of the type being destroyed.
SourceLocation getDestroyedTypeLoc() const {
return DestroyedType.getLocation();
}
/// \brief Set the name of destroyed type for a dependent pseudo-destructor
/// expression.
void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
DestroyedType = PseudoDestructorTypeStorage(II, Loc);
}
/// \brief Set the destroyed type.
void setDestroyedType(TypeSourceInfo *Info) {
DestroyedType = PseudoDestructorTypeStorage(Info);
}
SourceRange getSourceRange() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXPseudoDestructorExprClass;
}
static bool classof(const CXXPseudoDestructorExpr *) { return true; }
// Iterators
child_range children() { return child_range(&Base, &Base + 1); }
};
/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
/// implementation of TR1/C++0x type trait templates.
/// Example:
/// __is_pod(int) == true
/// __is_enum(std::string) == false
class UnaryTypeTraitExpr : public Expr {
/// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
unsigned UTT : 31;
/// The value of the type trait. Unspecified if dependent.
bool Value : 1;
/// Loc - The location of the type trait keyword.
SourceLocation Loc;
/// RParen - The location of the closing paren.
SourceLocation RParen;
/// The type being queried.
TypeSourceInfo *QueriedType;
public:
UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
TypeSourceInfo *queried, bool value,
SourceLocation rparen, QualType ty)
: Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
false, queried->getType()->isDependentType(),
queried->getType()->isInstantiationDependentType(),
queried->getType()->containsUnexpandedParameterPack()),
UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
explicit UnaryTypeTraitExpr(EmptyShell Empty)
: Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
QueriedType() { }
SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
QualType getQueriedType() const { return QueriedType->getType(); }
TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
bool getValue() const { return Value; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnaryTypeTraitExprClass;
}
static bool classof(const UnaryTypeTraitExpr *) { return true; }
// Iterators
child_range children() { return child_range(); }
friend class ASTStmtReader;
};
/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
/// implementation of TR1/C++0x type trait templates.
/// Example:
/// __is_base_of(Base, Derived) == true
class BinaryTypeTraitExpr : public Expr {
/// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
unsigned BTT : 8;
/// The value of the type trait. Unspecified if dependent.
bool Value : 1;
/// Loc - The location of the type trait keyword.
SourceLocation Loc;
/// RParen - The location of the closing paren.
SourceLocation RParen;
/// The lhs type being queried.
TypeSourceInfo *LhsType;
/// The rhs type being queried.
TypeSourceInfo *RhsType;
public:
BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
bool value, SourceLocation rparen, QualType ty)
: Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
lhsType->getType()->isDependentType() ||
rhsType->getType()->isDependentType(),
(lhsType->getType()->isInstantiationDependentType() ||
rhsType->getType()->isInstantiationDependentType()),
(lhsType->getType()->containsUnexpandedParameterPack() ||
rhsType->getType()->containsUnexpandedParameterPack())),
BTT(btt), Value(value), Loc(loc), RParen(rparen),
LhsType(lhsType), RhsType(rhsType) { }
explicit BinaryTypeTraitExpr(EmptyShell Empty)
: Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
LhsType(), RhsType() { }
SourceRange getSourceRange() const {
return SourceRange(Loc, RParen);
}
BinaryTypeTrait getTrait() const {
return static_cast<BinaryTypeTrait>(BTT);
}
QualType getLhsType() const { return LhsType->getType(); }
QualType getRhsType() const { return RhsType->getType(); }
TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
bool getValue() const { assert(!isTypeDependent()); return Value; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == BinaryTypeTraitExprClass;
}
static bool classof(const BinaryTypeTraitExpr *) { return true; }
// Iterators
child_range children() { return child_range(); }
friend class ASTStmtReader;
};
/// ArrayTypeTraitExpr - An Embarcadero array type trait, as used in the
/// implementation of __array_rank and __array_extent.
/// Example:
/// __array_rank(int[10][20]) == 2
/// __array_extent(int, 1) == 20
class ArrayTypeTraitExpr : public Expr {
virtual void anchor();
/// ATT - The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
unsigned ATT : 2;
/// The value of the type trait. Unspecified if dependent.
uint64_t Value;
/// The array dimension being queried, or -1 if not used
Expr *Dimension;
/// Loc - The location of the type trait keyword.
SourceLocation Loc;
/// RParen - The location of the closing paren.
SourceLocation RParen;
/// The type being queried.
TypeSourceInfo *QueriedType;
public:
ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
TypeSourceInfo *queried, uint64_t value,
Expr *dimension, SourceLocation rparen, QualType ty)
: Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
false, queried->getType()->isDependentType(),
(queried->getType()->isInstantiationDependentType() ||
(dimension && dimension->isInstantiationDependent())),
queried->getType()->containsUnexpandedParameterPack()),
ATT(att), Value(value), Dimension(dimension),
Loc(loc), RParen(rparen), QueriedType(queried) { }
explicit ArrayTypeTraitExpr(EmptyShell Empty)
: Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
QueriedType() { }
virtual ~ArrayTypeTraitExpr() { }
virtual SourceRange getSourceRange() const {
return SourceRange(Loc, RParen);
}
ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
QualType getQueriedType() const { return QueriedType->getType(); }
TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
Expr *getDimensionExpression() const { return Dimension; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ArrayTypeTraitExprClass;
}
static bool classof(const ArrayTypeTraitExpr *) { return true; }
// Iterators
child_range children() { return child_range(); }
friend class ASTStmtReader;
};
/// ExpressionTraitExpr - An expression trait intrinsic
/// Example:
/// __is_lvalue_expr(std::cout) == true
/// __is_lvalue_expr(1) == false
class ExpressionTraitExpr : public Expr {
/// ET - The trait. A ExpressionTrait enum in MSVC compat unsigned.
unsigned ET : 31;
/// The value of the type trait. Unspecified if dependent.
bool Value : 1;
/// Loc - The location of the type trait keyword.
SourceLocation Loc;
/// RParen - The location of the closing paren.
SourceLocation RParen;
Expr* QueriedExpression;
public:
ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
Expr *queried, bool value,
SourceLocation rparen, QualType resultType)
: Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
false, // Not type-dependent
// Value-dependent if the argument is type-dependent.
queried->isTypeDependent(),
queried->isInstantiationDependent(),
queried->containsUnexpandedParameterPack()),
ET(et), Value(value), Loc(loc), RParen(rparen),
QueriedExpression(queried) { }
explicit ExpressionTraitExpr(EmptyShell Empty)
: Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
QueriedExpression() { }
SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
Expr *getQueriedExpression() const { return QueriedExpression; }
bool getValue() const { return Value; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ExpressionTraitExprClass;
}
static bool classof(const ExpressionTraitExpr *) { return true; }
// Iterators
child_range children() { return child_range(); }
friend class ASTStmtReader;
};
/// \brief A reference to an overloaded function set, either an
/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
class OverloadExpr : public Expr {
/// The results. These are undesugared, which is to say, they may
/// include UsingShadowDecls. Access is relative to the naming
/// class.
// FIXME: Allocate this data after the OverloadExpr subclass.
DeclAccessPair *Results;
unsigned NumResults;
/// The common name of these declarations.
DeclarationNameInfo NameInfo;
/// \brief The nested-name-specifier that qualifies the name, if any.
NestedNameSpecifierLoc QualifierLoc;
protected:
/// \brief Whether the name includes info for explicit template
/// keyword and arguments.
bool HasTemplateKWAndArgsInfo;
/// \brief Return the optional template keyword and arguments info.
ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
/// \brief Return the optional template keyword and arguments info.
const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
}
OverloadExpr(StmtClass K, ASTContext &C,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs,
UnresolvedSetIterator Begin, UnresolvedSetIterator End,
bool KnownDependent,
bool KnownInstantiationDependent,
bool KnownContainsUnexpandedParameterPack);
OverloadExpr(StmtClass K, EmptyShell Empty)
: Expr(K, Empty), Results(0), NumResults(0),
QualifierLoc(), HasTemplateKWAndArgsInfo(false) { }
void initializeResults(ASTContext &C,
UnresolvedSetIterator Begin,
UnresolvedSetIterator End);
public:
struct FindResult {
OverloadExpr *Expression;
bool IsAddressOfOperand;
bool HasFormOfMemberPointer;
};
/// Finds the overloaded expression in the given expression of
/// OverloadTy.
///
/// \return the expression (which must be there) and true if it has
/// the particular form of a member pointer expression
static FindResult find(Expr *E) {
assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
FindResult Result;
E = E->IgnoreParens();
if (isa<UnaryOperator>(E)) {
assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
E = cast<UnaryOperator>(E)->getSubExpr();
OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
Result.IsAddressOfOperand = true;
Result.Expression = Ovl;
} else {
Result.HasFormOfMemberPointer = false;
Result.IsAddressOfOperand = false;
Result.Expression = cast<OverloadExpr>(E);
}
return Result;
}
/// Gets the naming class of this lookup, if any.
CXXRecordDecl *getNamingClass() const;
typedef UnresolvedSetImpl::iterator decls_iterator;
decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
decls_iterator decls_end() const {
return UnresolvedSetIterator(Results + NumResults);
}
/// Gets the number of declarations in the unresolved set.
unsigned getNumDecls() const { return NumResults; }
/// Gets the full name info.
const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
/// Gets the name looked up.
DeclarationName getName() const { return NameInfo.getName(); }
/// Gets the location of the name.
SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
/// Fetches the nested-name qualifier, if one was given.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
/// Fetches the nested-name qualifier with source-location information, if
/// one was given.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// \brief Retrieve the location of the template keyword preceding
/// this name, if any.
SourceLocation getTemplateKeywordLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
}
/// \brief Retrieve the location of the left angle bracket starting the
/// explicit template argument list following the name, if any.
SourceLocation getLAngleLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->LAngleLoc;
}
/// \brief Retrieve the location of the right angle bracket ending the
/// explicit template argument list following the name, if any.
SourceLocation getRAngleLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->RAngleLoc;
}
/// Determines whether the name was preceded by the template keyword.
bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
/// Determines whether this expression had explicit template arguments.
bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
// Note that, inconsistently with the explicit-template-argument AST
// nodes, users are *forbidden* from calling these methods on objects
// without explicit template arguments.
ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
assert(hasExplicitTemplateArgs());
return *getTemplateKWAndArgsInfo();
}
const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
}
TemplateArgumentLoc const *getTemplateArgs() const {
return getExplicitTemplateArgs().getTemplateArgs();
}
unsigned getNumTemplateArgs() const {
return getExplicitTemplateArgs().NumTemplateArgs;
}
/// Copies the template arguments into the given structure.
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
getExplicitTemplateArgs().copyInto(List);
}
/// \brief Retrieves the optional explicit template arguments.
/// This points to the same data as getExplicitTemplateArgs(), but
/// returns null if there are no explicit template arguments.
const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
if (!hasExplicitTemplateArgs()) return 0;
return &getExplicitTemplateArgs();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnresolvedLookupExprClass ||
T->getStmtClass() == UnresolvedMemberExprClass;
}
static bool classof(const OverloadExpr *) { return true; }
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// \brief A reference to a name which we were able to look up during
/// parsing but could not resolve to a specific declaration. This
/// arises in several ways:
/// * we might be waiting for argument-dependent lookup
/// * the name might resolve to an overloaded function
/// and eventually:
/// * the lookup might have included a function template
/// These never include UnresolvedUsingValueDecls, which are always
/// class members and therefore appear only in
/// UnresolvedMemberLookupExprs.
class UnresolvedLookupExpr : public OverloadExpr {
/// True if these lookup results should be extended by
/// argument-dependent lookup if this is the operand of a function
/// call.
bool RequiresADL;
/// True if namespace ::std should be considered an associated namespace
/// for the purposes of argument-dependent lookup. See C++0x [stmt.ranged]p1.
bool StdIsAssociatedNamespace;
/// True if these lookup results are overloaded. This is pretty
/// trivially rederivable if we urgently need to kill this field.
bool Overloaded;
/// The naming class (C++ [class.access.base]p5) of the lookup, if
/// any. This can generally be recalculated from the context chain,
/// but that can be fairly expensive for unqualified lookups. If we
/// want to improve memory use here, this could go in a union
/// against the qualified-lookup bits.
CXXRecordDecl *NamingClass;
UnresolvedLookupExpr(ASTContext &C,
CXXRecordDecl *NamingClass,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
bool RequiresADL, bool Overloaded,
const TemplateArgumentListInfo *TemplateArgs,
UnresolvedSetIterator Begin, UnresolvedSetIterator End,
bool StdIsAssociatedNamespace)
: OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
NameInfo, TemplateArgs, Begin, End, false, false, false),
RequiresADL(RequiresADL),
StdIsAssociatedNamespace(StdIsAssociatedNamespace),
Overloaded(Overloaded), NamingClass(NamingClass)
{}
UnresolvedLookupExpr(EmptyShell Empty)
: OverloadExpr(UnresolvedLookupExprClass, Empty),
RequiresADL(false), StdIsAssociatedNamespace(false), Overloaded(false),
NamingClass(0)
{}
friend class ASTStmtReader;
public:
static UnresolvedLookupExpr *Create(ASTContext &C,
CXXRecordDecl *NamingClass,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo,
bool ADL, bool Overloaded,
UnresolvedSetIterator Begin,
UnresolvedSetIterator End,
bool StdIsAssociatedNamespace = false) {
assert((ADL || !StdIsAssociatedNamespace) &&
"std considered associated namespace when not performing ADL");
return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
SourceLocation(), NameInfo,
ADL, Overloaded, 0, Begin, End,
StdIsAssociatedNamespace);
}
static UnresolvedLookupExpr *Create(ASTContext &C,
CXXRecordDecl *NamingClass,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
bool ADL,
const TemplateArgumentListInfo *Args,
UnresolvedSetIterator Begin,
UnresolvedSetIterator End);
static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs);
/// True if this declaration should be extended by
/// argument-dependent lookup.
bool requiresADL() const { return RequiresADL; }
/// True if namespace ::std should be artificially added to the set of
/// associated namespaecs for argument-dependent lookup purposes.
bool isStdAssociatedNamespace() const { return StdIsAssociatedNamespace; }
/// True if this lookup is overloaded.
bool isOverloaded() const { return Overloaded; }
/// Gets the 'naming class' (in the sense of C++0x
/// [class.access.base]p5) of the lookup. This is the scope
/// that was looked in to find these results.
CXXRecordDecl *getNamingClass() const { return NamingClass; }
SourceRange getSourceRange() const {
SourceRange Range(getNameInfo().getSourceRange());
if (getQualifierLoc())
Range.setBegin(getQualifierLoc().getBeginLoc());
if (hasExplicitTemplateArgs())
Range.setEnd(getRAngleLoc());
return Range;
}
child_range children() { return child_range(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnresolvedLookupExprClass;
}
static bool classof(const UnresolvedLookupExpr *) { return true; }
};
/// \brief A qualified reference to a name whose declaration cannot
/// yet be resolved.
///
/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
/// it expresses a reference to a declaration such as
/// X<T>::value. The difference, however, is that an
/// DependentScopeDeclRefExpr node is used only within C++ templates when
/// the qualification (e.g., X<T>::) refers to a dependent type. In
/// this case, X<T>::value cannot resolve to a declaration because the
/// declaration will differ from on instantiation of X<T> to the
/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
/// qualifier (X<T>::) and the name of the entity being referenced
/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
/// declaration can be found.
class DependentScopeDeclRefExpr : public Expr {
/// \brief The nested-name-specifier that qualifies this unresolved
/// declaration name.
NestedNameSpecifierLoc QualifierLoc;
/// The name of the entity we will be referencing.
DeclarationNameInfo NameInfo;
/// \brief Whether the name includes info for explicit template
/// keyword and arguments.
bool HasTemplateKWAndArgsInfo;
/// \brief Return the optional template keyword and arguments info.
ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
if (!HasTemplateKWAndArgsInfo) return 0;
return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
}
/// \brief Return the optional template keyword and arguments info.
const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
return const_cast<DependentScopeDeclRefExpr*>(this)
->getTemplateKWAndArgsInfo();
}
DependentScopeDeclRefExpr(QualType T,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *Args);
public:
static DependentScopeDeclRefExpr *Create(ASTContext &C,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs);
static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs);
/// \brief Retrieve the name that this expression refers to.
const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
/// \brief Retrieve the name that this expression refers to.
DeclarationName getDeclName() const { return NameInfo.getName(); }
/// \brief Retrieve the location of the name within the expression.
SourceLocation getLocation() const { return NameInfo.getLoc(); }
/// \brief Retrieve the nested-name-specifier that qualifies the
/// name, with source location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// \brief Retrieve the nested-name-specifier that qualifies this
/// declaration.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
/// \brief Retrieve the location of the template keyword preceding
/// this name, if any.
SourceLocation getTemplateKeywordLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
}
/// \brief Retrieve the location of the left angle bracket starting the
/// explicit template argument list following the name, if any.
SourceLocation getLAngleLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->LAngleLoc;
}
/// \brief Retrieve the location of the right angle bracket ending the
/// explicit template argument list following the name, if any.
SourceLocation getRAngleLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->RAngleLoc;
}
/// Determines whether the name was preceded by the template keyword.
bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
/// Determines whether this lookup had explicit template arguments.
bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
// Note that, inconsistently with the explicit-template-argument AST
// nodes, users are *forbidden* from calling these methods on objects
// without explicit template arguments.
ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
assert(hasExplicitTemplateArgs());
return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
}
/// Gets a reference to the explicit template argument list.
const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
assert(hasExplicitTemplateArgs());
return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
}
/// \brief Retrieves the optional explicit template arguments.
/// This points to the same data as getExplicitTemplateArgs(), but
/// returns null if there are no explicit template arguments.
const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
if (!hasExplicitTemplateArgs()) return 0;
return &getExplicitTemplateArgs();
}
/// \brief Copies the template arguments (if present) into the given
/// structure.
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
getExplicitTemplateArgs().copyInto(List);
}
TemplateArgumentLoc const *getTemplateArgs() const {
return getExplicitTemplateArgs().getTemplateArgs();
}
unsigned getNumTemplateArgs() const {
return getExplicitTemplateArgs().NumTemplateArgs;
}
SourceRange getSourceRange() const {
SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
if (hasExplicitTemplateArgs())
Range.setEnd(getRAngleLoc());
return Range;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == DependentScopeDeclRefExprClass;
}
static bool classof(const DependentScopeDeclRefExpr *) { return true; }
child_range children() { return child_range(); }
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// Represents an expression --- generally a full-expression --- which
/// introduces cleanups to be run at the end of the sub-expression's
/// evaluation. The most common source of expression-introduced
/// cleanups is temporary objects in C++, but several other kinds of
/// expressions can create cleanups, including basically every
/// call in ARC that returns an Objective-C pointer.
///
/// This expression also tracks whether the sub-expression contains a
/// potentially-evaluated block literal. The lifetime of a block
/// literal is the extent of the enclosing scope.
class ExprWithCleanups : public Expr {
public:
/// The type of objects that are kept in the cleanup.
/// It's useful to remember the set of blocks; we could also
/// remember the set of temporaries, but there's currently
/// no need.
typedef BlockDecl *CleanupObject;
private:
Stmt *SubExpr;
ExprWithCleanups(EmptyShell, unsigned NumObjects);
ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
CleanupObject *getObjectsBuffer() {
return reinterpret_cast<CleanupObject*>(this + 1);
}
const CleanupObject *getObjectsBuffer() const {
return reinterpret_cast<const CleanupObject*>(this + 1);
}
friend class ASTStmtReader;
public:
static ExprWithCleanups *Create(ASTContext &C, EmptyShell empty,
unsigned numObjects);
static ExprWithCleanups *Create(ASTContext &C, Expr *subexpr,
ArrayRef<CleanupObject> objects);
ArrayRef<CleanupObject> getObjects() const {
return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
}
unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
CleanupObject getObject(unsigned i) const {
assert(i < getNumObjects() && "Index out of range");
return getObjects()[i];
}
Expr *getSubExpr() { return cast<Expr>(SubExpr); }
const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
/// setSubExpr - As with any mutator of the AST, be very careful
/// when modifying an existing AST to preserve its invariants.
void setSubExpr(Expr *E) { SubExpr = E; }
SourceRange getSourceRange() const {
return SubExpr->getSourceRange();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Stmt *T) {
return T->getStmtClass() == ExprWithCleanupsClass;
}
static bool classof(const ExprWithCleanups *) { return true; }
// Iterators
child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
};
/// \brief Describes an explicit type conversion that uses functional
/// notion but could not be resolved because one or more arguments are
/// type-dependent.
///
/// The explicit type conversions expressed by
/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
/// where \c T is some type and \c a1, a2, ..., aN are values, and
/// either \C T is a dependent type or one or more of the \c a's is
/// type-dependent. For example, this would occur in a template such
/// as:
///
/// \code
/// template<typename T, typename A1>
/// inline T make_a(const A1& a1) {
/// return T(a1);
/// }
/// \endcode
///
/// When the returned expression is instantiated, it may resolve to a
/// constructor call, conversion function call, or some kind of type
/// conversion.
class CXXUnresolvedConstructExpr : public Expr {
/// \brief The type being constructed.
TypeSourceInfo *Type;
/// \brief The location of the left parentheses ('(').
SourceLocation LParenLoc;
/// \brief The location of the right parentheses (')').
SourceLocation RParenLoc;
/// \brief The number of arguments used to construct the type.
unsigned NumArgs;
CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
SourceLocation LParenLoc,
Expr **Args,
unsigned NumArgs,
SourceLocation RParenLoc);
CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
: Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
friend class ASTStmtReader;
public:
static CXXUnresolvedConstructExpr *Create(ASTContext &C,
TypeSourceInfo *Type,
SourceLocation LParenLoc,
Expr **Args,
unsigned NumArgs,
SourceLocation RParenLoc);
static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
unsigned NumArgs);
/// \brief Retrieve the type that is being constructed, as specified
/// in the source code.
QualType getTypeAsWritten() const { return Type->getType(); }
/// \brief Retrieve the type source information for the type being
/// constructed.
TypeSourceInfo *getTypeSourceInfo() const { return Type; }
/// \brief Retrieve the location of the left parentheses ('(') that
/// precedes the argument list.
SourceLocation getLParenLoc() const { return LParenLoc; }
void setLParenLoc(SourceLocation L) { LParenLoc = L; }
/// \brief Retrieve the location of the right parentheses (')') that
/// follows the argument list.
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
/// \brief Retrieve the number of arguments.
unsigned arg_size() const { return NumArgs; }
typedef Expr** arg_iterator;
arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
arg_iterator arg_end() { return arg_begin() + NumArgs; }
typedef const Expr* const * const_arg_iterator;
const_arg_iterator arg_begin() const {
return reinterpret_cast<const Expr* const *>(this + 1);
}
const_arg_iterator arg_end() const {
return arg_begin() + NumArgs;
}
Expr *getArg(unsigned I) {
assert(I < NumArgs && "Argument index out-of-range");
return *(arg_begin() + I);
}
const Expr *getArg(unsigned I) const {
assert(I < NumArgs && "Argument index out-of-range");
return *(arg_begin() + I);
}
void setArg(unsigned I, Expr *E) {
assert(I < NumArgs && "Argument index out-of-range");
*(arg_begin() + I) = E;
}
SourceRange getSourceRange() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXUnresolvedConstructExprClass;
}
static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
// Iterators
child_range children() {
Stmt **begin = reinterpret_cast<Stmt**>(this+1);
return child_range(begin, begin + NumArgs);
}
};
/// \brief Represents a C++ member access expression where the actual
/// member referenced could not be resolved because the base
/// expression or the member name was dependent.
///
/// Like UnresolvedMemberExprs, these can be either implicit or
/// explicit accesses. It is only possible to get one of these with
/// an implicit access if a qualifier is provided.
class CXXDependentScopeMemberExpr : public Expr {
/// \brief The expression for the base pointer or class reference,
/// e.g., the \c x in x.f. Can be null in implicit accesses.
Stmt *Base;
/// \brief The type of the base expression. Never null, even for
/// implicit accesses.
QualType BaseType;
/// \brief Whether this member expression used the '->' operator or
/// the '.' operator.
bool IsArrow : 1;
/// \brief Whether this member expression has info for explicit template
/// keyword and arguments.
bool HasTemplateKWAndArgsInfo : 1;
/// \brief The location of the '->' or '.' operator.
SourceLocation OperatorLoc;
/// \brief The nested-name-specifier that precedes the member name, if any.
NestedNameSpecifierLoc QualifierLoc;
/// \brief In a qualified member access expression such as t->Base::f, this
/// member stores the resolves of name lookup in the context of the member
/// access expression, to be used at instantiation time.
///
/// FIXME: This member, along with the QualifierLoc, could
/// be stuck into a structure that is optionally allocated at the end of
/// the CXXDependentScopeMemberExpr, to save space in the common case.
NamedDecl *FirstQualifierFoundInScope;
/// \brief The member to which this member expression refers, which
/// can be name, overloaded operator, or destructor.
/// FIXME: could also be a template-id
DeclarationNameInfo MemberNameInfo;
/// \brief Return the optional template keyword and arguments info.
ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
if (!HasTemplateKWAndArgsInfo) return 0;
return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
}
/// \brief Return the optional template keyword and arguments info.
const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
return const_cast<CXXDependentScopeMemberExpr*>(this)
->getTemplateKWAndArgsInfo();
}
CXXDependentScopeMemberExpr(ASTContext &C,
Expr *Base, QualType BaseType, bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
NamedDecl *FirstQualifierFoundInScope,
DeclarationNameInfo MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs);
public:
CXXDependentScopeMemberExpr(ASTContext &C,
Expr *Base, QualType BaseType,
bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
NamedDecl *FirstQualifierFoundInScope,
DeclarationNameInfo MemberNameInfo);
static CXXDependentScopeMemberExpr *
Create(ASTContext &C,
Expr *Base, QualType BaseType, bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
NamedDecl *FirstQualifierFoundInScope,
DeclarationNameInfo MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs);
static CXXDependentScopeMemberExpr *
CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs);
/// \brief True if this is an implicit access, i.e. one in which the
/// member being accessed was not written in the source. The source
/// location of the operator is invalid in this case.
bool isImplicitAccess() const;
/// \brief Retrieve the base object of this member expressions,
/// e.g., the \c x in \c x.m.
Expr *getBase() const {
assert(!isImplicitAccess());
return cast<Expr>(Base);
}
QualType getBaseType() const { return BaseType; }
/// \brief Determine whether this member expression used the '->'
/// operator; otherwise, it used the '.' operator.
bool isArrow() const { return IsArrow; }
/// \brief Retrieve the location of the '->' or '.' operator.
SourceLocation getOperatorLoc() const { return OperatorLoc; }
/// \brief Retrieve the nested-name-specifier that qualifies the member
/// name.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
/// \brief Retrieve the nested-name-specifier that qualifies the member
/// name, with source location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// \brief Retrieve the first part of the nested-name-specifier that was
/// found in the scope of the member access expression when the member access
/// was initially parsed.
///
/// This function only returns a useful result when member access expression
/// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
/// returned by this function describes what was found by unqualified name
/// lookup for the identifier "Base" within the scope of the member access
/// expression itself. At template instantiation time, this information is
/// combined with the results of name lookup into the type of the object
/// expression itself (the class type of x).
NamedDecl *getFirstQualifierFoundInScope() const {
return FirstQualifierFoundInScope;
}
/// \brief Retrieve the name of the member that this expression
/// refers to.
const DeclarationNameInfo &getMemberNameInfo() const {
return MemberNameInfo;
}
/// \brief Retrieve the name of the member that this expression
/// refers to.
DeclarationName getMember() const { return MemberNameInfo.getName(); }
// \brief Retrieve the location of the name of the member that this
// expression refers to.
SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
/// \brief Retrieve the location of the template keyword preceding the
/// member name, if any.
SourceLocation getTemplateKeywordLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
}
/// \brief Retrieve the location of the left angle bracket starting the
/// explicit template argument list following the member name, if any.
SourceLocation getLAngleLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->LAngleLoc;
}
/// \brief Retrieve the location of the right angle bracket ending the
/// explicit template argument list following the member name, if any.
SourceLocation getRAngleLoc() const {
if (!HasTemplateKWAndArgsInfo) return SourceLocation();
return getTemplateKWAndArgsInfo()->RAngleLoc;
}
/// Determines whether the member name was preceded by the template keyword.
bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
/// \brief Determines whether this member expression actually had a C++
/// template argument list explicitly specified, e.g., x.f<int>.
bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
/// \brief Retrieve the explicit template argument list that followed the
/// member template name, if any.
ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
assert(hasExplicitTemplateArgs());
return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
}
/// \brief Retrieve the explicit template argument list that followed the
/// member template name, if any.
const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
return const_cast<CXXDependentScopeMemberExpr *>(this)
->getExplicitTemplateArgs();
}
/// \brief Retrieves the optional explicit template arguments.
/// This points to the same data as getExplicitTemplateArgs(), but
/// returns null if there are no explicit template arguments.
const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
if (!hasExplicitTemplateArgs()) return 0;
return &getExplicitTemplateArgs();
}
/// \brief Copies the template arguments (if present) into the given
/// structure.
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
getExplicitTemplateArgs().copyInto(List);
}
/// \brief Initializes the template arguments using the given structure.
void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
getExplicitTemplateArgs().initializeFrom(List);
}
/// \brief Retrieve the template arguments provided as part of this
/// template-id.
const TemplateArgumentLoc *getTemplateArgs() const {
return getExplicitTemplateArgs().getTemplateArgs();
}
/// \brief Retrieve the number of template arguments provided as part of this
/// template-id.
unsigned getNumTemplateArgs() const {
return getExplicitTemplateArgs().NumTemplateArgs;
}
SourceRange getSourceRange() const {
SourceRange Range;
if (!isImplicitAccess())
Range.setBegin(Base->getSourceRange().getBegin());
else if (getQualifier())
Range.setBegin(getQualifierLoc().getBeginLoc());
else
Range.setBegin(MemberNameInfo.getBeginLoc());
if (hasExplicitTemplateArgs())
Range.setEnd(getRAngleLoc());
else
Range.setEnd(MemberNameInfo.getEndLoc());
return Range;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXDependentScopeMemberExprClass;
}
static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
// Iterators
child_range children() {
if (isImplicitAccess()) return child_range();
return child_range(&Base, &Base + 1);
}
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// \brief Represents a C++ member access expression for which lookup
/// produced a set of overloaded functions.
///
/// The member access may be explicit or implicit:
/// struct A {
/// int a, b;
/// int explicitAccess() { return this->a + this->A::b; }
/// int implicitAccess() { return a + A::b; }
/// };
///
/// In the final AST, an explicit access always becomes a MemberExpr.
/// An implicit access may become either a MemberExpr or a
/// DeclRefExpr, depending on whether the member is static.
class UnresolvedMemberExpr : public OverloadExpr {
/// \brief Whether this member expression used the '->' operator or
/// the '.' operator.
bool IsArrow : 1;
/// \brief Whether the lookup results contain an unresolved using
/// declaration.
bool HasUnresolvedUsing : 1;
/// \brief The expression for the base pointer or class reference,
/// e.g., the \c x in x.f. This can be null if this is an 'unbased'
/// member expression
Stmt *Base;
/// \brief The type of the base expression; never null.
QualType BaseType;
/// \brief The location of the '->' or '.' operator.
SourceLocation OperatorLoc;
UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
Expr *Base, QualType BaseType, bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs,
UnresolvedSetIterator Begin, UnresolvedSetIterator End);
UnresolvedMemberExpr(EmptyShell Empty)
: OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
HasUnresolvedUsing(false), Base(0) { }
friend class ASTStmtReader;
public:
static UnresolvedMemberExpr *
Create(ASTContext &C, bool HasUnresolvedUsing,
Expr *Base, QualType BaseType, bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs,
UnresolvedSetIterator Begin, UnresolvedSetIterator End);
static UnresolvedMemberExpr *
CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs);
/// \brief True if this is an implicit access, i.e. one in which the
/// member being accessed was not written in the source. The source
/// location of the operator is invalid in this case.
bool isImplicitAccess() const;
/// \brief Retrieve the base object of this member expressions,
/// e.g., the \c x in \c x.m.
Expr *getBase() {
assert(!isImplicitAccess());
return cast<Expr>(Base);
}
const Expr *getBase() const {
assert(!isImplicitAccess());
return cast<Expr>(Base);
}
QualType getBaseType() const { return BaseType; }
/// \brief Determine whether the lookup results contain an unresolved using
/// declaration.
bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
/// \brief Determine whether this member expression used the '->'
/// operator; otherwise, it used the '.' operator.
bool isArrow() const { return IsArrow; }
/// \brief Retrieve the location of the '->' or '.' operator.
SourceLocation getOperatorLoc() const { return OperatorLoc; }
/// \brief Retrieves the naming class of this lookup.
CXXRecordDecl *getNamingClass() const;
/// \brief Retrieve the full name info for the member that this expression
/// refers to.
const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
/// \brief Retrieve the name of the member that this expression
/// refers to.
DeclarationName getMemberName() const { return getName(); }
// \brief Retrieve the location of the name of the member that this
// expression refers to.
SourceLocation getMemberLoc() const { return getNameLoc(); }
SourceRange getSourceRange() const {
SourceRange Range = getMemberNameInfo().getSourceRange();
if (!isImplicitAccess())
Range.setBegin(Base->getSourceRange().getBegin());
else if (getQualifierLoc())
Range.setBegin(getQualifierLoc().getBeginLoc());
if (hasExplicitTemplateArgs())
Range.setEnd(getRAngleLoc());
return Range;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnresolvedMemberExprClass;
}
static bool classof(const UnresolvedMemberExpr *) { return true; }
// Iterators
child_range children() {
if (isImplicitAccess()) return child_range();
return child_range(&Base, &Base + 1);
}
};
/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
///
/// The noexcept expression tests whether a given expression might throw. Its
/// result is a boolean constant.
class CXXNoexceptExpr : public Expr {
bool Value : 1;
Stmt *Operand;
SourceRange Range;
friend class ASTStmtReader;
public:
CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
SourceLocation Keyword, SourceLocation RParen)
: Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
/*TypeDependent*/false,
/*ValueDependent*/Val == CT_Dependent,
Val == CT_Dependent || Operand->isInstantiationDependent(),
Operand->containsUnexpandedParameterPack()),
Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
{ }
CXXNoexceptExpr(EmptyShell Empty)
: Expr(CXXNoexceptExprClass, Empty)
{ }
Expr *getOperand() const { return static_cast<Expr*>(Operand); }
SourceRange getSourceRange() const { return Range; }
bool getValue() const { return Value; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CXXNoexceptExprClass;
}
static bool classof(const CXXNoexceptExpr *) { return true; }
// Iterators
child_range children() { return child_range(&Operand, &Operand + 1); }
};
/// \brief Represents a C++0x pack expansion that produces a sequence of
/// expressions.
///
/// A pack expansion expression contains a pattern (which itself is an
/// expression) followed by an ellipsis. For example:
///
/// \code
/// template<typename F, typename ...Types>
/// void forward(F f, Types &&...args) {
/// f(static_cast<Types&&>(args)...);
/// }
/// \endcode
///
/// Here, the argument to the function object \c f is a pack expansion whose
/// pattern is \c static_cast<Types&&>(args). When the \c forward function
/// template is instantiated, the pack expansion will instantiate to zero or
/// or more function arguments to the function object \c f.
class PackExpansionExpr : public Expr {
SourceLocation EllipsisLoc;
/// \brief The number of expansions that will be produced by this pack
/// expansion expression, if known.
///
/// When zero, the number of expansions is not known. Otherwise, this value
/// is the number of expansions + 1.
unsigned NumExpansions;
Stmt *Pattern;
friend class ASTStmtReader;
friend class ASTStmtWriter;
public:
PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
llvm::Optional<unsigned> NumExpansions)
: Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
Pattern->getObjectKind(), /*TypeDependent=*/true,
/*ValueDependent=*/true, /*InstantiationDependent=*/true,
/*ContainsUnexpandedParameterPack=*/false),
EllipsisLoc(EllipsisLoc),
NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
Pattern(Pattern) { }
PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
/// \brief Retrieve the pattern of the pack expansion.
Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
/// \brief Retrieve the pattern of the pack expansion.
const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
/// \brief Retrieve the location of the ellipsis that describes this pack
/// expansion.
SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
/// \brief Determine the number of expansions that will be produced when
/// this pack expansion is instantiated, if already known.
llvm::Optional<unsigned> getNumExpansions() const {
if (NumExpansions)
return NumExpansions - 1;
return llvm::Optional<unsigned>();
}
SourceRange getSourceRange() const {
return SourceRange(Pattern->getLocStart(), EllipsisLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == PackExpansionExprClass;
}
static bool classof(const PackExpansionExpr *) { return true; }
// Iterators
child_range children() {
return child_range(&Pattern, &Pattern + 1);
}
};
inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
if (!HasTemplateKWAndArgsInfo) return 0;
if (isa<UnresolvedLookupExpr>(this))
return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
(cast<UnresolvedLookupExpr>(this) + 1);
else
return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
(cast<UnresolvedMemberExpr>(this) + 1);
}
/// \brief Represents an expression that computes the length of a parameter
/// pack.
///
/// \code
/// template<typename ...Types>
/// struct count {
/// static const unsigned value = sizeof...(Types);
/// };
/// \endcode
class SizeOfPackExpr : public Expr {
/// \brief The location of the 'sizeof' keyword.
SourceLocation OperatorLoc;
/// \brief The location of the name of the parameter pack.
SourceLocation PackLoc;
/// \brief The location of the closing parenthesis.
SourceLocation RParenLoc;
/// \brief The length of the parameter pack, if known.
///
/// When this expression is value-dependent, the length of the parameter pack
/// is unknown. When this expression is not value-dependent, the length is
/// known.
unsigned Length;
/// \brief The parameter pack itself.
NamedDecl *Pack;
friend class ASTStmtReader;
friend class ASTStmtWriter;
public:
/// \brief Creates a value-dependent expression that computes the length of
/// the given parameter pack.
SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
SourceLocation PackLoc, SourceLocation RParenLoc)
: Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
/*TypeDependent=*/false, /*ValueDependent=*/true,
/*InstantiationDependent=*/true,
/*ContainsUnexpandedParameterPack=*/false),
OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
Length(0), Pack(Pack) { }
/// \brief Creates an expression that computes the length of
/// the given parameter pack, which is already known.
SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
SourceLocation PackLoc, SourceLocation RParenLoc,
unsigned Length)
: Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
/*TypeDependent=*/false, /*ValueDependent=*/false,
/*InstantiationDependent=*/false,
/*ContainsUnexpandedParameterPack=*/false),
OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
Length(Length), Pack(Pack) { }
/// \brief Create an empty expression.
SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
/// \brief Determine the location of the 'sizeof' keyword.
SourceLocation getOperatorLoc() const { return OperatorLoc; }
/// \brief Determine the location of the parameter pack.
SourceLocation getPackLoc() const { return PackLoc; }
/// \brief Determine the location of the right parenthesis.
SourceLocation getRParenLoc() const { return RParenLoc; }
/// \brief Retrieve the parameter pack.
NamedDecl *getPack() const { return Pack; }
/// \brief Retrieve the length of the parameter pack.
///
/// This routine may only be invoked when the expression is not
/// value-dependent.
unsigned getPackLength() const {
assert(!isValueDependent() &&
"Cannot get the length of a value-dependent pack size expression");
return Length;
}
SourceRange getSourceRange() const {
return SourceRange(OperatorLoc, RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == SizeOfPackExprClass;
}
static bool classof(const SizeOfPackExpr *) { return true; }
// Iterators
child_range children() { return child_range(); }
};
/// \brief Represents a reference to a non-type template parameter
/// that has been substituted with a template argument.
class SubstNonTypeTemplateParmExpr : public Expr {
/// \brief The replaced parameter.
NonTypeTemplateParmDecl *Param;
/// \brief The replacement expression.
Stmt *Replacement;
/// \brief The location of the non-type template parameter reference.
SourceLocation NameLoc;
friend class ASTReader;
friend class ASTStmtReader;
explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
: Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
public:
SubstNonTypeTemplateParmExpr(QualType type,
ExprValueKind valueKind,
SourceLocation loc,
NonTypeTemplateParmDecl *param,
Expr *replacement)
: Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
replacement->isTypeDependent(), replacement->isValueDependent(),
replacement->isInstantiationDependent(),
replacement->containsUnexpandedParameterPack()),
Param(param), Replacement(replacement), NameLoc(loc) {}
SourceLocation getNameLoc() const { return NameLoc; }
SourceRange getSourceRange() const { return NameLoc; }
Expr *getReplacement() const { return cast<Expr>(Replacement); }
NonTypeTemplateParmDecl *getParameter() const { return Param; }
static bool classof(const Stmt *s) {
return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
}
static bool classof(const SubstNonTypeTemplateParmExpr *) {
return true;
}
// Iterators
child_range children() { return child_range(&Replacement, &Replacement+1); }
};
/// \brief Represents a reference to a non-type template parameter pack that
/// has been substituted with a non-template argument pack.
///
/// When a pack expansion in the source code contains multiple parameter packs
/// and those parameter packs correspond to different levels of template
/// parameter lists, this node node is used to represent a non-type template
/// parameter pack from an outer level, which has already had its argument pack
/// substituted but that still lives within a pack expansion that itself
/// could not be instantiated. When actually performing a substitution into
/// that pack expansion (e.g., when all template parameters have corresponding
/// arguments), this type will be replaced with the appropriate underlying
/// expression at the current pack substitution index.
class SubstNonTypeTemplateParmPackExpr : public Expr {
/// \brief The non-type template parameter pack itself.
NonTypeTemplateParmDecl *Param;
/// \brief A pointer to the set of template arguments that this
/// parameter pack is instantiated with.
const TemplateArgument *Arguments;
/// \brief The number of template arguments in \c Arguments.
unsigned NumArguments;
/// \brief The location of the non-type template parameter pack reference.
SourceLocation NameLoc;
friend class ASTReader;
friend class ASTStmtReader;
explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
: Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
public:
SubstNonTypeTemplateParmPackExpr(QualType T,
NonTypeTemplateParmDecl *Param,
SourceLocation NameLoc,
const TemplateArgument &ArgPack);
/// \brief Retrieve the non-type template parameter pack being substituted.
NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
/// \brief Retrieve the location of the parameter pack name.
SourceLocation getParameterPackLocation() const { return NameLoc; }
/// \brief Retrieve the template argument pack containing the substituted
/// template arguments.
TemplateArgument getArgumentPack() const;
SourceRange getSourceRange() const { return NameLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
}
static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
return true;
}
// Iterators
child_range children() { return child_range(); }
};
/// \brief Represents a prvalue temporary that written into memory so that
/// a reference can bind to it.
///
/// Prvalue expressions are materialized when they need to have an address
/// in memory for a reference to bind to. This happens when binding a
/// reference to the result of a conversion, e.g.,
///
/// \code
/// const int &r = 1.0;
/// \endcode
///
/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
/// then materialized via a \c MaterializeTemporaryExpr, and the reference
/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
/// (either an lvalue or an xvalue, depending on the kind of reference binding
/// to it), maintaining the invariant that references always bind to glvalues.
class MaterializeTemporaryExpr : public Expr {
/// \brief The temporary-generating expression whose value will be
/// materialized.
Stmt *Temporary;
friend class ASTStmtReader;
friend class ASTStmtWriter;
public:
MaterializeTemporaryExpr(QualType T, Expr *Temporary,
bool BoundToLvalueReference)
: Expr(MaterializeTemporaryExprClass, T,
BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
Temporary->isTypeDependent(), Temporary->isValueDependent(),
Temporary->isInstantiationDependent(),
Temporary->containsUnexpandedParameterPack()),
Temporary(Temporary) { }
MaterializeTemporaryExpr(EmptyShell Empty)
: Expr(MaterializeTemporaryExprClass, Empty) { }
/// \brief Retrieve the temporary-generating subexpression whose value will
/// be materialized into a glvalue.
Expr *GetTemporaryExpr() const { return reinterpret_cast<Expr *>(Temporary); }
/// \brief Determine whether this materialized temporary is bound to an
/// lvalue reference; otherwise, it's bound to an rvalue reference.
bool isBoundToLvalueReference() const {
return getValueKind() == VK_LValue;
}
SourceRange getSourceRange() const { return Temporary->getSourceRange(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == MaterializeTemporaryExprClass;
}
static bool classof(const MaterializeTemporaryExpr *) {
return true;
}
// Iterators
child_range children() { return child_range(&Temporary, &Temporary + 1); }
};
} // end namespace clang
#endif