blob: a0d1bada247cce5a549d4d137143eaba7234e5b8 [file] [log] [blame]
//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a basic region store model. In this model, we do have field
// sensitivity. But we assume nothing about the heap shape. So recursive data
// structures are largely ignored. Basically we do 1-limiting analysis.
// Parameter pointers are assumed with no aliasing. Pointee objects of
// parameters are created lazily.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/CharUnits.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Analysis/Analyses/LiveVariables.h"
#include "clang/Analysis/AnalysisContext.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "llvm/ADT/ImmutableList.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace ento;
using llvm::Optional;
//===----------------------------------------------------------------------===//
// Representation of binding keys.
//===----------------------------------------------------------------------===//
namespace {
class BindingKey {
public:
enum Kind { Direct = 0x0, Default = 0x1 };
private:
llvm ::PointerIntPair<const MemRegion*, 1> P;
uint64_t Offset;
explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
: P(r, (unsigned) k), Offset(offset) {}
public:
bool isDirect() const { return P.getInt() == Direct; }
const MemRegion *getRegion() const { return P.getPointer(); }
uint64_t getOffset() const { return Offset; }
void Profile(llvm::FoldingSetNodeID& ID) const {
ID.AddPointer(P.getOpaqueValue());
ID.AddInteger(Offset);
}
static BindingKey Make(const MemRegion *R, Kind k);
bool operator<(const BindingKey &X) const {
if (P.getOpaqueValue() < X.P.getOpaqueValue())
return true;
if (P.getOpaqueValue() > X.P.getOpaqueValue())
return false;
return Offset < X.Offset;
}
bool operator==(const BindingKey &X) const {
return P.getOpaqueValue() == X.P.getOpaqueValue() &&
Offset == X.Offset;
}
bool isValid() const {
return getRegion() != NULL;
}
};
} // end anonymous namespace
BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
const RegionRawOffset &O = ER->getAsArrayOffset();
// FIXME: There are some ElementRegions for which we cannot compute
// raw offsets yet, including regions with symbolic offsets. These will be
// ignored by the store.
return BindingKey(O.getRegion(), O.getOffset().getQuantity(), k);
}
return BindingKey(R, 0, k);
}
namespace llvm {
static inline
raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
os << '(' << K.getRegion() << ',' << K.getOffset()
<< ',' << (K.isDirect() ? "direct" : "default")
<< ')';
return os;
}
} // end llvm namespace
//===----------------------------------------------------------------------===//
// Actual Store type.
//===----------------------------------------------------------------------===//
typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings;
//===----------------------------------------------------------------------===//
// Fine-grained control of RegionStoreManager.
//===----------------------------------------------------------------------===//
namespace {
struct minimal_features_tag {};
struct maximal_features_tag {};
class RegionStoreFeatures {
bool SupportsFields;
public:
RegionStoreFeatures(minimal_features_tag) :
SupportsFields(false) {}
RegionStoreFeatures(maximal_features_tag) :
SupportsFields(true) {}
void enableFields(bool t) { SupportsFields = t; }
bool supportsFields() const { return SupportsFields; }
};
}
//===----------------------------------------------------------------------===//
// Main RegionStore logic.
//===----------------------------------------------------------------------===//
namespace {
class RegionStoreSubRegionMap : public SubRegionMap {
public:
typedef llvm::ImmutableSet<const MemRegion*> Set;
typedef llvm::DenseMap<const MemRegion*, Set> Map;
private:
Set::Factory F;
Map M;
public:
bool add(const MemRegion* Parent, const MemRegion* SubRegion) {
Map::iterator I = M.find(Parent);
if (I == M.end()) {
M.insert(std::make_pair(Parent, F.add(F.getEmptySet(), SubRegion)));
return true;
}
I->second = F.add(I->second, SubRegion);
return false;
}
void process(SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R);
~RegionStoreSubRegionMap() {}
const Set *getSubRegions(const MemRegion *Parent) const {
Map::const_iterator I = M.find(Parent);
return I == M.end() ? NULL : &I->second;
}
bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
Map::const_iterator I = M.find(Parent);
if (I == M.end())
return true;
Set S = I->second;
for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) {
if (!V.Visit(Parent, *SI))
return false;
}
return true;
}
};
void
RegionStoreSubRegionMap::process(SmallVectorImpl<const SubRegion*> &WL,
const SubRegion *R) {
const MemRegion *superR = R->getSuperRegion();
if (add(superR, R))
if (const SubRegion *sr = dyn_cast<SubRegion>(superR))
WL.push_back(sr);
}
class RegionStoreManager : public StoreManager {
const RegionStoreFeatures Features;
RegionBindings::Factory RBFactory;
public:
RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
: StoreManager(mgr),
Features(f),
RBFactory(mgr.getAllocator()) {}
SubRegionMap *getSubRegionMap(Store store) {
return getRegionStoreSubRegionMap(store);
}
RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store);
Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
/// getDefaultBinding - Returns an SVal* representing an optional default
/// binding associated with a region and its subregions.
Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
/// setImplicitDefaultValue - Set the default binding for the provided
/// MemRegion to the value implicitly defined for compound literals when
/// the value is not specified.
StoreRef setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);
/// ArrayToPointer - Emulates the "decay" of an array to a pointer
/// type. 'Array' represents the lvalue of the array being decayed
/// to a pointer, and the returned SVal represents the decayed
/// version of that lvalue (i.e., a pointer to the first element of
/// the array). This is called by ExprEngine when evaluating
/// casts from arrays to pointers.
SVal ArrayToPointer(Loc Array);
/// For DerivedToBase casts, create a CXXBaseObjectRegion and return it.
virtual SVal evalDerivedToBase(SVal derived, QualType basePtrType);
StoreRef getInitialStore(const LocationContext *InitLoc) {
return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
}
//===-------------------------------------------------------------------===//
// Binding values to regions.
//===-------------------------------------------------------------------===//
RegionBindings invalidateGlobalRegion(MemRegion::Kind K,
const Expr *Ex,
unsigned Count,
RegionBindings B,
InvalidatedRegions *Invalidated);
StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions,
const Expr *E, unsigned Count,
InvalidatedSymbols &IS,
const CallOrObjCMessage *Call,
InvalidatedRegions *Invalidated);
public: // Made public for helper classes.
void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R,
RegionStoreSubRegionMap &M);
RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V);
RegionBindings addBinding(RegionBindings B, const MemRegion *R,
BindingKey::Kind k, SVal V);
const SVal *lookup(RegionBindings B, BindingKey K);
const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
RegionBindings removeBinding(RegionBindings B, BindingKey K);
RegionBindings removeBinding(RegionBindings B, const MemRegion *R,
BindingKey::Kind k);
RegionBindings removeBinding(RegionBindings B, const MemRegion *R) {
return removeBinding(removeBinding(B, R, BindingKey::Direct), R,
BindingKey::Default);
}
public: // Part of public interface to class.
StoreRef Bind(Store store, Loc LV, SVal V);
// BindDefault is only used to initialize a region with a default value.
StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
RegionBindings B = GetRegionBindings(store);
assert(!lookup(B, R, BindingKey::Default));
assert(!lookup(B, R, BindingKey::Direct));
return StoreRef(addBinding(B, R, BindingKey::Default, V).getRootWithoutRetain(), *this);
}
StoreRef BindCompoundLiteral(Store store, const CompoundLiteralExpr *CL,
const LocationContext *LC, SVal V);
StoreRef BindDecl(Store store, const VarRegion *VR, SVal InitVal);
StoreRef BindDeclWithNoInit(Store store, const VarRegion *) {
return StoreRef(store, *this);
}
/// BindStruct - Bind a compound value to a structure.
StoreRef BindStruct(Store store, const TypedValueRegion* R, SVal V);
StoreRef BindArray(Store store, const TypedValueRegion* R, SVal V);
/// KillStruct - Set the entire struct to unknown.
StoreRef KillStruct(Store store, const TypedRegion* R, SVal DefaultVal);
StoreRef Remove(Store store, Loc LV);
void incrementReferenceCount(Store store) {
GetRegionBindings(store).manualRetain();
}
/// If the StoreManager supports it, decrement the reference count of
/// the specified Store object. If the reference count hits 0, the memory
/// associated with the object is recycled.
void decrementReferenceCount(Store store) {
GetRegionBindings(store).manualRelease();
}
bool includedInBindings(Store store, const MemRegion *region) const;
//===------------------------------------------------------------------===//
// Loading values from regions.
//===------------------------------------------------------------------===//
/// The high level logic for this method is this:
/// Retrieve (L)
/// if L has binding
/// return L's binding
/// else if L is in killset
/// return unknown
/// else
/// if L is on stack or heap
/// return undefined
/// else
/// return symbolic
SVal Retrieve(Store store, Loc L, QualType T = QualType());
SVal RetrieveElement(Store store, const ElementRegion *R);
SVal RetrieveField(Store store, const FieldRegion *R);
SVal RetrieveObjCIvar(Store store, const ObjCIvarRegion *R);
SVal RetrieveVar(Store store, const VarRegion *R);
SVal RetrieveLazySymbol(const TypedValueRegion *R);
SVal RetrieveFieldOrElementCommon(Store store, const TypedValueRegion *R,
QualType Ty, const MemRegion *superR);
SVal RetrieveLazyBinding(const MemRegion *lazyBindingRegion,
Store lazyBindingStore);
/// Retrieve the values in a struct and return a CompoundVal, used when doing
/// struct copy:
/// struct s x, y;
/// x = y;
/// y's value is retrieved by this method.
SVal RetrieveStruct(Store store, const TypedValueRegion* R);
SVal RetrieveArray(Store store, const TypedValueRegion* R);
/// Used to lazily generate derived symbols for bindings that are defined
/// implicitly by default bindings in a super region.
Optional<SVal> RetrieveDerivedDefaultValue(RegionBindings B,
const MemRegion *superR,
const TypedValueRegion *R,
QualType Ty);
/// Get the state and region whose binding this region R corresponds to.
std::pair<Store, const MemRegion*>
GetLazyBinding(RegionBindings B, const MemRegion *R,
const MemRegion *originalRegion);
StoreRef CopyLazyBindings(nonloc::LazyCompoundVal V, Store store,
const TypedRegion *R);
//===------------------------------------------------------------------===//
// State pruning.
//===------------------------------------------------------------------===//
/// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
/// It returns a new Store with these values removed.
StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
SymbolReaper& SymReaper);
StoreRef enterStackFrame(const ProgramState *state,
const StackFrameContext *frame);
//===------------------------------------------------------------------===//
// Region "extents".
//===------------------------------------------------------------------===//
// FIXME: This method will soon be eliminated; see the note in Store.h.
DefinedOrUnknownSVal getSizeInElements(const ProgramState *state,
const MemRegion* R, QualType EleTy);
//===------------------------------------------------------------------===//
// Utility methods.
//===------------------------------------------------------------------===//
static inline RegionBindings GetRegionBindings(Store store) {
return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
}
void print(Store store, raw_ostream &Out, const char* nl,
const char *sep);
void iterBindings(Store store, BindingsHandler& f) {
RegionBindings B = GetRegionBindings(store);
for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) {
const BindingKey &K = I.getKey();
if (!K.isDirect())
continue;
if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) {
// FIXME: Possibly incorporate the offset?
if (!f.HandleBinding(*this, store, R, I.getData()))
return;
}
}
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// RegionStore creation.
//===----------------------------------------------------------------------===//
StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
RegionStoreFeatures F = maximal_features_tag();
return new RegionStoreManager(StMgr, F);
}
StoreManager *ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
RegionStoreFeatures F = minimal_features_tag();
F.enableFields(true);
return new RegionStoreManager(StMgr, F);
}
RegionStoreSubRegionMap*
RegionStoreManager::getRegionStoreSubRegionMap(Store store) {
RegionBindings B = GetRegionBindings(store);
RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
SmallVector<const SubRegion*, 10> WL;
for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I)
if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion()))
M->process(WL, R);
// We also need to record in the subregion map "intermediate" regions that
// don't have direct bindings but are super regions of those that do.
while (!WL.empty()) {
const SubRegion *R = WL.back();
WL.pop_back();
M->process(WL, R);
}
return M;
}
//===----------------------------------------------------------------------===//
// Region Cluster analysis.
//===----------------------------------------------------------------------===//
namespace {
template <typename DERIVED>
class ClusterAnalysis {
protected:
typedef BumpVector<BindingKey> RegionCluster;
typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap;
llvm::DenseMap<const RegionCluster*, unsigned> Visited;
typedef SmallVector<std::pair<const MemRegion *, RegionCluster*>, 10>
WorkList;
BumpVectorContext BVC;
ClusterMap ClusterM;
WorkList WL;
RegionStoreManager &RM;
ASTContext &Ctx;
SValBuilder &svalBuilder;
RegionBindings B;
const bool includeGlobals;
public:
ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
RegionBindings b, const bool includeGlobals)
: RM(rm), Ctx(StateMgr.getContext()),
svalBuilder(StateMgr.getSValBuilder()),
B(b), includeGlobals(includeGlobals) {}
RegionBindings getRegionBindings() const { return B; }
RegionCluster &AddToCluster(BindingKey K) {
const MemRegion *R = K.getRegion();
const MemRegion *baseR = R->getBaseRegion();
RegionCluster &C = getCluster(baseR);
C.push_back(K, BVC);
static_cast<DERIVED*>(this)->VisitAddedToCluster(baseR, C);
return C;
}
bool isVisited(const MemRegion *R) {
return (bool) Visited[&getCluster(R->getBaseRegion())];
}
RegionCluster& getCluster(const MemRegion *R) {
RegionCluster *&CRef = ClusterM[R];
if (!CRef) {
void *Mem = BVC.getAllocator().template Allocate<RegionCluster>();
CRef = new (Mem) RegionCluster(BVC, 10);
}
return *CRef;
}
void GenerateClusters() {
// Scan the entire set of bindings and make the region clusters.
for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
RegionCluster &C = AddToCluster(RI.getKey());
if (const MemRegion *R = RI.getData().getAsRegion()) {
// Generate a cluster, but don't add the region to the cluster
// if there aren't any bindings.
getCluster(R->getBaseRegion());
}
if (includeGlobals) {
const MemRegion *R = RI.getKey().getRegion();
if (isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()))
AddToWorkList(R, C);
}
}
}
bool AddToWorkList(const MemRegion *R, RegionCluster &C) {
if (unsigned &visited = Visited[&C])
return false;
else
visited = 1;
WL.push_back(std::make_pair(R, &C));
return true;
}
bool AddToWorkList(BindingKey K) {
return AddToWorkList(K.getRegion());
}
bool AddToWorkList(const MemRegion *R) {
const MemRegion *baseR = R->getBaseRegion();
return AddToWorkList(baseR, getCluster(baseR));
}
void RunWorkList() {
while (!WL.empty()) {
const MemRegion *baseR;
RegionCluster *C;
llvm::tie(baseR, C) = WL.back();
WL.pop_back();
// First visit the cluster.
static_cast<DERIVED*>(this)->VisitCluster(baseR, C->begin(), C->end());
// Next, visit the base region.
static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
}
}
public:
void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {}
void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {}
void VisitBaseRegion(const MemRegion *baseR) {}
};
}
//===----------------------------------------------------------------------===//
// Binding invalidation.
//===----------------------------------------------------------------------===//
void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B,
const MemRegion *R,
RegionStoreSubRegionMap &M) {
if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R))
for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
I != E; ++I)
RemoveSubRegionBindings(B, *I, M);
B = removeBinding(B, R);
}
namespace {
class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
{
const Expr *Ex;
unsigned Count;
StoreManager::InvalidatedSymbols &IS;
StoreManager::InvalidatedRegions *Regions;
public:
invalidateRegionsWorker(RegionStoreManager &rm,
ProgramStateManager &stateMgr,
RegionBindings b,
const Expr *ex, unsigned count,
StoreManager::InvalidatedSymbols &is,
StoreManager::InvalidatedRegions *r,
bool includeGlobals)
: ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
Ex(ex), Count(count), IS(is), Regions(r) {}
void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
void VisitBaseRegion(const MemRegion *baseR);
private:
void VisitBinding(SVal V);
};
}
void invalidateRegionsWorker::VisitBinding(SVal V) {
// A symbol? Mark it touched by the invalidation.
if (SymbolRef Sym = V.getAsSymbol())
IS.insert(Sym);
if (const MemRegion *R = V.getAsRegion()) {
AddToWorkList(R);
return;
}
// Is it a LazyCompoundVal? All references get invalidated as well.
if (const nonloc::LazyCompoundVal *LCS =
dyn_cast<nonloc::LazyCompoundVal>(&V)) {
const MemRegion *LazyR = LCS->getRegion();
RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
if (baseR && baseR->isSubRegionOf(LazyR))
VisitBinding(RI.getData());
}
return;
}
}
void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
BindingKey *I, BindingKey *E) {
for ( ; I != E; ++I) {
// Get the old binding. Is it a region? If so, add it to the worklist.
const BindingKey &K = *I;
if (const SVal *V = RM.lookup(B, K))
VisitBinding(*V);
B = RM.removeBinding(B, K);
}
}
void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
// Symbolic region? Mark that symbol touched by the invalidation.
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
IS.insert(SR->getSymbol());
// BlockDataRegion? If so, invalidate captured variables that are passed
// by reference.
if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
for (BlockDataRegion::referenced_vars_iterator
BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
BI != BE; ++BI) {
const VarRegion *VR = *BI;
const VarDecl *VD = VR->getDecl();
if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage())
AddToWorkList(VR);
}
return;
}
// Otherwise, we have a normal data region. Record that we touched the region.
if (Regions)
Regions->push_back(baseR);
if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
// Invalidate the region by setting its default value to
// conjured symbol. The type of the symbol is irrelavant.
DefinedOrUnknownSVal V =
svalBuilder.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, Count);
B = RM.addBinding(B, baseR, BindingKey::Default, V);
return;
}
if (!baseR->isBoundable())
return;
const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
QualType T = TR->getValueType();
// Invalidate the binding.
if (T->isStructureOrClassType()) {
// Invalidate the region by setting its default value to
// conjured symbol. The type of the symbol is irrelavant.
DefinedOrUnknownSVal V =
svalBuilder.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, Count);
B = RM.addBinding(B, baseR, BindingKey::Default, V);
return;
}
if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
// Set the default value of the array to conjured symbol.
DefinedOrUnknownSVal V =
svalBuilder.getConjuredSymbolVal(baseR, Ex, AT->getElementType(), Count);
B = RM.addBinding(B, baseR, BindingKey::Default, V);
return;
}
if (includeGlobals &&
isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
// If the region is a global and we are invalidating all globals,
// just erase the entry. This causes all globals to be lazily
// symbolicated from the same base symbol.
B = RM.removeBinding(B, baseR);
return;
}
DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, T, Count);
assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
B = RM.addBinding(B, baseR, BindingKey::Direct, V);
}
RegionBindings RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
const Expr *Ex,
unsigned Count,
RegionBindings B,
InvalidatedRegions *Invalidated) {
// Bind the globals memory space to a new symbol that we will use to derive
// the bindings for all globals.
const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
SVal V =
svalBuilder.getConjuredSymbolVal(/* SymbolTag = */ (void*) GS, Ex,
/* symbol type, doesn't matter */ Ctx.IntTy,
Count);
B = removeBinding(B, GS);
B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V);
// Even if there are no bindings in the global scope, we still need to
// record that we touched it.
if (Invalidated)
Invalidated->push_back(GS);
return B;
}
StoreRef RegionStoreManager::invalidateRegions(Store store,
ArrayRef<const MemRegion *> Regions,
const Expr *Ex, unsigned Count,
InvalidatedSymbols &IS,
const CallOrObjCMessage *Call,
InvalidatedRegions *Invalidated) {
invalidateRegionsWorker W(*this, StateMgr,
RegionStoreManager::GetRegionBindings(store),
Ex, Count, IS, Invalidated, false);
// Scan the bindings and generate the clusters.
W.GenerateClusters();
// Add the regions to the worklist.
for (ArrayRef<const MemRegion *>::iterator
I = Regions.begin(), E = Regions.end(); I != E; ++I)
W.AddToWorkList(*I);
W.RunWorkList();
// Return the new bindings.
RegionBindings B = W.getRegionBindings();
// For all globals which are not static nor immutable: determine which global
// regions should be invalidated and invalidate them.
// TODO: This could possibly be more precise with modules.
//
// System calls invalidate only system globals.
if (Call && Call->isInSystemHeader()) {
B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
Ex, Count, B, Invalidated);
// Internal calls might invalidate both system and internal globals.
} else {
B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
Ex, Count, B, Invalidated);
B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
Ex, Count, B, Invalidated);
}
return StoreRef(B.getRootWithoutRetain(), *this);
}
//===----------------------------------------------------------------------===//
// Extents for regions.
//===----------------------------------------------------------------------===//
DefinedOrUnknownSVal RegionStoreManager::getSizeInElements(const ProgramState *state,
const MemRegion *R,
QualType EleTy) {
SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
if (!SizeInt)
return UnknownVal();
CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
if (Ctx.getAsVariableArrayType(EleTy)) {
// FIXME: We need to track extra state to properly record the size
// of VLAs. Returning UnknownVal here, however, is a stop-gap so that
// we don't have a divide-by-zero below.
return UnknownVal();
}
CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
// If a variable is reinterpreted as a type that doesn't fit into a larger
// type evenly, round it down.
// This is a signed value, since it's used in arithmetic with signed indices.
return svalBuilder.makeIntVal(RegionSize / EleSize, false);
}
//===----------------------------------------------------------------------===//
// Location and region casting.
//===----------------------------------------------------------------------===//
/// ArrayToPointer - Emulates the "decay" of an array to a pointer
/// type. 'Array' represents the lvalue of the array being decayed
/// to a pointer, and the returned SVal represents the decayed
/// version of that lvalue (i.e., a pointer to the first element of
/// the array). This is called by ExprEngine when evaluating casts
/// from arrays to pointers.
SVal RegionStoreManager::ArrayToPointer(Loc Array) {
if (!isa<loc::MemRegionVal>(Array))
return UnknownVal();
const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
if (!ArrayR)
return UnknownVal();
// Strip off typedefs from the ArrayRegion's ValueType.
QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
const ArrayType *AT = cast<ArrayType>(T);
T = AT->getElementType();
NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
}
SVal RegionStoreManager::evalDerivedToBase(SVal derived, QualType baseType) {
const CXXRecordDecl *baseDecl;
if (baseType->isPointerType())
baseDecl = baseType->getCXXRecordDeclForPointerType();
else
baseDecl = baseType->getAsCXXRecordDecl();
assert(baseDecl && "not a CXXRecordDecl?");
loc::MemRegionVal *derivedRegVal = dyn_cast<loc::MemRegionVal>(&derived);
if (!derivedRegVal)
return derived;
const MemRegion *baseReg =
MRMgr.getCXXBaseObjectRegion(baseDecl, derivedRegVal->getRegion());
return loc::MemRegionVal(baseReg);
}
//===----------------------------------------------------------------------===//
// Loading values from regions.
//===----------------------------------------------------------------------===//
Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
const MemRegion *R) {
if (const SVal *V = lookup(B, R, BindingKey::Direct))
return *V;
return Optional<SVal>();
}
Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
const MemRegion *R) {
if (R->isBoundable())
if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
if (TR->getValueType()->isUnionType())
return UnknownVal();
if (const SVal *V = lookup(B, R, BindingKey::Default))
return *V;
return Optional<SVal>();
}
SVal RegionStoreManager::Retrieve(Store store, Loc L, QualType T) {
assert(!isa<UnknownVal>(L) && "location unknown");
assert(!isa<UndefinedVal>(L) && "location undefined");
// For access to concrete addresses, return UnknownVal. Checks
// for null dereferences (and similar errors) are done by checkers, not
// the Store.
// FIXME: We can consider lazily symbolicating such memory, but we really
// should defer this when we can reason easily about symbolicating arrays
// of bytes.
if (isa<loc::ConcreteInt>(L)) {
return UnknownVal();
}
if (!isa<loc::MemRegionVal>(L)) {
return UnknownVal();
}
const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
if (isa<AllocaRegion>(MR) ||
isa<SymbolicRegion>(MR) ||
isa<CodeTextRegion>(MR)) {
if (T.isNull()) {
const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
T = SR->getSymbol()->getType(Ctx);
}
MR = GetElementZeroRegion(MR, T);
}
// FIXME: Perhaps this method should just take a 'const MemRegion*' argument
// instead of 'Loc', and have the other Loc cases handled at a higher level.
const TypedValueRegion *R = cast<TypedValueRegion>(MR);
QualType RTy = R->getValueType();
// FIXME: We should eventually handle funny addressing. e.g.:
//
// int x = ...;
// int *p = &x;
// char *q = (char*) p;
// char c = *q; // returns the first byte of 'x'.
//
// Such funny addressing will occur due to layering of regions.
if (RTy->isStructureOrClassType())
return RetrieveStruct(store, R);
// FIXME: Handle unions.
if (RTy->isUnionType())
return UnknownVal();
if (RTy->isArrayType())
return RetrieveArray(store, R);
// FIXME: handle Vector types.
if (RTy->isVectorType())
return UnknownVal();
if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
return CastRetrievedVal(RetrieveField(store, FR), FR, T, false);
if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
// FIXME: Here we actually perform an implicit conversion from the loaded
// value to the element type. Eventually we want to compose these values
// more intelligently. For example, an 'element' can encompass multiple
// bound regions (e.g., several bound bytes), or could be a subset of
// a larger value.
return CastRetrievedVal(RetrieveElement(store, ER), ER, T, false);
}
if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
// FIXME: Here we actually perform an implicit conversion from the loaded
// value to the ivar type. What we should model is stores to ivars
// that blow past the extent of the ivar. If the address of the ivar is
// reinterpretted, it is possible we stored a different value that could
// fit within the ivar. Either we need to cast these when storing them
// or reinterpret them lazily (as we do here).
return CastRetrievedVal(RetrieveObjCIvar(store, IVR), IVR, T, false);
}
if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
// FIXME: Here we actually perform an implicit conversion from the loaded
// value to the variable type. What we should model is stores to variables
// that blow past the extent of the variable. If the address of the
// variable is reinterpretted, it is possible we stored a different value
// that could fit within the variable. Either we need to cast these when
// storing them or reinterpret them lazily (as we do here).
return CastRetrievedVal(RetrieveVar(store, VR), VR, T, false);
}
RegionBindings B = GetRegionBindings(store);
const SVal *V = lookup(B, R, BindingKey::Direct);
// Check if the region has a binding.
if (V)
return *V;
// The location does not have a bound value. This means that it has
// the value it had upon its creation and/or entry to the analyzed
// function/method. These are either symbolic values or 'undefined'.
if (R->hasStackNonParametersStorage()) {
// All stack variables are considered to have undefined values
// upon creation. All heap allocated blocks are considered to
// have undefined values as well unless they are explicitly bound
// to specific values.
return UndefinedVal();
}
// All other values are symbolic.
return svalBuilder.getRegionValueSymbolVal(R);
}
std::pair<Store, const MemRegion *>
RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R,
const MemRegion *originalRegion) {
if (originalRegion != R) {
if (Optional<SVal> OV = getDefaultBinding(B, R)) {
if (const nonloc::LazyCompoundVal *V =
dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
return std::make_pair(V->getStore(), V->getRegion());
}
}
if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
const std::pair<Store, const MemRegion *> &X =
GetLazyBinding(B, ER->getSuperRegion(), originalRegion);
if (X.second)
return std::make_pair(X.first,
MRMgr.getElementRegionWithSuper(ER, X.second));
}
else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
const std::pair<Store, const MemRegion *> &X =
GetLazyBinding(B, FR->getSuperRegion(), originalRegion);
if (X.second)
return std::make_pair(X.first,
MRMgr.getFieldRegionWithSuper(FR, X.second));
}
// C++ base object region is another kind of region that we should blast
// through to look for lazy compound value. It is like a field region.
else if (const CXXBaseObjectRegion *baseReg =
dyn_cast<CXXBaseObjectRegion>(R)) {
const std::pair<Store, const MemRegion *> &X =
GetLazyBinding(B, baseReg->getSuperRegion(), originalRegion);
if (X.second)
return std::make_pair(X.first,
MRMgr.getCXXBaseObjectRegionWithSuper(baseReg, X.second));
}
// The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
// possible for a valid lazy binding.
return std::make_pair((Store) 0, (const MemRegion *) 0);
}
SVal RegionStoreManager::RetrieveElement(Store store,
const ElementRegion* R) {
// Check if the region has a binding.
RegionBindings B = GetRegionBindings(store);
if (const Optional<SVal> &V = getDirectBinding(B, R))
return *V;
const MemRegion* superR = R->getSuperRegion();
// Check if the region is an element region of a string literal.
if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
// FIXME: Handle loads from strings where the literal is treated as
// an integer, e.g., *((unsigned int*)"hello")
QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
if (T != Ctx.getCanonicalType(R->getElementType()))
return UnknownVal();
const StringLiteral *Str = StrR->getStringLiteral();
SVal Idx = R->getIndex();
if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
int64_t i = CI->getValue().getSExtValue();
// Abort on string underrun. This can be possible by arbitrary
// clients of RetrieveElement().
if (i < 0)
return UndefinedVal();
int64_t length = Str->getLength();
// Technically, only i == length is guaranteed to be null.
// However, such overflows should be caught before reaching this point;
// the only time such an access would be made is if a string literal was
// used to initialize a larger array.
char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
return svalBuilder.makeIntVal(c, T);
}
}
// Check for loads from a code text region. For such loads, just give up.
if (isa<CodeTextRegion>(superR))
return UnknownVal();
// Handle the case where we are indexing into a larger scalar object.
// For example, this handles:
// int x = ...
// char *y = &x;
// return *y;
// FIXME: This is a hack, and doesn't do anything really intelligent yet.
const RegionRawOffset &O = R->getAsArrayOffset();
// If we cannot reason about the offset, return an unknown value.
if (!O.getRegion())
return UnknownVal();
if (const TypedValueRegion *baseR =
dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
QualType baseT = baseR->getValueType();
if (baseT->isScalarType()) {
QualType elemT = R->getElementType();
if (elemT->isScalarType()) {
if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
if (const Optional<SVal> &V = getDirectBinding(B, superR)) {
if (SymbolRef parentSym = V->getAsSymbol())
return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
if (V->isUnknownOrUndef())
return *V;
// Other cases: give up. We are indexing into a larger object
// that has some value, but we don't know how to handle that yet.
return UnknownVal();
}
}
}
}
}
return RetrieveFieldOrElementCommon(store, R, R->getElementType(), superR);
}
SVal RegionStoreManager::RetrieveField(Store store,
const FieldRegion* R) {
// Check if the region has a binding.
RegionBindings B = GetRegionBindings(store);
if (const Optional<SVal> &V = getDirectBinding(B, R))
return *V;
QualType Ty = R->getValueType();
return RetrieveFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
}
Optional<SVal>
RegionStoreManager::RetrieveDerivedDefaultValue(RegionBindings B,
const MemRegion *superR,
const TypedValueRegion *R,
QualType Ty) {
if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
const SVal &val = D.getValue();
if (SymbolRef parentSym = val.getAsSymbol())
return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
if (val.isZeroConstant())
return svalBuilder.makeZeroVal(Ty);
if (val.isUnknownOrUndef())
return val;
// Lazy bindings are handled later.
if (isa<nonloc::LazyCompoundVal>(val))
return Optional<SVal>();
llvm_unreachable("Unknown default value");
}
return Optional<SVal>();
}
SVal RegionStoreManager::RetrieveLazyBinding(const MemRegion *lazyBindingRegion,
Store lazyBindingStore) {
if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
return RetrieveElement(lazyBindingStore, ER);
return RetrieveField(lazyBindingStore,
cast<FieldRegion>(lazyBindingRegion));
}
SVal RegionStoreManager::RetrieveFieldOrElementCommon(Store store,
const TypedValueRegion *R,
QualType Ty,
const MemRegion *superR) {
// At this point we have already checked in either RetrieveElement or
// RetrieveField if 'R' has a direct binding.
RegionBindings B = GetRegionBindings(store);
while (superR) {
if (const Optional<SVal> &D =
RetrieveDerivedDefaultValue(B, superR, R, Ty))
return *D;
// If our super region is a field or element itself, walk up the region
// hierarchy to see if there is a default value installed in an ancestor.
if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
superR = SR->getSuperRegion();
continue;
}
break;
}
// Lazy binding?
Store lazyBindingStore = NULL;
const MemRegion *lazyBindingRegion = NULL;
llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R, R);
if (lazyBindingRegion)
return RetrieveLazyBinding(lazyBindingRegion, lazyBindingStore);
if (R->hasStackNonParametersStorage()) {
if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
// Currently we don't reason specially about Clang-style vectors. Check
// if superR is a vector and if so return Unknown.
if (const TypedValueRegion *typedSuperR =
dyn_cast<TypedValueRegion>(superR)) {
if (typedSuperR->getValueType()->isVectorType())
return UnknownVal();
}
// FIXME: We also need to take ElementRegions with symbolic indexes into
// account.
if (!ER->getIndex().isConstant())
return UnknownVal();
}
return UndefinedVal();
}
// All other values are symbolic.
return svalBuilder.getRegionValueSymbolVal(R);
}
SVal RegionStoreManager::RetrieveObjCIvar(Store store, const ObjCIvarRegion* R){
// Check if the region has a binding.
RegionBindings B = GetRegionBindings(store);
if (const Optional<SVal> &V = getDirectBinding(B, R))
return *V;
const MemRegion *superR = R->getSuperRegion();
// Check if the super region has a default binding.
if (const Optional<SVal> &V = getDefaultBinding(B, superR)) {
if (SymbolRef parentSym = V->getAsSymbol())
return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
// Other cases: give up.
return UnknownVal();
}
return RetrieveLazySymbol(R);
}
SVal RegionStoreManager::RetrieveVar(Store store, const VarRegion *R) {
// Check if the region has a binding.
RegionBindings B = GetRegionBindings(store);
if (const Optional<SVal> &V = getDirectBinding(B, R))
return *V;
// Lazily derive a value for the VarRegion.
const VarDecl *VD = R->getDecl();
QualType T = VD->getType();
const MemSpaceRegion *MS = R->getMemorySpace();
if (isa<UnknownSpaceRegion>(MS) ||
isa<StackArgumentsSpaceRegion>(MS))
return svalBuilder.getRegionValueSymbolVal(R);
if (isa<GlobalsSpaceRegion>(MS)) {
if (isa<NonStaticGlobalSpaceRegion>(MS)) {
// Is 'VD' declared constant? If so, retrieve the constant value.
QualType CT = Ctx.getCanonicalType(T);
if (CT.isConstQualified()) {
const Expr *Init = VD->getInit();
// Do the null check first, as we want to call 'IgnoreParenCasts'.
if (Init)
if (const IntegerLiteral *IL =
dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL);
return svalBuilder.evalCast(V, Init->getType(), IL->getType());
}
}
if (const Optional<SVal> &V = RetrieveDerivedDefaultValue(B, MS, R, CT))
return V.getValue();
return svalBuilder.getRegionValueSymbolVal(R);
}
if (T->isIntegerType())
return svalBuilder.makeIntVal(0, T);
if (T->isPointerType())
return svalBuilder.makeNull();
return UnknownVal();
}
return UndefinedVal();
}
SVal RegionStoreManager::RetrieveLazySymbol(const TypedValueRegion *R) {
// All other values are symbolic.
return svalBuilder.getRegionValueSymbolVal(R);
}
SVal RegionStoreManager::RetrieveStruct(Store store,
const TypedValueRegion* R) {
QualType T = R->getValueType();
assert(T->isStructureOrClassType());
return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
}
SVal RegionStoreManager::RetrieveArray(Store store,
const TypedValueRegion * R) {
assert(Ctx.getAsConstantArrayType(R->getValueType()));
return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
}
bool RegionStoreManager::includedInBindings(Store store,
const MemRegion *region) const {
RegionBindings B = GetRegionBindings(store);
region = region->getBaseRegion();
for (RegionBindings::iterator it = B.begin(), ei = B.end(); it != ei; ++it) {
const BindingKey &K = it.getKey();
if (region == K.getRegion())
return true;
const SVal &D = it.getData();
if (const MemRegion *r = D.getAsRegion())
if (r == region)
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// Binding values to regions.
//===----------------------------------------------------------------------===//
StoreRef RegionStoreManager::Remove(Store store, Loc L) {
if (isa<loc::MemRegionVal>(L))
if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
return StoreRef(removeBinding(GetRegionBindings(store),
R).getRootWithoutRetain(),
*this);
return StoreRef(store, *this);
}
StoreRef RegionStoreManager::Bind(Store store, Loc L, SVal V) {
if (isa<loc::ConcreteInt>(L))
return StoreRef(store, *this);
// If we get here, the location should be a region.
const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
// Check if the region is a struct region.
if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R))
if (TR->getValueType()->isStructureOrClassType())
return BindStruct(store, TR, V);
if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
if (ER->getIndex().isZeroConstant()) {
if (const TypedValueRegion *superR =
dyn_cast<TypedValueRegion>(ER->getSuperRegion())) {
QualType superTy = superR->getValueType();
// For now, just invalidate the fields of the struct/union/class.
// This is for test rdar_test_7185607 in misc-ps-region-store.m.
// FIXME: Precisely handle the fields of the record.
if (superTy->isStructureOrClassType())
return KillStruct(store, superR, UnknownVal());
}
}
}
else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
// Binding directly to a symbolic region should be treated as binding
// to element 0.
QualType T = SR->getSymbol()->getType(Ctx);
// FIXME: Is this the right way to handle symbols that are references?
if (const PointerType *PT = T->getAs<PointerType>())
T = PT->getPointeeType();
else
T = T->getAs<ReferenceType>()->getPointeeType();
R = GetElementZeroRegion(SR, T);
}
// Perform the binding.
RegionBindings B = GetRegionBindings(store);
return StoreRef(addBinding(B, R, BindingKey::Direct,
V).getRootWithoutRetain(), *this);
}
StoreRef RegionStoreManager::BindDecl(Store store, const VarRegion *VR,
SVal InitVal) {
QualType T = VR->getDecl()->getType();
if (T->isArrayType())
return BindArray(store, VR, InitVal);
if (T->isStructureOrClassType())
return BindStruct(store, VR, InitVal);
return Bind(store, svalBuilder.makeLoc(VR), InitVal);
}
// FIXME: this method should be merged into Bind().
StoreRef RegionStoreManager::BindCompoundLiteral(Store store,
const CompoundLiteralExpr *CL,
const LocationContext *LC,
SVal V) {
return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)),
V);
}
StoreRef RegionStoreManager::setImplicitDefaultValue(Store store,
const MemRegion *R,
QualType T) {
RegionBindings B = GetRegionBindings(store);
SVal V;
if (Loc::isLocType(T))
V = svalBuilder.makeNull();
else if (T->isIntegerType())
V = svalBuilder.makeZeroVal(T);
else if (T->isStructureOrClassType() || T->isArrayType()) {
// Set the default value to a zero constant when it is a structure
// or array. The type doesn't really matter.
V = svalBuilder.makeZeroVal(Ctx.IntTy);
}
else {
// We can't represent values of this type, but we still need to set a value
// to record that the region has been initialized.
// If this assertion ever fires, a new case should be added above -- we
// should know how to default-initialize any value we can symbolicate.
assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
V = UnknownVal();
}
return StoreRef(addBinding(B, R, BindingKey::Default,
V).getRootWithoutRetain(), *this);
}
StoreRef RegionStoreManager::BindArray(Store store, const TypedValueRegion* R,
SVal Init) {
const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
QualType ElementTy = AT->getElementType();
Optional<uint64_t> Size;
if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
Size = CAT->getSize().getZExtValue();
// Check if the init expr is a string literal.
if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
const StringRegion *S = cast<StringRegion>(MRV->getRegion());
// Treat the string as a lazy compound value.
nonloc::LazyCompoundVal LCV =
cast<nonloc::LazyCompoundVal>(svalBuilder.
makeLazyCompoundVal(StoreRef(store, *this), S));
return CopyLazyBindings(LCV, store, R);
}
// Handle lazy compound values.
if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init))
return CopyLazyBindings(*LCV, store, R);
// Remaining case: explicit compound values.
if (Init.isUnknown())
return setImplicitDefaultValue(store, R, ElementTy);
nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
uint64_t i = 0;
StoreRef newStore(store, *this);
for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
// The init list might be shorter than the array length.
if (VI == VE)
break;
const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
if (ElementTy->isStructureOrClassType())
newStore = BindStruct(newStore.getStore(), ER, *VI);
else if (ElementTy->isArrayType())
newStore = BindArray(newStore.getStore(), ER, *VI);
else
newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
}
// If the init list is shorter than the array length, set the
// array default value.
if (Size.hasValue() && i < Size.getValue())
newStore = setImplicitDefaultValue(newStore.getStore(), R, ElementTy);
return newStore;
}
StoreRef RegionStoreManager::BindStruct(Store store, const TypedValueRegion* R,
SVal V) {
if (!Features.supportsFields())
return StoreRef(store, *this);
QualType T = R->getValueType();
assert(T->isStructureOrClassType());
const RecordType* RT = T->getAs<RecordType>();
RecordDecl *RD = RT->getDecl();
if (!RD->isCompleteDefinition())
return StoreRef(store, *this);
// Handle lazy compound values.
if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V))
return CopyLazyBindings(*LCV, store, R);
// We may get non-CompoundVal accidentally due to imprecise cast logic or
// that we are binding symbolic struct value. Kill the field values, and if
// the value is symbolic go and bind it as a "default" binding.
if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) {
SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal();
return KillStruct(store, R, SV);
}
nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
RecordDecl::field_iterator FI, FE;
StoreRef newStore(store, *this);
for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
if (VI == VE)
break;
// Skip any unnamed bitfields to stay in sync with the initializers.
if ((*FI)->isUnnamedBitfield())
continue;
QualType FTy = (*FI)->getType();
const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
if (FTy->isArrayType())
newStore = BindArray(newStore.getStore(), FR, *VI);
else if (FTy->isStructureOrClassType())
newStore = BindStruct(newStore.getStore(), FR, *VI);
else
newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(FR), *VI);
++VI;
}
// There may be fewer values in the initialize list than the fields of struct.
if (FI != FE) {
RegionBindings B = GetRegionBindings(newStore.getStore());
B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false));
newStore = StoreRef(B.getRootWithoutRetain(), *this);
}
return newStore;
}
StoreRef RegionStoreManager::KillStruct(Store store, const TypedRegion* R,
SVal DefaultVal) {
BindingKey key = BindingKey::Make(R, BindingKey::Default);
// The BindingKey may be "invalid" if we cannot handle the region binding
// explicitly. One example is something like array[index], where index
// is a symbolic value. In such cases, we want to invalidate the entire
// array, as the index assignment could have been to any element. In
// the case of nested symbolic indices, we need to march up the region
// hierarchy untile we reach a region whose binding we can reason about.
const SubRegion *subReg = R;
while (!key.isValid()) {
if (const SubRegion *tmp = dyn_cast<SubRegion>(subReg->getSuperRegion())) {
subReg = tmp;
key = BindingKey::Make(tmp, BindingKey::Default);
}
else
break;
}
// Remove the old bindings, using 'subReg' as the root of all regions
// we will invalidate.
RegionBindings B = GetRegionBindings(store);
llvm::OwningPtr<RegionStoreSubRegionMap>
SubRegions(getRegionStoreSubRegionMap(store));
RemoveSubRegionBindings(B, subReg, *SubRegions);
// Set the default value of the struct region to "unknown".
if (!key.isValid())
return StoreRef(B.getRootWithoutRetain(), *this);
return StoreRef(addBinding(B, key, DefaultVal).getRootWithoutRetain(), *this);
}
StoreRef RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V,
Store store,
const TypedRegion *R) {
// Nuke the old bindings stemming from R.
RegionBindings B = GetRegionBindings(store);
llvm::OwningPtr<RegionStoreSubRegionMap>
SubRegions(getRegionStoreSubRegionMap(store));
// B and DVM are updated after the call to RemoveSubRegionBindings.
RemoveSubRegionBindings(B, R, *SubRegions.get());
// Now copy the bindings. This amounts to just binding 'V' to 'R'. This
// results in a zero-copy algorithm.
return StoreRef(addBinding(B, R, BindingKey::Default,
V).getRootWithoutRetain(), *this);
}
//===----------------------------------------------------------------------===//
// "Raw" retrievals and bindings.
//===----------------------------------------------------------------------===//
RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K,
SVal V) {
if (!K.isValid())
return B;
return RBFactory.add(B, K, V);
}
RegionBindings RegionStoreManager::addBinding(RegionBindings B,
const MemRegion *R,
BindingKey::Kind k, SVal V) {
return addBinding(B, BindingKey::Make(R, k), V);
}
const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) {
if (!K.isValid())
return NULL;
return B.lookup(K);
}
const SVal *RegionStoreManager::lookup(RegionBindings B,
const MemRegion *R,
BindingKey::Kind k) {
return lookup(B, BindingKey::Make(R, k));
}
RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
BindingKey K) {
if (!K.isValid())
return B;
return RBFactory.remove(B, K);
}
RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
const MemRegion *R,
BindingKey::Kind k){
return removeBinding(B, BindingKey::Make(R, k));
}
//===----------------------------------------------------------------------===//
// State pruning.
//===----------------------------------------------------------------------===//
namespace {
class removeDeadBindingsWorker :
public ClusterAnalysis<removeDeadBindingsWorker> {
SmallVector<const SymbolicRegion*, 12> Postponed;
SymbolReaper &SymReaper;
const StackFrameContext *CurrentLCtx;
public:
removeDeadBindingsWorker(RegionStoreManager &rm, ProgramStateManager &stateMgr,
RegionBindings b, SymbolReaper &symReaper,
const StackFrameContext *LCtx)
: ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
/* includeGlobals = */ false),
SymReaper(symReaper), CurrentLCtx(LCtx) {}
// Called by ClusterAnalysis.
void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C);
void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
void VisitBindingKey(BindingKey K);
bool UpdatePostponed();
void VisitBinding(SVal V);
};
}
void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
RegionCluster &C) {
if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
if (SymReaper.isLive(VR))
AddToWorkList(baseR, C);
return;
}
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
if (SymReaper.isLive(SR->getSymbol()))
AddToWorkList(SR, C);
else
Postponed.push_back(SR);
return;
}
if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
AddToWorkList(baseR, C);
return;
}
// CXXThisRegion in the current or parent location context is live.
if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
const StackArgumentsSpaceRegion *StackReg =
cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
const StackFrameContext *RegCtx = StackReg->getStackFrame();
if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))
AddToWorkList(TR, C);
}
}
void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
BindingKey *I, BindingKey *E) {
for ( ; I != E; ++I)
VisitBindingKey(*I);
}
void removeDeadBindingsWorker::VisitBinding(SVal V) {
// Is it a LazyCompoundVal? All referenced regions are live as well.
if (const nonloc::LazyCompoundVal *LCS =
dyn_cast<nonloc::LazyCompoundVal>(&V)) {
const MemRegion *LazyR = LCS->getRegion();
RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
if (baseR && baseR->isSubRegionOf(LazyR))
VisitBinding(RI.getData());
}
return;
}
// If V is a region, then add it to the worklist.
if (const MemRegion *R = V.getAsRegion())
AddToWorkList(R);
// Update the set of live symbols.
for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
SI!=SE; ++SI)
SymReaper.markLive(*SI);
}
void removeDeadBindingsWorker::VisitBindingKey(BindingKey K) {
const MemRegion *R = K.getRegion();
// Mark this region "live" by adding it to the worklist. This will cause
// use to visit all regions in the cluster (if we haven't visited them
// already).
if (AddToWorkList(R)) {
// Mark the symbol for any live SymbolicRegion as "live". This means we
// should continue to track that symbol.
if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
SymReaper.markLive(SymR->getSymbol());
// For BlockDataRegions, enqueue the VarRegions for variables marked
// with __block (passed-by-reference).
// via BlockDeclRefExprs.
if (const BlockDataRegion *BD = dyn_cast<BlockDataRegion>(R)) {
for (BlockDataRegion::referenced_vars_iterator
RI = BD->referenced_vars_begin(), RE = BD->referenced_vars_end();
RI != RE; ++RI) {
if ((*RI)->getDecl()->getAttr<BlocksAttr>())
AddToWorkList(*RI);
}
// No possible data bindings on a BlockDataRegion.
return;
}
}
// Visit the data binding for K.
if (const SVal *V = RM.lookup(B, K))
VisitBinding(*V);
}
bool removeDeadBindingsWorker::UpdatePostponed() {
// See if any postponed SymbolicRegions are actually live now, after
// having done a scan.
bool changed = false;
for (SmallVectorImpl<const SymbolicRegion*>::iterator
I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) {
if (SymReaper.isLive(SR->getSymbol())) {
changed |= AddToWorkList(SR);
*I = NULL;
}
}
}
return changed;
}
StoreRef RegionStoreManager::removeDeadBindings(Store store,
const StackFrameContext *LCtx,
SymbolReaper& SymReaper) {
RegionBindings B = GetRegionBindings(store);
removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
W.GenerateClusters();
// Enqueue the region roots onto the worklist.
for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
E = SymReaper.region_end(); I != E; ++I) {
W.AddToWorkList(*I);
}
do W.RunWorkList(); while (W.UpdatePostponed());
// We have now scanned the store, marking reachable regions and symbols
// as live. We now remove all the regions that are dead from the store
// as well as update DSymbols with the set symbols that are now dead.
for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
const BindingKey &K = I.getKey();
// If the cluster has been visited, we know the region has been marked.
if (W.isVisited(K.getRegion()))
continue;
// Remove the dead entry.
B = removeBinding(B, K);
// Mark all non-live symbols that this binding references as dead.
if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(K.getRegion()))
SymReaper.maybeDead(SymR->getSymbol());
SVal X = I.getData();
SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
for (; SI != SE; ++SI)
SymReaper.maybeDead(*SI);
}
return StoreRef(B.getRootWithoutRetain(), *this);
}
StoreRef RegionStoreManager::enterStackFrame(const ProgramState *state,
const StackFrameContext *frame) {
FunctionDecl const *FD = cast<FunctionDecl>(frame->getDecl());
FunctionDecl::param_const_iterator PI = FD->param_begin(),
PE = FD->param_end();
StoreRef store = StoreRef(state->getStore(), *this);
if (CallExpr const *CE = dyn_cast<CallExpr>(frame->getCallSite())) {
CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
// Copy the arg expression value to the arg variables. We check that
// PI != PE because the actual number of arguments may be different than
// the function declaration.
for (; AI != AE && PI != PE; ++AI, ++PI) {
SVal ArgVal = state->getSVal(*AI);
store = Bind(store.getStore(),
svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, frame)), ArgVal);
}
} else if (const CXXConstructExpr *CE =
dyn_cast<CXXConstructExpr>(frame->getCallSite())) {
CXXConstructExpr::const_arg_iterator AI = CE->arg_begin(),
AE = CE->arg_end();
// Copy the arg expression value to the arg variables.
for (; AI != AE; ++AI, ++PI) {
SVal ArgVal = state->getSVal(*AI);
store = Bind(store.getStore(),
svalBuilder.makeLoc(MRMgr.getVarRegion(*PI,frame)), ArgVal);
}
} else
assert(isa<CXXDestructorDecl>(frame->getDecl()));
return store;
}
//===----------------------------------------------------------------------===//
// Utility methods.
//===----------------------------------------------------------------------===//
void RegionStoreManager::print(Store store, raw_ostream &OS,
const char* nl, const char *sep) {
RegionBindings B = GetRegionBindings(store);
OS << "Store (direct and default bindings):" << nl;
for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I)
OS << ' ' << I.getKey() << " : " << I.getData() << nl;
}