blob: d988e7685a6720cb86ba6e466056e4225f7156b5 [file] [log] [blame]
#===- - Python Indexing Library Bindings -----------*- python -*--===#
# The LLVM Compiler Infrastructure
# This file is distributed under the University of Illinois Open Source
# License. See LICENSE.TXT for details.
Clang Indexing Library Bindings
This module provides an interface to the Clang indexing library. It is a
low-level interface to the indexing library which attempts to match the Clang
API directly while also being "pythonic". Notable differences from the C API
* string results are returned as Python strings, not CXString objects.
* null cursors are translated to None.
* access to child cursors is done via iteration, not visitation.
The major indexing objects are:
The top-level object which manages some global library state.
High-level object encapsulating the AST for a single translation unit. These
can be loaded from .ast files or parsed on the fly.
Generic object for representing a node in the AST.
SourceRange, SourceLocation, and File
Objects representing information about the input source.
Most object information is exposed using properties, when the underlying API
call is efficient.
# ====
# o API support for invalid translation units. Currently we can't even get the
# diagnostics on failure because they refer to locations in an object that
# will have been invalidated.
# o fix memory management issues (currently client must hold on to index and
# translation unit, or risk crashes).
# o expose code completion APIs.
# o cleanup ctypes wrapping, would be nice to separate the ctypes details more
# clearly, and hide from the external interface (i.e., help(cindex)).
# o implement additional SourceLocation, SourceRange, and File methods.
from ctypes import *
import collections
def get_cindex_library():
# FIXME: It's probably not the case that the library is actually found in
# this location. We need a better system of identifying and loading the
# CIndex library. It could be on path or elsewhere, or versioned, etc.
import platform
name = platform.system()
if name == 'Darwin':
return cdll.LoadLibrary('libclang.dylib')
elif name == 'Windows':
return cdll.LoadLibrary('libclang.dll')
return cdll.LoadLibrary('')
# ctypes doesn't implicitly convert c_void_p to the appropriate wrapper
# object. This is a problem, because it means that from_parameter will see an
# integer and pass the wrong value on platforms where int != void*. Work around
# this by marshalling object arguments as void**.
c_object_p = POINTER(c_void_p)
lib = get_cindex_library()
### Structures and Utility Classes ###
class _CXString(Structure):
"""Helper for transforming CXString results."""
_fields_ = [("spelling", c_char_p), ("free", c_int)]
def __del__(self):
def from_result(res, fn, args):
assert isinstance(res, _CXString)
return _CXString_getCString(res)
class SourceLocation(Structure):
A SourceLocation represents a particular location within a source file.
_fields_ = [("ptr_data", c_void_p * 2), ("int_data", c_uint)]
_data = None
def _get_instantiation(self):
if self._data is None:
f, l, c, o = c_object_p(), c_uint(), c_uint(), c_uint()
SourceLocation_loc(self, byref(f), byref(l), byref(c), byref(o))
if f:
f = File(f)
f = None
self._data = (f, int(l.value), int(c.value), int(o.value))
return self._data
def from_position(tu, file, line, column):
Retrieve the source location associated with a given file/line/column in
a particular translation unit.
return SourceLocation_getLocation(tu, file, line, column)
def file(self):
"""Get the file represented by this source location."""
return self._get_instantiation()[0]
def line(self):
"""Get the line represented by this source location."""
return self._get_instantiation()[1]
def column(self):
"""Get the column represented by this source location."""
return self._get_instantiation()[2]
def offset(self):
"""Get the file offset represented by this source location."""
return self._get_instantiation()[3]
def __eq__(self, other):
return SourceLocation_equalLocations(self, other)
def __ne__(self, other):
return not self.__eq__(other)
def __repr__(self):
if self.file:
filename =
filename = None
return "<SourceLocation file %r, line %r, column %r>" % (
filename, self.line, self.column)
class SourceRange(Structure):
A SourceRange describes a range of source locations within the source
_fields_ = [
("ptr_data", c_void_p * 2),
("begin_int_data", c_uint),
("end_int_data", c_uint)]
# FIXME: Eliminate this and make normal constructor? Requires hiding ctypes
# object.
def from_locations(start, end):
return SourceRange_getRange(start, end)
def start(self):
Return a SourceLocation representing the first character within a
source range.
return SourceRange_start(self)
def end(self):
Return a SourceLocation representing the last character within a
source range.
return SourceRange_end(self)
def __eq__(self, other):
return SourceRange_equalRanges(self, other)
def __ne__(self, other):
return not self.__eq__(other)
def __repr__(self):
return "<SourceRange start %r, end %r>" % (self.start, self.end)
class Diagnostic(object):
A Diagnostic is a single instance of a Clang diagnostic. It includes the
diagnostic severity, the message, the location the diagnostic occurred, as
well as additional source ranges and associated fix-it hints.
Ignored = 0
Note = 1
Warning = 2
Error = 3
Fatal = 4
def __init__(self, ptr):
self.ptr = ptr
def __del__(self):
def severity(self):
return _clang_getDiagnosticSeverity(self)
def location(self):
return _clang_getDiagnosticLocation(self)
def spelling(self):
return _clang_getDiagnosticSpelling(self)
def ranges(self):
class RangeIterator:
def __init__(self, diag):
self.diag = diag
def __len__(self):
return int(_clang_getDiagnosticNumRanges(self.diag))
def __getitem__(self, key):
if (key >= len(self)):
raise IndexError
return _clang_getDiagnosticRange(self.diag, key)
return RangeIterator(self)
def fixits(self):
class FixItIterator:
def __init__(self, diag):
self.diag = diag
def __len__(self):
return int(_clang_getDiagnosticNumFixIts(self.diag))
def __getitem__(self, key):
range = SourceRange()
value = _clang_getDiagnosticFixIt(self.diag, key, byref(range))
if len(value) == 0:
raise IndexError
return FixIt(range, value)
return FixItIterator(self)
def category_number(self):
"""The category number for this diagnostic."""
return _clang_getDiagnosticCategory(self)
def category_name(self):
"""The string name of the category for this diagnostic."""
return _clang_getDiagnosticCategoryName(self.category_number)
def option(self):
"""The command-line option that enables this diagnostic."""
return _clang_getDiagnosticOption(self, None)
def disable_option(self):
"""The command-line option that disables this diagnostic."""
disable = _CXString()
_clang_getDiagnosticOption(self, byref(disable))
return _CXString_getCString(disable)
def __repr__(self):
return "<Diagnostic severity %r, location %r, spelling %r>" % (
self.severity, self.location, self.spelling)
def from_param(self):
return self.ptr
class FixIt(object):
A FixIt represents a transformation to be applied to the source to
"fix-it". The fix-it shouldbe applied by replacing the given source range
with the given value.
def __init__(self, range, value):
self.range = range
self.value = value
def __repr__(self):
return "<FixIt range %r, value %r>" % (self.range, self.value)
### Cursor Kinds ###
class CursorKind(object):
A CursorKind describes the kind of entity that a cursor points to.
# The unique kind objects, indexed by id.
_kinds = []
_name_map = None
def __init__(self, value):
if value >= len(CursorKind._kinds):
CursorKind._kinds += [None] * (value - len(CursorKind._kinds) + 1)
if CursorKind._kinds[value] is not None:
raise ValueError,'CursorKind already loaded'
self.value = value
CursorKind._kinds[value] = self
CursorKind._name_map = None
def from_param(self):
return self.value
def name(self):
"""Get the enumeration name of this cursor kind."""
if self._name_map is None:
self._name_map = {}
for key,value in CursorKind.__dict__.items():
if isinstance(value,CursorKind):
self._name_map[value] = key
return self._name_map[self]
def from_id(id):
if id >= len(CursorKind._kinds) or CursorKind._kinds[id] is None:
raise ValueError,'Unknown cursor kind'
return CursorKind._kinds[id]
def get_all_kinds():
"""Return all CursorKind enumeration instances."""
return filter(None, CursorKind._kinds)
def is_declaration(self):
"""Test if this is a declaration kind."""
return CursorKind_is_decl(self)
def is_reference(self):
"""Test if this is a reference kind."""
return CursorKind_is_ref(self)
def is_expression(self):
"""Test if this is an expression kind."""
return CursorKind_is_expr(self)
def is_statement(self):
"""Test if this is a statement kind."""
return CursorKind_is_stmt(self)
def is_attribute(self):
"""Test if this is an attribute kind."""
return CursorKind_is_attribute(self)
def is_invalid(self):
"""Test if this is an invalid kind."""
return CursorKind_is_inv(self)
def is_translation_unit(self):
"""Test if this is a translation unit kind."""
return CursorKind_is_translation_unit(self)
def is_preprocessing(self):
"""Test if this is a preprocessing kind."""
return CursorKind_is_preprocessing(self)
def is_unexposed(self):
"""Test if this is an unexposed kind."""
return CursorKind_is_unexposed(self)
def __repr__(self):
return 'CursorKind.%s' % (,)
# FIXME: Is there a nicer way to expose this enumeration? We could potentially
# represent the nested structure, or even build a class hierarchy. The main
# things we want for sure are (a) simple external access to kinds, (b) a place
# to hang a description and name, (c) easy to keep in sync with Index.h.
# Declaration Kinds
# A declaration whose specific kind is not exposed via this interface.
# Unexposed declarations have the same operations as any other kind of
# declaration; one can extract their location information, spelling, find their
# definitions, etc. However, the specific kind of the declaration is not
# reported.
CursorKind.UNEXPOSED_DECL = CursorKind(1)
# A C or C++ struct.
CursorKind.STRUCT_DECL = CursorKind(2)
# A C or C++ union.
CursorKind.UNION_DECL = CursorKind(3)
# A C++ class.
CursorKind.CLASS_DECL = CursorKind(4)
# An enumeration.
CursorKind.ENUM_DECL = CursorKind(5)
# A field (in C) or non-static data member (in C++) in a struct, union, or C++
# class.
CursorKind.FIELD_DECL = CursorKind(6)
# An enumerator constant.
CursorKind.ENUM_CONSTANT_DECL = CursorKind(7)
# A function.
CursorKind.FUNCTION_DECL = CursorKind(8)
# A variable.
CursorKind.VAR_DECL = CursorKind(9)
# A function or method parameter.
CursorKind.PARM_DECL = CursorKind(10)
# An Objective-C @interface.
CursorKind.OBJC_INTERFACE_DECL = CursorKind(11)
# An Objective-C @interface for a category.
CursorKind.OBJC_CATEGORY_DECL = CursorKind(12)
# An Objective-C @protocol declaration.
CursorKind.OBJC_PROTOCOL_DECL = CursorKind(13)
# An Objective-C @property declaration.
CursorKind.OBJC_PROPERTY_DECL = CursorKind(14)
# An Objective-C instance variable.
CursorKind.OBJC_IVAR_DECL = CursorKind(15)
# An Objective-C instance method.
CursorKind.OBJC_INSTANCE_METHOD_DECL = CursorKind(16)
# An Objective-C class method.
CursorKind.OBJC_CLASS_METHOD_DECL = CursorKind(17)
# An Objective-C @implementation.
CursorKind.OBJC_IMPLEMENTATION_DECL = CursorKind(18)
# An Objective-C @implementation for a category.
CursorKind.OBJC_CATEGORY_IMPL_DECL = CursorKind(19)
# A typedef.
CursorKind.TYPEDEF_DECL = CursorKind(20)
# A C++ class method.
CursorKind.CXX_METHOD = CursorKind(21)
# A C++ namespace.
CursorKind.NAMESPACE = CursorKind(22)
# A linkage specification, e.g. 'extern "C"'.
CursorKind.LINKAGE_SPEC = CursorKind(23)
# A C++ constructor.
CursorKind.CONSTRUCTOR = CursorKind(24)
# A C++ destructor.
CursorKind.DESTRUCTOR = CursorKind(25)
# A C++ conversion function.
CursorKind.CONVERSION_FUNCTION = CursorKind(26)
# A C++ template type parameter
CursorKind.TEMPLATE_TYPE_PARAMETER = CursorKind(27)
# A C++ non-type template paramater.
# A C++ template template parameter.
# A C++ function template.
CursorKind.FUNCTION_TEMPLATE = CursorKind(30)
# A C++ class template.
CursorKind.CLASS_TEMPLATE = CursorKind(31)
# A C++ class template partial specialization.
# A C++ namespace alias declaration.
CursorKind.NAMESPACE_ALIAS = CursorKind(33)
# A C++ using directive
CursorKind.USING_DIRECTIVE = CursorKind(34)
# A C++ using declaration
CursorKind.USING_DECLARATION = CursorKind(35)
# A Type alias decl.
CursorKind.TYPE_ALIAS_DECL = CursorKind(36)
# A Objective-C synthesize decl
CursorKind.OBJC_SYNTHESIZE_DECL = CursorKind(37)
# A Objective-C dynamic decl
CursorKind.OBJC_DYNAMIC_DECL = CursorKind(38)
# A C++ access specifier decl.
CursorKind.CXX_ACCESS_SPEC_DECL = CursorKind(39)
# Reference Kinds
CursorKind.OBJC_SUPER_CLASS_REF = CursorKind(40)
CursorKind.OBJC_PROTOCOL_REF = CursorKind(41)
CursorKind.OBJC_CLASS_REF = CursorKind(42)
# A reference to a type declaration.
# A type reference occurs anywhere where a type is named but not
# declared. For example, given:
# typedef unsigned size_type;
# size_type size;
# The typedef is a declaration of size_type (CXCursor_TypedefDecl),
# while the type of the variable "size" is referenced. The cursor
# referenced by the type of size is the typedef for size_type.
CursorKind.TYPE_REF = CursorKind(43)
CursorKind.CXX_BASE_SPECIFIER = CursorKind(44)
# A reference to a class template, function template, template
# template parameter, or class template partial specialization.
CursorKind.TEMPLATE_REF = CursorKind(45)
# A reference to a namespace or namepsace alias.
CursorKind.NAMESPACE_REF = CursorKind(46)
# A reference to a member of a struct, union, or class that occurs in
# some non-expression context, e.g., a designated initializer.
CursorKind.MEMBER_REF = CursorKind(47)
# A reference to a labeled statement.
CursorKind.LABEL_REF = CursorKind(48)
# A reference toa a set of overloaded functions or function templates
# that has not yet been resolved to a specific function or function template.
CursorKind.OVERLOADED_DECL_REF = CursorKind(49)
# Invalid/Error Kinds
CursorKind.INVALID_FILE = CursorKind(70)
CursorKind.NO_DECL_FOUND = CursorKind(71)
CursorKind.NOT_IMPLEMENTED = CursorKind(72)
CursorKind.INVALID_CODE = CursorKind(73)
# Expression Kinds
# An expression whose specific kind is not exposed via this interface.
# Unexposed expressions have the same operations as any other kind of
# expression; one can extract their location information, spelling, children,
# etc. However, the specific kind of the expression is not reported.
CursorKind.UNEXPOSED_EXPR = CursorKind(100)
# An expression that refers to some value declaration, such as a function,
# varible, or enumerator.
CursorKind.DECL_REF_EXPR = CursorKind(101)
# An expression that refers to a member of a struct, union, class, Objective-C
# class, etc.
CursorKind.MEMBER_REF_EXPR = CursorKind(102)
# An expression that calls a function.
CursorKind.CALL_EXPR = CursorKind(103)
# An expression that sends a message to an Objective-C object or class.
CursorKind.OBJC_MESSAGE_EXPR = CursorKind(104)
# An expression that represents a block literal.
CursorKind.BLOCK_EXPR = CursorKind(105)
# An integer literal.
CursorKind.INTEGER_LITERAL = CursorKind(106)
# A floating point number literal.
CursorKind.FLOATING_LITERAL = CursorKind(107)
# An imaginary number literal.
CursorKind.IMAGINARY_LITERAL = CursorKind(108)
# A string literal.
CursorKind.STRING_LITERAL = CursorKind(109)
# A character literal.
CursorKind.CHARACTER_LITERAL = CursorKind(110)
# A parenthesized expression, e.g. "(1)".
# This AST node is only formed if full location information is requested.
CursorKind.PAREN_EXPR = CursorKind(111)
# This represents the unary-expression's (except sizeof and
# alignof).
CursorKind.UNARY_OPERATOR = CursorKind(112)
# [C99] Array Subscripting.
CursorKind.ARRAY_SUBSCRIPT_EXPR = CursorKind(113)
# A builtin binary operation expression such as "x + y" or
# "x <= y".
CursorKind.BINARY_OPERATOR = CursorKind(114)
# Compound assignment such as "+=".
# The ?: ternary operator.
CursorKind.CONDITONAL_OPERATOR = CursorKind(116)
# An explicit cast in C (C99 6.5.4) or a C-style cast in C++
# (C++ [expr.cast]), which uses the syntax (Type)expr.
# For example: (int)f.
CursorKind.CSTYLE_CAST_EXPR = CursorKind(117)
# [C99]
CursorKind.COMPOUND_LITERAL_EXPR = CursorKind(118)
# Describes an C or C++ initializer list.
CursorKind.INIT_LIST_EXPR = CursorKind(119)
# The GNU address of label extension, representing &&label.
CursorKind.ADDR_LABEL_EXPR = CursorKind(120)
# This is the GNU Statement Expression extension: ({int X=4; X;})
CursorKind.StmtExpr = CursorKind(121)
# Represents a C11 generic selection.
CursorKind.GENERIC_SELECTION_EXPR = CursorKind(122)
# Implements the GNU __null extension, which is a name for a null
# pointer constant that has integral type (e.g., int or long) and is the same
# size and alignment as a pointer.
# The __null extension is typically only used by system headers, which define
# NULL as __null in C++ rather than using 0 (which is an integer that may not
# match the size of a pointer).
CursorKind.GNU_NULL_EXPR = CursorKind(123)
# C++'s static_cast<> expression.
CursorKind.CXX_STATIC_CAST_EXPR = CursorKind(124)
# C++'s dynamic_cast<> expression.
CursorKind.CXX_DYNAMIC_CAST_EXPR = CursorKind(125)
# C++'s reinterpret_cast<> expression.
CursorKind.CXX_REINTERPRET_CAST_EXPR = CursorKind(126)
# C++'s const_cast<> expression.
CursorKind.CXX_CONST_CAST_EXPR = CursorKind(127)
# Represents an explicit C++ type conversion that uses "functional"
# notion (C++ [expr.type.conv]).
# Example:
# \code
# x = int(0.5);
# \endcode
CursorKind.CXX_FUNCTIONAL_CAST_EXPR = CursorKind(128)
# A C++ typeid expression (C++ [expr.typeid]).
CursorKind.CXX_TYPEID_EXPR = CursorKind(129)
# [C++ 2.13.5] C++ Boolean Literal.
CursorKind.CXX_BOOL_LITERAL_EXPR = CursorKind(130)
# [C++0x 2.14.7] C++ Pointer Literal.
CursorKind.CXX_NULL_PTR_LITERAL_EXPR = CursorKind(131)
# Represents the "this" expression in C++
CursorKind.CXX_THIS_EXPR = CursorKind(132)
# [C++ 15] C++ Throw Expression.
# This handles 'throw' and 'throw' assignment-expression. When
# assignment-expression isn't present, Op will be null.
CursorKind.CXX_THROW_EXPR = CursorKind(133)
# A new expression for memory allocation and constructor calls, e.g:
# "new CXXNewExpr(foo)".
CursorKind.CXX_NEW_EXPR = CursorKind(134)
# A delete expression for memory deallocation and destructor calls,
# e.g. "delete[] pArray".
CursorKind.CXX_DELETE_EXPR = CursorKind(135)
# Represents a unary expression.
CursorKind.CXX_UNARY_EXPR = CursorKind(136)
# ObjCStringLiteral, used for Objective-C string literals i.e. "foo".
CursorKind.OBJC_STRING_LITERAL = CursorKind(137)
# ObjCEncodeExpr, used for in Objective-C.
CursorKind.OBJC_ENCODE_EXPR = CursorKind(138)
# ObjCSelectorExpr used for in Objective-C.
CursorKind.OBJC_SELECTOR_EXPR = CursorKind(139)
# Objective-C's protocol expression.
CursorKind.OBJC_PROTOCOL_EXPR = CursorKind(140)
# An Objective-C "bridged" cast expression, which casts between
# Objective-C pointers and C pointers, transferring ownership in the process.
# \code
# NSString *str = (__bridge_transfer NSString *)CFCreateString();
# \endcode
CursorKind.OBJC_BRIDGE_CAST_EXPR = CursorKind(141)
# Represents a C++0x pack expansion that produces a sequence of
# expressions.
# A pack expansion expression contains a pattern (which itself is an
# expression) followed by an ellipsis. For example:
CursorKind.PACK_EXPANSION_EXPR = CursorKind(142)
# Represents an expression that computes the length of a parameter
# pack.
CursorKind.SIZE_OF_PACK_EXPR = CursorKind(143)
# A statement whose specific kind is not exposed via this interface.
# Unexposed statements have the same operations as any other kind of statement;
# one can extract their location information, spelling, children, etc. However,
# the specific kind of the statement is not reported.
CursorKind.UNEXPOSED_STMT = CursorKind(200)
# A labelled statement in a function.
CursorKind.LABEL_STMT = CursorKind(201)
# A compound statement
CursorKind.COMPOUND_STMT = CursorKind(202)
# A case statement.
CursorKind.CASE_STMT = CursorKind(203)
# A default statement.
CursorKind.DEFAULT_STMT = CursorKind(204)
# An if statement.
CursorKind.IF_STMT = CursorKind(205)
# A switch statement.
CursorKind.SWITCH_STMT = CursorKind(206)
# A while statement.
CursorKind.WHILE_STMT = CursorKind(207)
# A do statement.
CursorKind.DO_STMT = CursorKind(208)
# A for statement.
CursorKind.FOR_STMT = CursorKind(209)
# A goto statement.
CursorKind.GOTO_STMT = CursorKind(210)
# An indirect goto statement.
CursorKind.INDIRECT_GOTO_STMT = CursorKind(211)
# A continue statement.
CursorKind.CONTINUE_STMT = CursorKind(212)
# A break statement.
CursorKind.BREAK_STMT = CursorKind(213)
# A return statement.
CursorKind.RETURN_STMT = CursorKind(214)
# A GNU-style inline assembler statement.
CursorKind.ASM_STMT = CursorKind(215)
# Objective-C's overall @try-@catch-@finally statement.
CursorKind.OBJC_AT_TRY_STMT = CursorKind(216)
# Objective-C's @catch statement.
CursorKind.OBJC_AT_CATCH_STMT = CursorKind(217)
# Objective-C's @finally statement.
CursorKind.OBJC_AT_FINALLY_STMT = CursorKind(218)
# Objective-C's @throw statement.
CursorKind.OBJC_AT_THROW_STMT = CursorKind(219)
# Objective-C's @synchronized statement.
CursorKind.OBJC_AT_SYNCHRONIZED_STMT = CursorKind(220)
# Objective-C's autorealease pool statement.
CursorKind.OBJC_AUTORELEASE_POOL_STMT = CursorKind(221)
# Objective-C's for collection statement.
CursorKind.OBJC_FOR_COLLECTION_STMT = CursorKind(222)
# C++'s catch statement.
CursorKind.CXX_CATCH_STMT = CursorKind(223)
# C++'s try statement.
CursorKind.CXX_TRY_STMT = CursorKind(224)
# C++'s for (* : *) statement.
CursorKind.CXX_FOR_RANGE_STMT = CursorKind(225)
# Windows Structured Exception Handling's try statement.
CursorKind.SEH_TRY_STMT = CursorKind(226)
# Windows Structured Exception Handling's except statement.
CursorKind.SEH_EXCEPT_STMT = CursorKind(227)
# Windows Structured Exception Handling's finally statement.
CursorKind.SEH_FINALLY_STMT = CursorKind(228)
# The null statement.
CursorKind.NULL_STMT = CursorKind(230)
# Adaptor class for mixing declarations with statements and expressions.
CursorKind.DECL_STMT = CursorKind(231)
# Other Kinds
# Cursor that represents the translation unit itself.
# The translation unit cursor exists primarily to act as the root cursor for
# traversing the contents of a translation unit.
CursorKind.TRANSLATION_UNIT = CursorKind(300)
# Attributes
# An attribute whoe specific kind is note exposed via this interface
CursorKind.UNEXPOSED_ATTR = CursorKind(400)
CursorKind.IB_ACTION_ATTR = CursorKind(401)
CursorKind.IB_OUTLET_ATTR = CursorKind(402)
CursorKind.IB_OUTLET_COLLECTION_ATTR = CursorKind(403)
CursorKind.CXX_FINAL_ATTR = CursorKind(404)
CursorKind.CXX_OVERRIDE_ATTR = CursorKind(405)
CursorKind.ANNOTATE_ATTR = CursorKind(406)
CursorKind.ASM_LABEL_ATTR = CursorKind(407)
# Preprocessing
CursorKind.PREPROCESSING_DIRECTIVE = CursorKind(500)
CursorKind.MACRO_DEFINITION = CursorKind(501)
CursorKind.MACRO_INSTANTIATION = CursorKind(502)
CursorKind.INCLUSION_DIRECTIVE = CursorKind(503)
### Cursors ###
class Cursor(Structure):
The Cursor class represents a reference to an element within the AST. It
acts as a kind of iterator.
_fields_ = [("_kind_id", c_int), ("xdata", c_int), ("data", c_void_p * 3)]
def from_location(tu, location):
return Cursor_get(tu, location)
def __eq__(self, other):
return Cursor_eq(self, other)
def __ne__(self, other):
return not self.__eq__(other)
def is_definition(self):
Returns true if the declaration pointed at by the cursor is also a
definition of that entity.
return Cursor_is_def(self)
def get_definition(self):
If the cursor is a reference to a declaration or a declaration of
some entity, return a cursor that points to the definition of that
# TODO: Should probably check that this is either a reference or
# declaration prior to issuing the lookup.
return Cursor_def(self)
def get_usr(self):
"""Return the Unified Symbol Resultion (USR) for the entity referenced
by the given cursor (or None).
A Unified Symbol Resolution (USR) is a string that identifies a
particular entity (function, class, variable, etc.) within a
program. USRs can be compared across translation units to determine,
e.g., when references in one translation refer to an entity defined in
another translation unit."""
return Cursor_usr(self)
def kind(self):
"""Return the kind of this cursor."""
return CursorKind.from_id(self._kind_id)
def spelling(self):
"""Return the spelling of the entity pointed at by the cursor."""
if not self.kind.is_declaration():
# FIXME: clang_getCursorSpelling should be fixed to not assert on
# this, for consistency with clang_getCursorUSR.
return None
if not hasattr(self, '_spelling'):
self._spelling = Cursor_spelling(self)
return self._spelling
def displayname(self):
Return the display name for the entity referenced by this cursor.
The display name contains extra information that helps identify the cursor,
such as the parameters of a function or template or the arguments of a
class template specialization.
if not hasattr(self, '_displayname'):
self._displayname = Cursor_displayname(self)
return self._displayname
def location(self):
Return the source location (the starting character) of the entity
pointed at by the cursor.
if not hasattr(self, '_loc'):
self._loc = Cursor_loc(self)
return self._loc
def extent(self):
Return the source range (the range of text) occupied by the entity
pointed at by the cursor.
if not hasattr(self, '_extent'):
self._extent = Cursor_extent(self)
return self._extent
def type(self):
Retrieve the Type (if any) of the entity pointed at by the cursor.
if not hasattr(self, '_type'):
self._type = Cursor_type(self)
return self._type
def underlying_typedef_type(self):
"""Return the underlying type of a typedef declaration.
Returns a Type for the typedef this cursor is a declaration for. If
the current cursor is not a typedef, this raises.
if not hasattr(self, '_underlying_type'):
assert self.kind.is_declaration()
self._underlying_type = Cursor_underlying_type(self)
return self._underlying_type
def enum_type(self):
"""Return the integer type of an enum declaration.
Returns a Type corresponding to an integer. If the cursor is not for an
enum, this raises.
if not hasattr(self, '_enum_type'):
assert self.kind == CursorKind.ENUM_DECL
self._enum_type = Cursor_enum_type(self)
return self._enum_type
def enum_value(self):
"""Return the value of an enum constant."""
if not hasattr(self, '_enum_value'):
assert self.kind == CursorKind.ENUM_CONSTANT_DECL
# Figure out the underlying type of the enum to know if it
# is a signed or unsigned quantity.
underlying_type = self.type
if underlying_type.kind == TypeKind.ENUM:
underlying_type = underlying_type.get_declaration().enum_type
if underlying_type.kind in (TypeKind.CHAR_U,
self._enum_value = Cursor_enum_const_decl_unsigned(self)
self._enum_value = Cursor_enum_const_decl(self)
return self._enum_value
def objc_type_encoding(self):
"""Return the Objective-C type encoding as a str."""
if not hasattr(self, '_objc_type_encoding'):
self._objc_type_encoding = Cursor_objc_type_encoding(self)
return self._objc_type_encoding
def hash(self):
"""Returns a hash of the cursor as an int."""
if not hasattr(self, '_hash'):
self._hash = Cursor_hash(self)
return self._hash
def get_children(self):
"""Return an iterator for accessing the children of this cursor."""
# FIXME: Expose iteration from CIndex, PR6125.
def visitor(child, parent, children):
# FIXME: Document this assertion in API.
# FIXME: There should just be an isNull method.
assert child != Cursor_null()
return 1 # continue
children = []
Cursor_visit(self, Cursor_visit_callback(visitor), children)
return iter(children)
def from_result(res, fn, args):
assert isinstance(res, Cursor)
# FIXME: There should just be an isNull method.
if res == Cursor_null():
return None
return res
### Type Kinds ###
class TypeKind(object):
Describes the kind of type.
# The unique kind objects, indexed by id.
_kinds = []
_name_map = None
def __init__(self, value):
if value >= len(TypeKind._kinds):
TypeKind._kinds += [None] * (value - len(TypeKind._kinds) + 1)
if TypeKind._kinds[value] is not None:
raise ValueError,'TypeKind already loaded'
self.value = value
TypeKind._kinds[value] = self
TypeKind._name_map = None
def from_param(self):
return self.value
def name(self):
"""Get the enumeration name of this cursor kind."""
if self._name_map is None:
self._name_map = {}
for key,value in TypeKind.__dict__.items():
if isinstance(value,TypeKind):
self._name_map[value] = key
return self._name_map[self]
def spelling(self):
"""Retrieve the spelling of this TypeKind."""
return TypeKind_spelling(self.value)
def from_id(id):
if id >= len(TypeKind._kinds) or TypeKind._kinds[id] is None:
raise ValueError,'Unknown type kind %d' % id
return TypeKind._kinds[id]
def __repr__(self):
return 'TypeKind.%s' % (,)
TypeKind_spelling = lib.clang_getTypeKindSpelling
TypeKind_spelling.argtypes = [c_uint]
TypeKind_spelling.restype = _CXString
TypeKind_spelling.errcheck = _CXString.from_result
TypeKind.INVALID = TypeKind(0)
TypeKind.UNEXPOSED = TypeKind(1)
TypeKind.VOID = TypeKind(2)
TypeKind.BOOL = TypeKind(3)
TypeKind.CHAR_U = TypeKind(4)
TypeKind.UCHAR = TypeKind(5)
TypeKind.CHAR16 = TypeKind(6)
TypeKind.CHAR32 = TypeKind(7)
TypeKind.USHORT = TypeKind(8)
TypeKind.UINT = TypeKind(9)
TypeKind.ULONG = TypeKind(10)
TypeKind.ULONGLONG = TypeKind(11)
TypeKind.UINT128 = TypeKind(12)
TypeKind.CHAR_S = TypeKind(13)
TypeKind.SCHAR = TypeKind(14)
TypeKind.WCHAR = TypeKind(15)
TypeKind.SHORT = TypeKind(16)
TypeKind.INT = TypeKind(17)
TypeKind.LONG = TypeKind(18)
TypeKind.LONGLONG = TypeKind(19)
TypeKind.INT128 = TypeKind(20)
TypeKind.FLOAT = TypeKind(21)
TypeKind.DOUBLE = TypeKind(22)
TypeKind.LONGDOUBLE = TypeKind(23)
TypeKind.NULLPTR = TypeKind(24)
TypeKind.OVERLOAD = TypeKind(25)
TypeKind.DEPENDENT = TypeKind(26)
TypeKind.OBJCID = TypeKind(27)
TypeKind.OBJCCLASS = TypeKind(28)
TypeKind.OBJCSEL = TypeKind(29)
TypeKind.COMPLEX = TypeKind(100)
TypeKind.POINTER = TypeKind(101)
TypeKind.BLOCKPOINTER = TypeKind(102)
TypeKind.LVALUEREFERENCE = TypeKind(103)
TypeKind.RVALUEREFERENCE = TypeKind(104)
TypeKind.RECORD = TypeKind(105)
TypeKind.ENUM = TypeKind(106)
TypeKind.TYPEDEF = TypeKind(107)
TypeKind.OBJCINTERFACE = TypeKind(108)
TypeKind.OBJCOBJECTPOINTER = TypeKind(109)
TypeKind.FUNCTIONNOPROTO = TypeKind(110)
TypeKind.FUNCTIONPROTO = TypeKind(111)
TypeKind.CONSTANTARRAY = TypeKind(112)
TypeKind.VECTOR = TypeKind(113)
class Type(Structure):
The type of an element in the abstract syntax tree.
_fields_ = [("_kind_id", c_int), ("data", c_void_p * 2)]
def kind(self):
"""Return the kind of this type."""
return TypeKind.from_id(self._kind_id)
def argument_types(self):
"""Retrieve a container for the non-variadic arguments for this type.
The returned object is iterable and indexable. Each item in the
container is a Type instance.
class ArgumentsIterator(collections.Sequence):
def __init__(self, parent):
self.parent = parent
self.length = None
def __len__(self):
if self.length is None:
self.length = Type_get_num_arg_types(self.parent)
return self.length
def __getitem__(self, key):
# FIXME Support slice objects.
if not isinstance(key, int):
raise TypeError("Must supply a non-negative int.")
if key < 0:
raise IndexError("Only non-negative indexes are accepted.")
if key >= len(self):
raise IndexError("Index greater than container length: "
"%d > %d" % ( key, len(self) ))
result = Type_get_arg_type(self.parent, key)
if result.kind == TypeKind.INVALID:
raise IndexError("Argument could not be retrieved.")
return result
assert self.kind == TypeKind.FUNCTIONPROTO
return ArgumentsIterator(self)
def element_type(self):
"""Retrieve the Type of elements within this Type.
If accessed on a type that is not an array, complex, or vector type, an
exception will be raised.
result = Type_get_element_type(self)
if result.kind == TypeKind.INVALID:
raise Exception('Element type not available on this type.')
return result
def element_count(self):
"""Retrieve the number of elements in this type.
Returns an int.
If the Type is not an array or vector, this raises.
result = Type_get_num_elements(self)
if result < 0:
raise Exception('Type does not have elements.')
return result
def from_result(res, fn, args):
assert isinstance(res, Type)
return res
def get_canonical(self):
Return the canonical type for a Type.
Clang's type system explicitly models typedefs and all the
ways a specific type can be represented. The canonical type
is the underlying type with all the "sugar" removed. For
example, if 'T' is a typedef for 'int', the canonical type for
'T' would be 'int'.
return Type_get_canonical(self)
def is_const_qualified(self):
"""Determine whether a Type has the "const" qualifier set.
This does not look through typedefs that may have added "const"
at a different level.
return Type_is_const_qualified(self)
def is_volatile_qualified(self):
"""Determine whether a Type has the "volatile" qualifier set.
This does not look through typedefs that may have added "volatile"
at a different level.
return Type_is_volatile_qualified(self)
def is_restrict_qualified(self):
"""Determine whether a Type has the "restrict" qualifier set.
This does not look through typedefs that may have added "restrict" at
a different level.
return Type_is_restrict_qualified(self)
def is_function_variadic(self):
"""Determine whether this function Type is a variadic function type."""
assert self.kind == TypeKind.FUNCTIONPROTO
return Type_is_variadic(self)
def is_pod(self):
"""Determine whether this Type represents plain old data (POD)."""
return Type_is_pod(self)
def get_pointee(self):
For pointer types, returns the type of the pointee.
return Type_get_pointee(self)
def get_declaration(self):
Return the cursor for the declaration of the given type.
return Type_get_declaration(self)
def get_result(self):
Retrieve the result type associated with a function type.
return Type_get_result(self)
def get_array_element_type(self):
Retrieve the type of the elements of the array type.
return Type_get_array_element(self)
def get_array_size(self):
Retrieve the size of the constant array.
return Type_get_array_size(self)
def __eq__(self, other):
if type(other) != type(self):
return False
return Type_equal(self, other)
def __ne__(self, other):
return not self.__eq__(other)
## CIndex Objects ##
# CIndex objects (derived from ClangObject) are essentially lightweight
# wrappers attached to some underlying object, which is exposed via CIndex as
# a void*.
class ClangObject(object):
A helper for Clang objects. This class helps act as an intermediary for
the ctypes library and the Clang CIndex library.
def __init__(self, obj):
assert isinstance(obj, c_object_p) and obj
self.obj = self._as_parameter_ = obj
def from_param(self):
return self._as_parameter_
class _CXUnsavedFile(Structure):
"""Helper for passing unsaved file arguments."""
_fields_ = [("name", c_char_p), ("contents", c_char_p), ('length', c_ulong)]
## Diagnostic Conversion ##
_clang_getNumDiagnostics = lib.clang_getNumDiagnostics
_clang_getNumDiagnostics.argtypes = [c_object_p]
_clang_getNumDiagnostics.restype = c_uint
_clang_getDiagnostic = lib.clang_getDiagnostic
_clang_getDiagnostic.argtypes = [c_object_p, c_uint]
_clang_getDiagnostic.restype = c_object_p
_clang_disposeDiagnostic = lib.clang_disposeDiagnostic
_clang_disposeDiagnostic.argtypes = [Diagnostic]
_clang_getDiagnosticSeverity = lib.clang_getDiagnosticSeverity
_clang_getDiagnosticSeverity.argtypes = [Diagnostic]
_clang_getDiagnosticSeverity.restype = c_int
_clang_getDiagnosticLocation = lib.clang_getDiagnosticLocation
_clang_getDiagnosticLocation.argtypes = [Diagnostic]
_clang_getDiagnosticLocation.restype = SourceLocation
_clang_getDiagnosticSpelling = lib.clang_getDiagnosticSpelling
_clang_getDiagnosticSpelling.argtypes = [Diagnostic]
_clang_getDiagnosticSpelling.restype = _CXString
_clang_getDiagnosticSpelling.errcheck = _CXString.from_result
_clang_getDiagnosticNumRanges = lib.clang_getDiagnosticNumRanges
_clang_getDiagnosticNumRanges.argtypes = [Diagnostic]
_clang_getDiagnosticNumRanges.restype = c_uint
_clang_getDiagnosticRange = lib.clang_getDiagnosticRange
_clang_getDiagnosticRange.argtypes = [Diagnostic, c_uint]
_clang_getDiagnosticRange.restype = SourceRange
_clang_getDiagnosticNumFixIts = lib.clang_getDiagnosticNumFixIts
_clang_getDiagnosticNumFixIts.argtypes = [Diagnostic]
_clang_getDiagnosticNumFixIts.restype = c_uint
_clang_getDiagnosticFixIt = lib.clang_getDiagnosticFixIt
_clang_getDiagnosticFixIt.argtypes = [Diagnostic, c_uint, POINTER(SourceRange)]
_clang_getDiagnosticFixIt.restype = _CXString
_clang_getDiagnosticFixIt.errcheck = _CXString.from_result
_clang_getDiagnosticCategory = lib.clang_getDiagnosticCategory
_clang_getDiagnosticCategory.argtypes = [Diagnostic]
_clang_getDiagnosticCategory.restype = c_uint
_clang_getDiagnosticCategoryName = lib.clang_getDiagnosticCategoryName
_clang_getDiagnosticCategoryName.argtypes = [c_uint]
_clang_getDiagnosticCategoryName.restype = _CXString
_clang_getDiagnosticCategoryName.errcheck = _CXString.from_result
_clang_getDiagnosticOption = lib.clang_getDiagnosticOption
_clang_getDiagnosticOption.argtypes = [Diagnostic, POINTER(_CXString)]
_clang_getDiagnosticOption.restype = _CXString
_clang_getDiagnosticOption.errcheck = _CXString.from_result
class CompletionChunk:
class Kind:
def __init__(self, name): = name
def __str__(self):
def __repr__(self):
return "<ChunkKind: %s>" % self
def __init__(self, completionString, key):
self.cs = completionString
self.key = key
def __repr__(self):
return "{'" + self.spelling + "', " + str(self.kind) + "}"
def spelling(self):
return _clang_getCompletionChunkText(self.cs, self.key).spelling
def kind(self):
res = _clang_getCompletionChunkKind(self.cs, self.key)
return completionChunkKindMap[res]
def string(self):
res = _clang_getCompletionChunkCompletionString(self.cs, self.key)
if (res):
return CompletionString(res)
def isKindOptional(self):
return self.kind == completionChunkKindMap[0]
def isKindTypedText(self):
return self.kind == completionChunkKindMap[1]
def isKindPlaceHolder(self):
return self.kind == completionChunkKindMap[3]
def isKindInformative(self):
return self.kind == completionChunkKindMap[4]
def isKindResultType(self):
return self.kind == completionChunkKindMap[15]
completionChunkKindMap = {
0: CompletionChunk.Kind("Optional"),
1: CompletionChunk.Kind("TypedText"),
2: CompletionChunk.Kind("Text"),
3: CompletionChunk.Kind("Placeholder"),
4: CompletionChunk.Kind("Informative"),
5: CompletionChunk.Kind("CurrentParameter"),
6: CompletionChunk.Kind("LeftParen"),
7: CompletionChunk.Kind("RightParen"),
8: CompletionChunk.Kind("LeftBracket"),
9: CompletionChunk.Kind("RightBracket"),
10: CompletionChunk.Kind("LeftBrace"),
11: CompletionChunk.Kind("RightBrace"),
12: CompletionChunk.Kind("LeftAngle"),
13: CompletionChunk.Kind("RightAngle"),
14: CompletionChunk.Kind("Comma"),
15: CompletionChunk.Kind("ResultType"),
16: CompletionChunk.Kind("Colon"),
17: CompletionChunk.Kind("SemiColon"),
18: CompletionChunk.Kind("Equal"),
19: CompletionChunk.Kind("HorizontalSpace"),
20: CompletionChunk.Kind("VerticalSpace")}
class CompletionString(ClangObject):
class Availability:
def __init__(self, name): = name
def __str__(self):
def __repr__(self):
return "<Availability: %s>" % self
def __len__(self):
return _clang_getNumCompletionChunks(self.obj)
def __getitem__(self, key):
if len(self) <= key:
raise IndexError
return CompletionChunk(self.obj, key)
def priority(self):
return _clang_getCompletionPriority(self.obj)
def availability(self):
res = _clang_getCompletionAvailability(self.obj)
return availabilityKinds[res]
def __repr__(self):
return " | ".join([str(a) for a in self]) \
+ " || Priority: " + str(self.priority) \
+ " || Availability: " + str(self.availability)
availabilityKinds = {
0: CompletionChunk.Kind("Available"),
1: CompletionChunk.Kind("Deprecated"),
2: CompletionChunk.Kind("NotAvailable")}
class CodeCompletionResult(Structure):
_fields_ = [('cursorKind', c_int), ('completionString', c_object_p)]
def __repr__(self):
return str(CompletionString(self.completionString))
def kind(self):
return CursorKind.from_id(self.cursorKind)
def string(self):
return CompletionString(self.completionString)
class CCRStructure(Structure):
_fields_ = [('results', POINTER(CodeCompletionResult)),
('numResults', c_int)]
def __len__(self):
return self.numResults
def __getitem__(self, key):
if len(self) <= key:
raise IndexError
return self.results[key]
class CodeCompletionResults(ClangObject):
def __init__(self, ptr):
assert isinstance(ptr, POINTER(CCRStructure)) and ptr
self.ptr = self._as_parameter_ = ptr
def from_param(self):
return self._as_parameter_
def __del__(self):
def results(self):
return self.ptr.contents
def diagnostics(self):
class DiagnosticsItr:
def __init__(self, ccr):
self.ccr= ccr
def __len__(self):
return int(_clang_codeCompleteGetNumDiagnostics(self.ccr))
def __getitem__(self, key):
return _clang_codeCompleteGetDiagnostic(self.ccr, key)
return DiagnosticsItr(self)
class Index(ClangObject):
The Index type provides the primary interface to the Clang CIndex library,
primarily by providing an interface for reading and parsing translation
def create(excludeDecls=False):
Create a new Index.
excludeDecls -- Exclude local declarations from translation units.
return Index(Index_create(excludeDecls, 0))
def __del__(self):
def read(self, path):
"""Load the translation unit from the given AST file."""
ptr = TranslationUnit_read(self, path)
if ptr:
return TranslationUnit(ptr)
return None
def parse(self, path, args = [], unsaved_files = [], options = 0):
Load the translation unit from the given source code file by running
clang and generating the AST before loading. Additional command line
parameters can be passed to clang via the args parameter.
In-memory contents for files can be provided by passing a list of pairs
to as unsaved_files, the first item should be the filenames to be mapped
and the second should be the contents to be substituted for the
file. The contents may be passed as strings or file objects.
arg_array = 0
if len(args):
arg_array = (c_char_p * len(args))(* args)
unsaved_files_array = 0
if len(unsaved_files):
unsaved_files_array = (_CXUnsavedFile * len(unsaved_files))()
for i,(name,value) in enumerate(unsaved_files):
if not isinstance(value, str):
# FIXME: It would be great to support an efficient version
# of this, one day.
value =
print value
if not isinstance(value, str):
raise TypeError,'Unexpected unsaved file contents.'
unsaved_files_array[i].name = name
unsaved_files_array[i].contents = value
unsaved_files_array[i].length = len(value)
ptr = TranslationUnit_parse(self, path, arg_array, len(args),
unsaved_files_array, len(unsaved_files),
if ptr:
return TranslationUnit(ptr)
return None
class TranslationUnit(ClangObject):
The TranslationUnit class represents a source code translation unit and
provides read-only access to its top-level declarations.
def __init__(self, ptr):
ClangObject.__init__(self, ptr)
def __del__(self):
def cursor(self):
"""Retrieve the cursor that represents the given translation unit."""
return TranslationUnit_cursor(self)
def spelling(self):
"""Get the original translation unit source file name."""
return TranslationUnit_spelling(self)
def get_includes(self):
Return an iterable sequence of FileInclusion objects that describe the
sequence of inclusions in a translation unit. The first object in
this sequence is always the input file. Note that this method will not
recursively iterate over header files included through precompiled
def visitor(fobj, lptr, depth, includes):
if depth > 0:
loc = lptr.contents
includes.append(FileInclusion(loc.file, File(fobj), loc, depth))
# Automatically adapt CIndex/ctype pointers to python objects
includes = []
return iter(includes)
def diagnostics(self):
Return an iterable (and indexable) object containing the diagnostics.
class DiagIterator:
def __init__(self, tu):
self.tu = tu
def __len__(self):
return int(_clang_getNumDiagnostics(self.tu))
def __getitem__(self, key):
diag = _clang_getDiagnostic(self.tu, key)
if not diag:
raise IndexError
return Diagnostic(diag)
return DiagIterator(self)
def reparse(self, unsaved_files = [], options = 0):
Reparse an already parsed translation unit.
In-memory contents for files can be provided by passing a list of pairs
as unsaved_files, the first items should be the filenames to be mapped
and the second should be the contents to be substituted for the
file. The contents may be passed as strings or file objects.
unsaved_files_array = 0
if len(unsaved_files):
unsaved_files_array = (_CXUnsavedFile * len(unsaved_files))()
for i,(name,value) in enumerate(unsaved_files):
if not isinstance(value, str):
# FIXME: It would be great to support an efficient version
# of this, one day.
value =
print value
if not isinstance(value, str):
raise TypeError,'Unexpected unsaved file contents.'
unsaved_files_array[i].name = name
unsaved_files_array[i].contents = value
unsaved_files_array[i].length = len(value)
ptr = TranslationUnit_reparse(self, len(unsaved_files),
def codeComplete(self, path, line, column, unsaved_files = [], options = 0):
Code complete in this translation unit.
In-memory contents for files can be provided by passing a list of pairs
as unsaved_files, the first items should be the filenames to be mapped
and the second should be the contents to be substituted for the
file. The contents may be passed as strings or file objects.
unsaved_files_array = 0
if len(unsaved_files):
unsaved_files_array = (_CXUnsavedFile * len(unsaved_files))()
for i,(name,value) in enumerate(unsaved_files):
if not isinstance(value, str):
# FIXME: It would be great to support an efficient version
# of this, one day.
value =
print value
if not isinstance(value, str):
raise TypeError,'Unexpected unsaved file contents.'
unsaved_files_array[i].name = name
unsaved_files_array[i].contents = value
unsaved_files_array[i].length = len(value)
ptr = TranslationUnit_codeComplete(self, path,
line, column,
if ptr:
return CodeCompletionResults(ptr)
return None
class File(ClangObject):
The File class represents a particular source file that is part of a
translation unit.
def from_name(translation_unit, file_name):
"""Retrieve a file handle within the given translation unit."""
return File(File_getFile(translation_unit, file_name))
def name(self):
"""Return the complete file and path name of the file."""
return _CXString_getCString(File_name(self))
def time(self):
"""Return the last modification time of the file."""
return File_time(self)
def __str__(self):
def __repr__(self):
return "<File: %s>" % (
class FileInclusion(object):
The FileInclusion class represents the inclusion of one source file by
another via a '#include' directive or as the input file for the translation
unit. This class provides information about the included file, the including
file, the location of the '#include' directive and the depth of the included
file in the stack. Note that the input file has depth 0.
def __init__(self, src, tgt, loc, depth):
self.source = src
self.include = tgt
self.location = loc
self.depth = depth
def is_input_file(self):
"""True if the included file is the input file."""
return self.depth == 0
# Additional Functions and Types
# String Functions
_CXString_dispose = lib.clang_disposeString
_CXString_dispose.argtypes = [_CXString]
_CXString_getCString = lib.clang_getCString
_CXString_getCString.argtypes = [_CXString]
_CXString_getCString.restype = c_char_p
# Source Location Functions
SourceLocation_loc = lib.clang_getInstantiationLocation
SourceLocation_loc.argtypes = [SourceLocation, POINTER(c_object_p),
POINTER(c_uint), POINTER(c_uint),
SourceLocation_getLocation = lib.clang_getLocation
SourceLocation_getLocation.argtypes = [TranslationUnit, File, c_uint, c_uint]
SourceLocation_getLocation.restype = SourceLocation
SourceLocation_equalLocations = lib.clang_equalLocations
SourceLocation_equalLocations.argtypes = [SourceLocation, SourceLocation]
SourceLocation_equalLocations.restype = bool
# Source Range Functions
SourceRange_getRange = lib.clang_getRange
SourceRange_getRange.argtypes = [SourceLocation, SourceLocation]
SourceRange_getRange.restype = SourceRange
SourceRange_start = lib.clang_getRangeStart
SourceRange_start.argtypes = [SourceRange]
SourceRange_start.restype = SourceLocation
SourceRange_end = lib.clang_getRangeEnd
SourceRange_end.argtypes = [SourceRange]
SourceRange_end.restype = SourceLocation
SourceRange_equalRanges = lib.clang_equalRanges
SourceRange_equalRanges.argtypes = [SourceRange, SourceRange]
SourceRange_equalRanges.restype = bool
# CursorKind Functions
CursorKind_is_decl = lib.clang_isDeclaration
CursorKind_is_decl.argtypes = [CursorKind]
CursorKind_is_decl.restype = bool
CursorKind_is_ref = lib.clang_isReference
CursorKind_is_ref.argtypes = [CursorKind]
CursorKind_is_ref.restype = bool
CursorKind_is_expr = lib.clang_isExpression
CursorKind_is_expr.argtypes = [CursorKind]
CursorKind_is_expr.restype = bool
CursorKind_is_stmt = lib.clang_isStatement
CursorKind_is_stmt.argtypes = [CursorKind]
CursorKind_is_stmt.restype = bool
CursorKind_is_attribute = lib.clang_isAttribute
CursorKind_is_attribute.argtypes = [CursorKind]
CursorKind_is_attribute.restype = bool
CursorKind_is_inv = lib.clang_isInvalid
CursorKind_is_inv.argtypes = [CursorKind]
CursorKind_is_inv.restype = bool
CursorKind_is_translation_unit = lib.clang_isTranslationUnit
CursorKind_is_translation_unit.argtypes = [CursorKind]
CursorKind_is_translation_unit.restype = bool
CursorKind_is_preprocessing = lib.clang_isPreprocessing
CursorKind_is_preprocessing.argtypes = [CursorKind]
CursorKind_is_preprocessing.restype = bool
CursorKind_is_unexposed = lib.clang_isUnexposed
CursorKind_is_unexposed.argtypes = [CursorKind]
CursorKind_is_unexposed.restype = bool
# Cursor Functions
# TODO: Implement this function
Cursor_get = lib.clang_getCursor
Cursor_get.argtypes = [TranslationUnit, SourceLocation]
Cursor_get.restype = Cursor
Cursor_null = lib.clang_getNullCursor
Cursor_null.restype = Cursor
Cursor_usr = lib.clang_getCursorUSR
Cursor_usr.argtypes = [Cursor]
Cursor_usr.restype = _CXString
Cursor_usr.errcheck = _CXString.from_result
Cursor_is_def = lib.clang_isCursorDefinition
Cursor_is_def.argtypes = [Cursor]
Cursor_is_def.restype = bool
Cursor_def = lib.clang_getCursorDefinition
Cursor_def.argtypes = [Cursor]
Cursor_def.restype = Cursor
Cursor_def.errcheck = Cursor.from_result
Cursor_eq = lib.clang_equalCursors
Cursor_eq.argtypes = [Cursor, Cursor]
Cursor_eq.restype = bool
Cursor_hash = lib.clang_hashCursor
Cursor_hash.argtypes = [Cursor]
Cursor_hash.restype = c_uint
Cursor_spelling = lib.clang_getCursorSpelling
Cursor_spelling.argtypes = [Cursor]
Cursor_spelling.restype = _CXString
Cursor_spelling.errcheck = _CXString.from_result
Cursor_displayname = lib.clang_getCursorDisplayName
Cursor_displayname.argtypes = [Cursor]
Cursor_displayname.restype = _CXString
Cursor_displayname.errcheck = _CXString.from_result
Cursor_loc = lib.clang_getCursorLocation
Cursor_loc.argtypes = [Cursor]
Cursor_loc.restype = SourceLocation
Cursor_extent = lib.clang_getCursorExtent
Cursor_extent.argtypes = [Cursor]
Cursor_extent.restype = SourceRange
Cursor_ref = lib.clang_getCursorReferenced
Cursor_ref.argtypes = [Cursor]
Cursor_ref.restype = Cursor
Cursor_ref.errcheck = Cursor.from_result
Cursor_type = lib.clang_getCursorType
Cursor_type.argtypes = [Cursor]
Cursor_type.restype = Type
Cursor_type.errcheck = Type.from_result
Cursor_underlying_type = lib.clang_getTypedefDeclUnderlyingType
Cursor_underlying_type.argtypes = [Cursor]
Cursor_underlying_type.restype = Type
Cursor_underlying_type.errcheck = Type.from_result
Cursor_enum_type = lib.clang_getEnumDeclIntegerType
Cursor_enum_type.argtypes = [Cursor]
Cursor_enum_type.restype = Type
Cursor_enum_type.errcheck = Type.from_result
Cursor_enum_const_decl = lib.clang_getEnumConstantDeclValue
Cursor_enum_const_decl.argtypes = [Cursor]
Cursor_enum_const_decl.restype = c_longlong
Cursor_enum_const_decl_unsigned = lib.clang_getEnumConstantDeclUnsignedValue
Cursor_enum_const_decl_unsigned.argtypes = [Cursor]
Cursor_enum_const_decl_unsigned.restype = c_ulonglong
Cursor_objc_type_encoding = lib.clang_getDeclObjCTypeEncoding
Cursor_objc_type_encoding.argtypes = [Cursor]
Cursor_objc_type_encoding.restype = _CXString
Cursor_objc_type_encoding.errcheck = _CXString.from_result
Cursor_visit_callback = CFUNCTYPE(c_int, Cursor, Cursor, py_object)
Cursor_visit = lib.clang_visitChildren
Cursor_visit.argtypes = [Cursor, Cursor_visit_callback, py_object]
Cursor_visit.restype = c_uint
# Type Functions
Type_get_canonical = lib.clang_getCanonicalType
Type_get_canonical.argtypes = [Type]
Type_get_canonical.restype = Type
Type_get_canonical.errcheck = Type.from_result
Type_is_const_qualified = lib.clang_isConstQualifiedType
Type_is_const_qualified.argtypes = [Type]
Type_is_const_qualified.restype = bool
Type_is_volatile_qualified = lib.clang_isVolatileQualifiedType
Type_is_volatile_qualified.argtypes = [Type]
Type_is_volatile_qualified.restype = bool
Type_is_restrict_qualified = lib.clang_isRestrictQualifiedType
Type_is_restrict_qualified.argtypes = [Type]
Type_is_restrict_qualified.restype = bool
Type_is_pod = lib.clang_isPODType
Type_is_pod.argtypes = [Type]
Type_is_pod.restype = bool
Type_is_variadic = lib.clang_isFunctionTypeVariadic
Type_is_variadic.argtypes = [Type]
Type_is_variadic.restype = bool
Type_get_pointee = lib.clang_getPointeeType
Type_get_pointee.argtypes = [Type]
Type_get_pointee.restype = Type
Type_get_pointee.errcheck = Type.from_result
Type_get_declaration = lib.clang_getTypeDeclaration
Type_get_declaration.argtypes = [Type]
Type_get_declaration.restype = Cursor
Type_get_declaration.errcheck = Cursor.from_result
Type_get_result = lib.clang_getResultType
Type_get_result.argtypes = [Type]
Type_get_result.restype = Type
Type_get_result.errcheck = Type.from_result
Type_get_num_arg_types = lib.clang_getNumArgTypes
Type_get_num_arg_types.argtypes = [Type]
Type_get_num_arg_types.restype = c_uint
Type_get_arg_type = lib.clang_getArgType
Type_get_arg_type.argtypes = [Type, c_uint]
Type_get_arg_type.restype = Type
Type_get_arg_type.errcheck = Type.from_result
Type_get_element_type = lib.clang_getElementType
Type_get_element_type.argtypes = [Type]
Type_get_element_type.restype = Type
Type_get_element_type.errcheck = Type.from_result
Type_get_num_elements = lib.clang_getNumElements
Type_get_num_elements.argtypes = [Type]
Type_get_num_elements.restype = c_longlong
Type_get_array_element = lib.clang_getArrayElementType
Type_get_array_element.argtypes = [Type]
Type_get_array_element.restype = Type
Type_get_array_element.errcheck = Type.from_result
Type_get_array_size = lib.clang_getArraySize
Type_get_array_size.argtype = [Type]
Type_get_array_size.restype = c_longlong
Type_equal = lib.clang_equalTypes
Type_equal.argtypes = [Type, Type]
Type_equal.restype = bool
# Index Functions
Index_create = lib.clang_createIndex
Index_create.argtypes = [c_int, c_int]
Index_create.restype = c_object_p
Index_dispose = lib.clang_disposeIndex
Index_dispose.argtypes = [Index]
# Translation Unit Functions
TranslationUnit_read = lib.clang_createTranslationUnit
TranslationUnit_read.argtypes = [Index, c_char_p]
TranslationUnit_read.restype = c_object_p
TranslationUnit_parse = lib.clang_parseTranslationUnit
TranslationUnit_parse.argtypes = [Index, c_char_p, c_void_p,
c_int, c_void_p, c_int, c_int]
TranslationUnit_parse.restype = c_object_p
TranslationUnit_reparse = lib.clang_reparseTranslationUnit
TranslationUnit_reparse.argtypes = [TranslationUnit, c_int, c_void_p, c_int]
TranslationUnit_reparse.restype = c_int
TranslationUnit_codeComplete = lib.clang_codeCompleteAt
TranslationUnit_codeComplete.argtypes = [TranslationUnit, c_char_p, c_int,
c_int, c_void_p, c_int, c_int]
TranslationUnit_codeComplete.restype = POINTER(CCRStructure)
TranslationUnit_cursor = lib.clang_getTranslationUnitCursor
TranslationUnit_cursor.argtypes = [TranslationUnit]
TranslationUnit_cursor.restype = Cursor
TranslationUnit_cursor.errcheck = Cursor.from_result
TranslationUnit_spelling = lib.clang_getTranslationUnitSpelling
TranslationUnit_spelling.argtypes = [TranslationUnit]
TranslationUnit_spelling.restype = _CXString
TranslationUnit_spelling.errcheck = _CXString.from_result
TranslationUnit_dispose = lib.clang_disposeTranslationUnit
TranslationUnit_dispose.argtypes = [TranslationUnit]
TranslationUnit_includes_callback = CFUNCTYPE(None,
c_uint, py_object)
TranslationUnit_includes = lib.clang_getInclusions
TranslationUnit_includes.argtypes = [TranslationUnit,
# File Functions
File_getFile = lib.clang_getFile
File_getFile.argtypes = [TranslationUnit, c_char_p]
File_getFile.restype = c_object_p
File_name = lib.clang_getFileName
File_name.argtypes = [File]
File_name.restype = _CXString
File_time = lib.clang_getFileTime
File_time.argtypes = [File]
File_time.restype = c_uint
# Code completion
CodeCompletionResults_dispose = lib.clang_disposeCodeCompleteResults
CodeCompletionResults_dispose.argtypes = [CodeCompletionResults]
_clang_codeCompleteGetNumDiagnostics = lib.clang_codeCompleteGetNumDiagnostics
_clang_codeCompleteGetNumDiagnostics.argtypes = [CodeCompletionResults]
_clang_codeCompleteGetNumDiagnostics.restype = c_int
_clang_codeCompleteGetDiagnostic = lib.clang_codeCompleteGetDiagnostic
_clang_codeCompleteGetDiagnostic.argtypes = [CodeCompletionResults, c_int]
_clang_codeCompleteGetDiagnostic.restype = Diagnostic
_clang_getCompletionChunkText = lib.clang_getCompletionChunkText
_clang_getCompletionChunkText.argtypes = [c_void_p, c_int]
_clang_getCompletionChunkText.restype = _CXString
_clang_getCompletionChunkKind = lib.clang_getCompletionChunkKind
_clang_getCompletionChunkKind.argtypes = [c_void_p, c_int]
_clang_getCompletionChunkKind.restype = c_int
_clang_getCompletionChunkCompletionString = lib.clang_getCompletionChunkCompletionString
_clang_getCompletionChunkCompletionString.argtypes = [c_void_p, c_int]
_clang_getCompletionChunkCompletionString.restype = c_object_p
_clang_getNumCompletionChunks = lib.clang_getNumCompletionChunks
_clang_getNumCompletionChunks.argtypes = [c_void_p]
_clang_getNumCompletionChunks.restype = c_int
_clang_getCompletionAvailability = lib.clang_getCompletionAvailability
_clang_getCompletionAvailability.argtypes = [c_void_p]
_clang_getCompletionAvailability.restype = c_int
_clang_getCompletionPriority = lib.clang_getCompletionPriority
_clang_getCompletionPriority.argtypes = [c_void_p]
_clang_getCompletionPriority.restype = c_int
__all__ = ['Index', 'TranslationUnit', 'Cursor', 'CursorKind', 'Type', 'TypeKind',
'Diagnostic', 'FixIt', 'CodeCompletionResults', 'SourceRange',
'SourceLocation', 'File']