blob: 03529b17ded96e0ecdb34a1a93780b6ab4fa8e5f [file] [log] [blame]
//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines ExprEngine's support for C expressions.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
using namespace clang;
using namespace ento;
using llvm::APSInt;
void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
Expr *LHS = B->getLHS()->IgnoreParens();
Expr *RHS = B->getRHS()->IgnoreParens();
// FIXME: Prechecks eventually go in ::Visit().
ExplodedNodeSet CheckedSet;
ExplodedNodeSet Tmp2;
getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
// With both the LHS and RHS evaluated, process the operation itself.
for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
it != ei; ++it) {
ProgramStateRef state = (*it)->getState();
const LocationContext *LCtx = (*it)->getLocationContext();
SVal LeftV = state->getSVal(LHS, LCtx);
SVal RightV = state->getSVal(RHS, LCtx);
BinaryOperator::Opcode Op = B->getOpcode();
if (Op == BO_Assign) {
// EXPERIMENTAL: "Conjured" symbols.
// FIXME: Handle structs.
if (RightV.isUnknown()) {
unsigned Count = currentBuilderContext->getCurrentBlockCount();
RightV = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), Count);
}
// Simulate the effects of a "store": bind the value of the RHS
// to the L-Value represented by the LHS.
SVal ExprVal = B->isLValue() ? LeftV : RightV;
evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
LeftV, RightV);
continue;
}
if (!B->isAssignmentOp()) {
StmtNodeBuilder Bldr(*it, Tmp2, *currentBuilderContext);
// Process non-assignments except commas or short-circuited
// logical expressions (LAnd and LOr).
SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
if (Result.isUnknown()) {
Bldr.generateNode(B, *it, state);
continue;
}
state = state->BindExpr(B, LCtx, Result);
Bldr.generateNode(B, *it, state);
continue;
}
assert (B->isCompoundAssignmentOp());
switch (Op) {
default:
llvm_unreachable("Invalid opcode for compound assignment.");
case BO_MulAssign: Op = BO_Mul; break;
case BO_DivAssign: Op = BO_Div; break;
case BO_RemAssign: Op = BO_Rem; break;
case BO_AddAssign: Op = BO_Add; break;
case BO_SubAssign: Op = BO_Sub; break;
case BO_ShlAssign: Op = BO_Shl; break;
case BO_ShrAssign: Op = BO_Shr; break;
case BO_AndAssign: Op = BO_And; break;
case BO_XorAssign: Op = BO_Xor; break;
case BO_OrAssign: Op = BO_Or; break;
}
// Perform a load (the LHS). This performs the checks for
// null dereferences, and so on.
ExplodedNodeSet Tmp;
SVal location = LeftV;
evalLoad(Tmp, LHS, *it, state, location);
for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
++I) {
state = (*I)->getState();
const LocationContext *LCtx = (*I)->getLocationContext();
SVal V = state->getSVal(LHS, LCtx);
// Get the computation type.
QualType CTy =
cast<CompoundAssignOperator>(B)->getComputationResultType();
CTy = getContext().getCanonicalType(CTy);
QualType CLHSTy =
cast<CompoundAssignOperator>(B)->getComputationLHSType();
CLHSTy = getContext().getCanonicalType(CLHSTy);
QualType LTy = getContext().getCanonicalType(LHS->getType());
// Promote LHS.
V = svalBuilder.evalCast(V, CLHSTy, LTy);
// Compute the result of the operation.
SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
B->getType(), CTy);
// EXPERIMENTAL: "Conjured" symbols.
// FIXME: Handle structs.
SVal LHSVal;
if (Result.isUnknown()) {
unsigned Count = currentBuilderContext->getCurrentBlockCount();
// The symbolic value is actually for the type of the left-hand side
// expression, not the computation type, as this is the value the
// LValue on the LHS will bind to.
LHSVal = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), LTy,
Count);
// However, we need to convert the symbol to the computation type.
Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
}
else {
// The left-hand side may bind to a different value then the
// computation type.
LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
}
// In C++, assignment and compound assignment operators return an
// lvalue.
if (B->isLValue())
state = state->BindExpr(B, LCtx, location);
else
state = state->BindExpr(B, LCtx, Result);
evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
}
}
// FIXME: postvisits eventually go in ::Visit()
getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
}
void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
CanQualType T = getContext().getCanonicalType(BE->getType());
SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
Pred->getLocationContext());
ExplodedNodeSet Tmp;
StmtNodeBuilder Bldr(Pred, Tmp, *currentBuilderContext);
Bldr.generateNode(BE, Pred,
Pred->getState()->BindExpr(BE, Pred->getLocationContext(),
V),
false, 0,
ProgramPoint::PostLValueKind);
// FIXME: Move all post/pre visits to ::Visit().
getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
}
void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
ExplodedNode *Pred, ExplodedNodeSet &Dst) {
ExplodedNodeSet dstPreStmt;
getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
if (CastE->getCastKind() == CK_LValueToRValue) {
for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
I!=E; ++I) {
ExplodedNode *subExprNode = *I;
ProgramStateRef state = subExprNode->getState();
const LocationContext *LCtx = subExprNode->getLocationContext();
evalLoad(Dst, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
}
return;
}
// All other casts.
QualType T = CastE->getType();
QualType ExTy = Ex->getType();
if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
T = ExCast->getTypeAsWritten();
StmtNodeBuilder Bldr(dstPreStmt, Dst, *currentBuilderContext);
for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
I != E; ++I) {
Pred = *I;
switch (CastE->getCastKind()) {
case CK_LValueToRValue:
llvm_unreachable("LValueToRValue casts handled earlier.");
case CK_ToVoid:
continue;
// The analyzer doesn't do anything special with these casts,
// since it understands retain/release semantics already.
case CK_ARCProduceObject:
case CK_ARCConsumeObject:
case CK_ARCReclaimReturnedObject:
case CK_ARCExtendBlockObject: // Fall-through.
// The analyser can ignore atomic casts for now, although some future
// checkers may want to make certain that you're not modifying the same
// value through atomic and nonatomic pointers.
case CK_AtomicToNonAtomic:
case CK_NonAtomicToAtomic:
// True no-ops.
case CK_NoOp:
case CK_FunctionToPointerDecay: {
// Copy the SVal of Ex to CastE.
ProgramStateRef state = Pred->getState();
const LocationContext *LCtx = Pred->getLocationContext();
SVal V = state->getSVal(Ex, LCtx);
state = state->BindExpr(CastE, LCtx, V);
Bldr.generateNode(CastE, Pred, state);
continue;
}
case CK_Dependent:
case CK_ArrayToPointerDecay:
case CK_BitCast:
case CK_LValueBitCast:
case CK_IntegralCast:
case CK_NullToPointer:
case CK_IntegralToPointer:
case CK_PointerToIntegral:
case CK_PointerToBoolean:
case CK_IntegralToBoolean:
case CK_IntegralToFloating:
case CK_FloatingToIntegral:
case CK_FloatingToBoolean:
case CK_FloatingCast:
case CK_FloatingRealToComplex:
case CK_FloatingComplexToReal:
case CK_FloatingComplexToBoolean:
case CK_FloatingComplexCast:
case CK_FloatingComplexToIntegralComplex:
case CK_IntegralRealToComplex:
case CK_IntegralComplexToReal:
case CK_IntegralComplexToBoolean:
case CK_IntegralComplexCast:
case CK_IntegralComplexToFloatingComplex:
case CK_CPointerToObjCPointerCast:
case CK_BlockPointerToObjCPointerCast:
case CK_AnyPointerToBlockPointerCast:
case CK_ObjCObjectLValueCast: {
// Delegate to SValBuilder to process.
ProgramStateRef state = Pred->getState();
const LocationContext *LCtx = Pred->getLocationContext();
SVal V = state->getSVal(Ex, LCtx);
V = svalBuilder.evalCast(V, T, ExTy);
state = state->BindExpr(CastE, LCtx, V);
Bldr.generateNode(CastE, Pred, state);
continue;
}
case CK_DerivedToBase:
case CK_UncheckedDerivedToBase: {
// For DerivedToBase cast, delegate to the store manager.
ProgramStateRef state = Pred->getState();
const LocationContext *LCtx = Pred->getLocationContext();
SVal val = state->getSVal(Ex, LCtx);
val = getStoreManager().evalDerivedToBase(val, T);
state = state->BindExpr(CastE, LCtx, val);
Bldr.generateNode(CastE, Pred, state);
continue;
}
// Various C++ casts that are not handled yet.
case CK_Dynamic:
case CK_ToUnion:
case CK_BaseToDerived:
case CK_NullToMemberPointer:
case CK_BaseToDerivedMemberPointer:
case CK_DerivedToBaseMemberPointer:
case CK_UserDefinedConversion:
case CK_ConstructorConversion:
case CK_VectorSplat:
case CK_MemberPointerToBoolean: {
// Recover some path-sensitivty by conjuring a new value.
QualType resultType = CastE->getType();
if (CastE->isLValue())
resultType = getContext().getPointerType(resultType);
SVal result =
svalBuilder.getConjuredSymbolVal(NULL, CastE, resultType,
currentBuilderContext->getCurrentBlockCount());
const LocationContext *LCtx = Pred->getLocationContext();
ProgramStateRef state = Pred->getState()->BindExpr(CastE, LCtx,
result);
Bldr.generateNode(CastE, Pred, state);
continue;
}
}
}
}
void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
const InitListExpr *ILE
= cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
ProgramStateRef state = Pred->getState();
SVal ILV = state->getSVal(ILE, Pred->getLocationContext());
const LocationContext *LC = Pred->getLocationContext();
state = state->bindCompoundLiteral(CL, LC, ILV);
if (CL->isLValue())
B.generateNode(CL, Pred, state->BindExpr(CL, LC, state->getLValue(CL, LC)));
else
B.generateNode(CL, Pred, state->BindExpr(CL, LC, ILV));
}
void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
// FIXME: static variables may have an initializer, but the second
// time a function is called those values may not be current.
// This may need to be reflected in the CFG.
// Assumption: The CFG has one DeclStmt per Decl.
const Decl *D = *DS->decl_begin();
if (!D || !isa<VarDecl>(D)) {
//TODO:AZ: remove explicit insertion after refactoring is done.
Dst.insert(Pred);
return;
}
// FIXME: all pre/post visits should eventually be handled by ::Visit().
ExplodedNodeSet dstPreVisit;
getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
StmtNodeBuilder B(dstPreVisit, Dst, *currentBuilderContext);
const VarDecl *VD = dyn_cast<VarDecl>(D);
for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
I!=E; ++I) {
ExplodedNode *N = *I;
ProgramStateRef state = N->getState();
// Decls without InitExpr are not initialized explicitly.
const LocationContext *LC = N->getLocationContext();
if (const Expr *InitEx = VD->getInit()) {
SVal InitVal = state->getSVal(InitEx, Pred->getLocationContext());
// We bound the temp obj region to the CXXConstructExpr. Now recover
// the lazy compound value when the variable is not a reference.
if (AMgr.getLangOptions().CPlusPlus && VD->getType()->isRecordType() &&
!VD->getType()->isReferenceType() && isa<loc::MemRegionVal>(InitVal)){
InitVal = state->getSVal(cast<loc::MemRegionVal>(InitVal).getRegion());
assert(isa<nonloc::LazyCompoundVal>(InitVal));
}
// Recover some path-sensitivity if a scalar value evaluated to
// UnknownVal.
if (InitVal.isUnknown()) {
InitVal = svalBuilder.getConjuredSymbolVal(NULL, InitEx,
currentBuilderContext->getCurrentBlockCount());
}
B.takeNodes(N);
ExplodedNodeSet Dst2;
evalBind(Dst2, DS, N, state->getLValue(VD, LC), InitVal, true);
B.addNodes(Dst2);
}
else {
B.generateNode(DS, N,state->bindDeclWithNoInit(state->getRegion(VD, LC)));
}
}
}
void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
assert(B->getOpcode() == BO_LAnd ||
B->getOpcode() == BO_LOr);
StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
ProgramStateRef state = Pred->getState();
const LocationContext *LCtx = Pred->getLocationContext();
SVal X = state->getSVal(B, LCtx);
assert(X.isUndef());
const Expr *Ex = (const Expr*) cast<UndefinedVal>(X).getData();
assert(Ex);
if (Ex == B->getRHS()) {
X = state->getSVal(Ex, LCtx);
// Handle undefined values.
if (X.isUndef()) {
Bldr.generateNode(B, Pred, state->BindExpr(B, LCtx, X));
return;
}
DefinedOrUnknownSVal XD = cast<DefinedOrUnknownSVal>(X);
// We took the RHS. Because the value of the '&&' or '||' expression must
// evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0
// or 1. Alternatively, we could take a lazy approach, and calculate this
// value later when necessary. We don't have the machinery in place for
// this right now, and since most logical expressions are used for branches,
// the payoff is not likely to be large. Instead, we do eager evaluation.
if (ProgramStateRef newState = state->assume(XD, true))
Bldr.generateNode(B, Pred,
newState->BindExpr(B, LCtx,
svalBuilder.makeIntVal(1U, B->getType())));
if (ProgramStateRef newState = state->assume(XD, false))
Bldr.generateNode(B, Pred,
newState->BindExpr(B, LCtx,
svalBuilder.makeIntVal(0U, B->getType())));
}
else {
// We took the LHS expression. Depending on whether we are '&&' or
// '||' we know what the value of the expression is via properties of
// the short-circuiting.
X = svalBuilder.makeIntVal(B->getOpcode() == BO_LAnd ? 0U : 1U,
B->getType());
Bldr.generateNode(B, Pred, state->BindExpr(B, LCtx, X));
}
}
void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
ProgramStateRef state = Pred->getState();
const LocationContext *LCtx = Pred->getLocationContext();
QualType T = getContext().getCanonicalType(IE->getType());
unsigned NumInitElements = IE->getNumInits();
if (T->isArrayType() || T->isRecordType() || T->isVectorType()) {
llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
// Handle base case where the initializer has no elements.
// e.g: static int* myArray[] = {};
if (NumInitElements == 0) {
SVal V = svalBuilder.makeCompoundVal(T, vals);
B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
return;
}
for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
ei = IE->rend(); it != ei; ++it) {
vals = getBasicVals().consVals(state->getSVal(cast<Expr>(*it), LCtx),
vals);
}
B.generateNode(IE, Pred,
state->BindExpr(IE, LCtx,
svalBuilder.makeCompoundVal(T, vals)));
return;
}
if (Loc::isLocType(T) || T->isIntegerType()) {
assert(IE->getNumInits() == 1);
const Expr *initEx = IE->getInit(0);
B.generateNode(IE, Pred, state->BindExpr(IE, LCtx,
state->getSVal(initEx, LCtx)));
return;
}
llvm_unreachable("unprocessed InitListExpr type");
}
void ExprEngine::VisitGuardedExpr(const Expr *Ex,
const Expr *L,
const Expr *R,
ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
ProgramStateRef state = Pred->getState();
const LocationContext *LCtx = Pred->getLocationContext();
SVal X = state->getSVal(Ex, LCtx);
assert (X.isUndef());
const Expr *SE = (Expr*) cast<UndefinedVal>(X).getData();
assert(SE);
X = state->getSVal(SE, LCtx);
// Make sure that we invalidate the previous binding.
B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, X, true));
}
void ExprEngine::
VisitOffsetOfExpr(const OffsetOfExpr *OOE,
ExplodedNode *Pred, ExplodedNodeSet &Dst) {
StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
APSInt IV;
if (OOE->EvaluateAsInt(IV, getContext())) {
assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
assert(OOE->getType()->isIntegerType());
assert(IV.isSigned() == OOE->getType()->isSignedIntegerOrEnumerationType());
SVal X = svalBuilder.makeIntVal(IV);
B.generateNode(OOE, Pred,
Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
X));
}
// FIXME: Handle the case where __builtin_offsetof is not a constant.
}
void ExprEngine::
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
QualType T = Ex->getTypeOfArgument();
if (Ex->getKind() == UETT_SizeOf) {
if (!T->isIncompleteType() && !T->isConstantSizeType()) {
assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
// FIXME: Add support for VLA type arguments and VLA expressions.
// When that happens, we should probably refactor VLASizeChecker's code.
return;
}
else if (T->getAs<ObjCObjectType>()) {
// Some code tries to take the sizeof an ObjCObjectType, relying that
// the compiler has laid out its representation. Just report Unknown
// for these.
return;
}
}
APSInt Value = Ex->EvaluateKnownConstInt(getContext());
CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
ProgramStateRef state = Pred->getState();
state = state->BindExpr(Ex, Pred->getLocationContext(),
svalBuilder.makeIntVal(amt.getQuantity(),
Ex->getType()));
Bldr.generateNode(Ex, Pred, state);
}
void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
switch (U->getOpcode()) {
default: {
Bldr.takeNodes(Pred);
ExplodedNodeSet Tmp;
VisitIncrementDecrementOperator(U, Pred, Tmp);
Bldr.addNodes(Tmp);
}
break;
case UO_Real: {
const Expr *Ex = U->getSubExpr()->IgnoreParens();
// FIXME: We don't have complex SValues yet.
if (Ex->getType()->isAnyComplexType()) {
// Just report "Unknown."
break;
}
// For all other types, UO_Real is an identity operation.
assert (U->getType() == Ex->getType());
ProgramStateRef state = Pred->getState();
const LocationContext *LCtx = Pred->getLocationContext();
Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
state->getSVal(Ex, LCtx)));
break;
}
case UO_Imag: {
const Expr *Ex = U->getSubExpr()->IgnoreParens();
// FIXME: We don't have complex SValues yet.
if (Ex->getType()->isAnyComplexType()) {
// Just report "Unknown."
break;
}
// For all other types, UO_Imag returns 0.
ProgramStateRef state = Pred->getState();
const LocationContext *LCtx = Pred->getLocationContext();
SVal X = svalBuilder.makeZeroVal(Ex->getType());
Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, X));
break;
}
case UO_Plus:
assert(!U->isLValue());
// FALL-THROUGH.
case UO_Deref:
case UO_AddrOf:
case UO_Extension: {
// Unary "+" is a no-op, similar to a parentheses. We still have places
// where it may be a block-level expression, so we need to
// generate an extra node that just propagates the value of the
// subexpression.
const Expr *Ex = U->getSubExpr()->IgnoreParens();
ExplodedNodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
ProgramStateRef state = (*I)->getState();
const LocationContext *LCtx = (*I)->getLocationContext();
Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
state->getSVal(Ex, LCtx)));
}
break;
}
case UO_LNot:
case UO_Minus:
case UO_Not: {
assert (!U->isLValue());
const Expr *Ex = U->getSubExpr()->IgnoreParens();
ExplodedNodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
ProgramStateRef state = (*I)->getState();
const LocationContext *LCtx = (*I)->getLocationContext();
// Get the value of the subexpression.
SVal V = state->getSVal(Ex, LCtx);
if (V.isUnknownOrUndef()) {
Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V));
continue;
}
switch (U->getOpcode()) {
default:
llvm_unreachable("Invalid Opcode.");
case UO_Not:
// FIXME: Do we need to handle promotions?
state = state->BindExpr(U, LCtx, evalComplement(cast<NonLoc>(V)));
break;
case UO_Minus:
// FIXME: Do we need to handle promotions?
state = state->BindExpr(U, LCtx, evalMinus(cast<NonLoc>(V)));
break;
case UO_LNot:
// C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
//
// Note: technically we do "E == 0", but this is the same in the
// transfer functions as "0 == E".
SVal Result;
if (isa<Loc>(V)) {
Loc X = svalBuilder.makeNull();
Result = evalBinOp(state, BO_EQ, cast<Loc>(V), X,
U->getType());
}
else {
nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
Result = evalBinOp(state, BO_EQ, cast<NonLoc>(V), X,
U->getType());
}
state = state->BindExpr(U, LCtx, Result);
break;
}
Bldr.generateNode(U, *I, state);
}
break;
}
}
}
void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
// Handle ++ and -- (both pre- and post-increment).
assert (U->isIncrementDecrementOp());
ExplodedNodeSet Tmp;
const Expr *Ex = U->getSubExpr()->IgnoreParens();
Visit(Ex, Pred, Tmp);
for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) {
const LocationContext *LCtx = (*I)->getLocationContext();
ProgramStateRef state = (*I)->getState();
SVal loc = state->getSVal(Ex, LCtx);
// Perform a load.
ExplodedNodeSet Tmp2;
evalLoad(Tmp2, Ex, *I, state, loc);
ExplodedNodeSet Dst2;
StmtNodeBuilder Bldr(Tmp2, Dst2, *currentBuilderContext);
for (ExplodedNodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end();I2!=E2;++I2) {
state = (*I2)->getState();
assert(LCtx == (*I2)->getLocationContext());
SVal V2_untested = state->getSVal(Ex, LCtx);
// Propagate unknown and undefined values.
if (V2_untested.isUnknownOrUndef()) {
Bldr.generateNode(U, *I2, state->BindExpr(U, LCtx, V2_untested));
continue;
}
DefinedSVal V2 = cast<DefinedSVal>(V2_untested);
// Handle all other values.
BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add
: BO_Sub;
// If the UnaryOperator has non-location type, use its type to create the
// constant value. If the UnaryOperator has location type, create the
// constant with int type and pointer width.
SVal RHS;
if (U->getType()->isAnyPointerType())
RHS = svalBuilder.makeArrayIndex(1);
else
RHS = svalBuilder.makeIntVal(1, U->getType());
SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
// Conjure a new symbol if necessary to recover precision.
if (Result.isUnknown()){
DefinedOrUnknownSVal SymVal =
svalBuilder.getConjuredSymbolVal(NULL, Ex,
currentBuilderContext->getCurrentBlockCount());
Result = SymVal;
// If the value is a location, ++/-- should always preserve
// non-nullness. Check if the original value was non-null, and if so
// propagate that constraint.
if (Loc::isLocType(U->getType())) {
DefinedOrUnknownSVal Constraint =
svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
if (!state->assume(Constraint, true)) {
// It isn't feasible for the original value to be null.
// Propagate this constraint.
Constraint = svalBuilder.evalEQ(state, SymVal,
svalBuilder.makeZeroVal(U->getType()));
state = state->assume(Constraint, false);
assert(state);
}
}
}
// Since the lvalue-to-rvalue conversion is explicit in the AST,
// we bind an l-value if the operator is prefix and an lvalue (in C++).
if (U->isLValue())
state = state->BindExpr(U, LCtx, loc);
else
state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
// Perform the store.
Bldr.takeNodes(*I2);
ExplodedNodeSet Dst4;
evalStore(Dst4, NULL, U, *I2, state, loc, Result);
Bldr.addNodes(Dst4);
}
Dst.insert(Dst2);
}
}