blob: 247a5fe811897ae1adafeb60738256021d0f49e0 [file] [log] [blame]
//===- unittest/AST/RecursiveASTMatcherTest.cpp ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Frontend/FrontendAction.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Tooling/Tooling.h"
#include "gtest/gtest.h"
namespace clang {
/// \brief Base class for sipmle RecursiveASTVisitor based tests.
///
/// This is a drop-in replacement for RecursiveASTVisitor itself, with the
/// additional capability of running it over a snippet of code.
///
/// Visits template instantiations by default.
///
/// FIXME: Put into a common location.
template <typename T>
class TestVisitor : public clang::RecursiveASTVisitor<T> {
public:
/// \brief Runs the current AST visitor over the given code.
bool runOver(StringRef Code) {
return tooling::runToolOnCode(new TestAction(this), Code);
}
bool shouldVisitTemplateInstantiations() const {
return true;
}
protected:
clang::ASTContext *Context;
private:
class FindConsumer : public clang::ASTConsumer {
public:
FindConsumer(TestVisitor *Visitor) : Visitor(Visitor) {}
virtual void HandleTranslationUnit(clang::ASTContext &Context) {
Visitor->TraverseDecl(Context.getTranslationUnitDecl());
}
private:
TestVisitor *Visitor;
};
class TestAction : public clang::ASTFrontendAction {
public:
TestAction(TestVisitor *Visitor) : Visitor(Visitor) {}
virtual clang::ASTConsumer* CreateASTConsumer(
clang::CompilerInstance& compiler, llvm::StringRef dummy) {
Visitor->Context = &compiler.getASTContext();
/// TestConsumer will be deleted by the framework calling us.
return new FindConsumer(Visitor);
}
private:
TestVisitor *Visitor;
};
};
/// \brief A RecursiveASTVisitor for testing the RecursiveASTVisitor itself.
///
/// Allows simple creation of test visitors running matches on only a small
/// subset of the Visit* methods.
template <typename T>
class ExpectedLocationVisitor : public TestVisitor<T> {
public:
ExpectedLocationVisitor()
: ExpectedLine(0), ExpectedColumn(0), Found(false) {}
~ExpectedLocationVisitor() {
EXPECT_TRUE(Found)
<< "Expected \"" << ExpectedMatch << "\" at " << ExpectedLine
<< ":" << ExpectedColumn << PartialMatches;
}
/// \brief Expect 'Match' to occur at the given 'Line' and 'Column'.
void ExpectMatch(Twine Match, unsigned Line, unsigned Column) {
ExpectedMatch = Match.str();
ExpectedLine = Line;
ExpectedColumn = Column;
}
protected:
/// \brief Convenience method to simplify writing test visitors.
///
/// Sets 'Found' to true if 'Name' and 'Location' match the expected
/// values. If only a partial match is found, record the information
/// to produce nice error output when a test fails.
///
/// Implementations are required to call this with appropriate values
/// for 'Name' during visitation.
void Match(StringRef Name, SourceLocation Location) {
FullSourceLoc FullLocation = this->Context->getFullLoc(Location);
if (Name == ExpectedMatch &&
FullLocation.isValid() &&
FullLocation.getSpellingLineNumber() == ExpectedLine &&
FullLocation.getSpellingColumnNumber() == ExpectedColumn) {
EXPECT_TRUE(!Found);
Found = true;
} else if (Name == ExpectedMatch ||
(FullLocation.isValid() &&
FullLocation.getSpellingLineNumber() == ExpectedLine &&
FullLocation.getSpellingColumnNumber() == ExpectedColumn)) {
// If we did not match, record information about partial matches.
llvm::raw_string_ostream Stream(PartialMatches);
Stream << ", partial match: \"" << Name << "\" at ";
Location.print(Stream, this->Context->getSourceManager());
}
}
std::string ExpectedMatch;
unsigned ExpectedLine;
unsigned ExpectedColumn;
std::string PartialMatches;
bool Found;
};
class TypeLocVisitor : public ExpectedLocationVisitor<TypeLocVisitor> {
public:
bool VisitTypeLoc(TypeLoc TypeLocation) {
Match(TypeLocation.getType().getAsString(), TypeLocation.getBeginLoc());
return true;
}
};
class DeclRefExprVisitor : public ExpectedLocationVisitor<DeclRefExprVisitor> {
public:
bool VisitDeclRefExpr(DeclRefExpr *Reference) {
Match(Reference->getNameInfo().getAsString(), Reference->getLocation());
return true;
}
};
class CXXMemberCallVisitor
: public ExpectedLocationVisitor<CXXMemberCallVisitor> {
public:
bool VisitCXXMemberCallExpr(CXXMemberCallExpr *Call) {
Match(Call->getMethodDecl()->getQualifiedNameAsString(),
Call->getLocStart());
return true;
}
};
class NamedDeclVisitor
: public ExpectedLocationVisitor<NamedDeclVisitor> {
public:
bool VisitNamedDecl(NamedDecl *Decl) {
std::string NameWithTemplateArgs;
Decl->getNameForDiagnostic(NameWithTemplateArgs,
Decl->getASTContext().getPrintingPolicy(),
true);
Match(NameWithTemplateArgs, Decl->getLocation());
return true;
}
};
TEST(RecursiveASTVisitor, VisitsBaseClassDeclarations) {
TypeLocVisitor Visitor;
Visitor.ExpectMatch("class X", 1, 30);
EXPECT_TRUE(Visitor.runOver("class X {}; class Y : public X {};"));
}
TEST(RecursiveASTVisitor, VisitsCXXBaseSpecifiersOfForwardDeclaredClass) {
TypeLocVisitor Visitor;
Visitor.ExpectMatch("class X", 3, 18);
EXPECT_TRUE(Visitor.runOver(
"class Y;\n"
"class X {};\n"
"class Y : public X {};"));
}
TEST(RecursiveASTVisitor, VisitsCXXBaseSpecifiersWithIncompleteInnerClass) {
TypeLocVisitor Visitor;
Visitor.ExpectMatch("class X", 2, 18);
EXPECT_TRUE(Visitor.runOver(
"class X {};\n"
"class Y : public X { class Z; };"));
}
TEST(RecursiveASTVisitor, VisitsCXXBaseSpecifiersOfSelfReferentialType) {
TypeLocVisitor Visitor;
Visitor.ExpectMatch("X<class Y>", 2, 18);
EXPECT_TRUE(Visitor.runOver(
"template<typename T> class X {};\n"
"class Y : public X<Y> {};"));
}
TEST(RecursiveASTVisitor, VisitsBaseClassTemplateArguments) {
DeclRefExprVisitor Visitor;
Visitor.ExpectMatch("x", 2, 3);
EXPECT_TRUE(Visitor.runOver(
"void x(); template <void (*T)()> class X {};\nX<x> y;"));
}
TEST(RecursiveASTVisitor, VisitsCallExpr) {
DeclRefExprVisitor Visitor;
Visitor.ExpectMatch("x", 1, 22);
EXPECT_TRUE(Visitor.runOver(
"void x(); void y() { x(); }"));
}
TEST(RecursiveASTVisitor, VisitsCallInTemplateInstantiation) {
CXXMemberCallVisitor Visitor;
Visitor.ExpectMatch("Y::x", 3, 3);
EXPECT_TRUE(Visitor.runOver(
"struct Y { void x(); };\n"
"template<typename T> void y(T t) {\n"
" t.x();\n"
"}\n"
"void foo() { y<Y>(Y()); }"));
}
TEST(RecursiveASTVisitor, VisitsCallInNestedFunctionTemplateInstantiation) {
CXXMemberCallVisitor Visitor;
Visitor.ExpectMatch("Y::x", 4, 5);
EXPECT_TRUE(Visitor.runOver(
"struct Y { void x(); };\n"
"template<typename T> struct Z {\n"
" template<typename U> static void f() {\n"
" T().x();\n"
" }\n"
"};\n"
"void foo() { Z<Y>::f<int>(); }"));
}
TEST(RecursiveASTVisitor, VisitsCallInNestedClassTemplateInstantiation) {
CXXMemberCallVisitor Visitor;
Visitor.ExpectMatch("A::x", 5, 7);
EXPECT_TRUE(Visitor.runOver(
"template <typename T1> struct X {\n"
" template <typename T2> struct Y {\n"
" void f() {\n"
" T2 y;\n"
" y.x();\n"
" }\n"
" };\n"
"};\n"
"struct A { void x(); };\n"
"int main() {\n"
" (new X<A>::Y<A>())->f();\n"
"}"));
}
/* FIXME: According to Richard Smith this is a bug in the AST.
TEST(RecursiveASTVisitor, VisitsBaseClassTemplateArgumentsInInstantiation) {
DeclRefExprVisitor Visitor;
Visitor.ExpectMatch("x", 3, 43);
EXPECT_TRUE(Visitor.runOver(
"template <typename T> void x();\n"
"template <void (*T)()> class X {};\n"
"template <typename T> class Y : public X< x<T> > {};\n"
"Y<int> y;"));
}
*/
TEST(RecursiveASTVisitor, VisitsCallInPartialTemplateSpecialization) {
CXXMemberCallVisitor Visitor;
Visitor.ExpectMatch("A::x", 6, 20);
EXPECT_TRUE(Visitor.runOver(
"template <typename T1> struct X {\n"
" template <typename T2, bool B> struct Y { void g(); };\n"
"};\n"
"template <typename T1> template <typename T2>\n"
"struct X<T1>::Y<T2, true> {\n"
" void f() { T2 y; y.x(); }\n"
"};\n"
"struct A { void x(); };\n"
"int main() {\n"
" (new X<A>::Y<A, true>())->f();\n"
"}\n"));
}
TEST(RecursiveASTVisitor, VisitsPartialTemplateSpecialization) {
// From cfe-commits/Week-of-Mon-20100830/033998.html
// Contrary to the approach sugggested in that email, we visit all
// specializations when we visit the primary template. Visiting them when we
// visit the associated specialization is problematic for specializations of
// template members of class templates.
NamedDeclVisitor Visitor;
Visitor.ExpectMatch("A<bool>", 1, 26);
Visitor.ExpectMatch("A<char *>", 2, 26);
EXPECT_TRUE(Visitor.runOver(
"template <class T> class A {};\n"
"template <class T> class A<T*> {};\n"
"A<bool> ab;\n"
"A<char*> acp;\n"));
}
TEST(RecursiveASTVisitor, VisitsUndefinedClassTemplateSpecialization) {
NamedDeclVisitor Visitor;
Visitor.ExpectMatch("A<int>", 1, 29);
EXPECT_TRUE(Visitor.runOver(
"template<typename T> struct A;\n"
"A<int> *p;\n"));
}
TEST(RecursiveASTVisitor, VisitsNestedUndefinedClassTemplateSpecialization) {
NamedDeclVisitor Visitor;
Visitor.ExpectMatch("A<int>::B<char>", 2, 31);
EXPECT_TRUE(Visitor.runOver(
"template<typename T> struct A {\n"
" template<typename U> struct B;\n"
"};\n"
"A<int>::B<char> *p;\n"));
}
TEST(RecursiveASTVisitor, VisitsUndefinedFunctionTemplateSpecialization) {
NamedDeclVisitor Visitor;
Visitor.ExpectMatch("A<int>", 1, 26);
EXPECT_TRUE(Visitor.runOver(
"template<typename T> int A();\n"
"int k = A<int>();\n"));
}
TEST(RecursiveASTVisitor, VisitsNestedUndefinedFunctionTemplateSpecialization) {
NamedDeclVisitor Visitor;
Visitor.ExpectMatch("A<int>::B<char>", 2, 35);
EXPECT_TRUE(Visitor.runOver(
"template<typename T> struct A {\n"
" template<typename U> static int B();\n"
"};\n"
"int k = A<int>::B<char>();\n"));
}
TEST(RecursiveASTVisitor, NoRecursionInSelfFriend) {
// From cfe-commits/Week-of-Mon-20100830/033977.html
NamedDeclVisitor Visitor;
Visitor.ExpectMatch("vector_iterator<int>", 2, 7);
EXPECT_TRUE(Visitor.runOver(
"template<typename Container>\n"
"class vector_iterator {\n"
" template <typename C> friend class vector_iterator;\n"
"};\n"
"vector_iterator<int> it_int;\n"));
}
} // end namespace clang