blob: 06d2405052e6f5ac801eab6b26ee896ad1ae38b8 [file] [log] [blame]
//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a basic region store model. In this model, we do have field
// sensitivity. But we assume nothing about the heap shape. So recursive data
// structures are largely ignored. Basically we do 1-limiting analysis.
// Parameter pointers are assumed with no aliasing. Pointee objects of
// parameters are created lazily.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/CharUnits.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/Analysis/Analyses/LiveVariables.h"
#include "clang/Analysis/AnalysisContext.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "llvm/ADT/ImmutableList.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace ento;
using llvm::Optional;
//===----------------------------------------------------------------------===//
// Representation of binding keys.
//===----------------------------------------------------------------------===//
namespace {
class BindingKey {
public:
enum Kind { Default = 0x0, Direct = 0x1 };
private:
enum { Symbolic = 0x2 };
llvm::PointerIntPair<const MemRegion *, 2> P;
uint64_t Data;
explicit BindingKey(const MemRegion *r, const MemRegion *Base, Kind k)
: P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
assert(r && Base && "Must have known regions.");
assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
}
explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
: P(r, k), Data(offset) {
assert(r && "Must have known regions.");
assert(getOffset() == offset && "Failed to store offset");
assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
}
public:
bool isDirect() const { return P.getInt() & Direct; }
bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
const MemRegion *getRegion() const { return P.getPointer(); }
uint64_t getOffset() const {
assert(!hasSymbolicOffset());
return Data;
}
const MemRegion *getConcreteOffsetRegion() const {
assert(hasSymbolicOffset());
return reinterpret_cast<const MemRegion *>(static_cast<uintptr_t>(Data));
}
const MemRegion *getBaseRegion() const {
if (hasSymbolicOffset())
return getConcreteOffsetRegion()->getBaseRegion();
return getRegion()->getBaseRegion();
}
void Profile(llvm::FoldingSetNodeID& ID) const {
ID.AddPointer(P.getOpaqueValue());
ID.AddInteger(Data);
}
static BindingKey Make(const MemRegion *R, Kind k);
bool operator<(const BindingKey &X) const {
if (P.getOpaqueValue() < X.P.getOpaqueValue())
return true;
if (P.getOpaqueValue() > X.P.getOpaqueValue())
return false;
return Data < X.Data;
}
bool operator==(const BindingKey &X) const {
return P.getOpaqueValue() == X.P.getOpaqueValue() &&
Data == X.Data;
}
LLVM_ATTRIBUTE_USED void dump() const;
};
} // end anonymous namespace
BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
const RegionOffset &RO = R->getAsOffset();
if (RO.hasSymbolicOffset())
return BindingKey(R, RO.getRegion(), k);
return BindingKey(RO.getRegion(), RO.getOffset(), k);
}
namespace llvm {
static inline
raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
os << '(' << K.getRegion();
if (!K.hasSymbolicOffset())
os << ',' << K.getOffset();
os << ',' << (K.isDirect() ? "direct" : "default")
<< ')';
return os;
}
} // end llvm namespace
void BindingKey::dump() const {
llvm::errs() << *this;
}
//===----------------------------------------------------------------------===//
// Actual Store type.
//===----------------------------------------------------------------------===//
typedef llvm::ImmutableMap<BindingKey, SVal> ClusterBindings;
typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings> RegionBindings;
//===----------------------------------------------------------------------===//
// Fine-grained control of RegionStoreManager.
//===----------------------------------------------------------------------===//
namespace {
struct minimal_features_tag {};
struct maximal_features_tag {};
class RegionStoreFeatures {
bool SupportsFields;
public:
RegionStoreFeatures(minimal_features_tag) :
SupportsFields(false) {}
RegionStoreFeatures(maximal_features_tag) :
SupportsFields(true) {}
void enableFields(bool t) { SupportsFields = t; }
bool supportsFields() const { return SupportsFields; }
};
}
//===----------------------------------------------------------------------===//
// Main RegionStore logic.
//===----------------------------------------------------------------------===//
namespace {
class RegionStoreManager : public StoreManager {
const RegionStoreFeatures Features;
RegionBindings::Factory RBFactory;
ClusterBindings::Factory CBFactory;
public:
RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
: StoreManager(mgr), Features(f),
RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()) {}
Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
/// getDefaultBinding - Returns an SVal* representing an optional default
/// binding associated with a region and its subregions.
Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
/// setImplicitDefaultValue - Set the default binding for the provided
/// MemRegion to the value implicitly defined for compound literals when
/// the value is not specified.
StoreRef setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);
/// ArrayToPointer - Emulates the "decay" of an array to a pointer
/// type. 'Array' represents the lvalue of the array being decayed
/// to a pointer, and the returned SVal represents the decayed
/// version of that lvalue (i.e., a pointer to the first element of
/// the array). This is called by ExprEngine when evaluating
/// casts from arrays to pointers.
SVal ArrayToPointer(Loc Array);
/// For DerivedToBase casts, create a CXXBaseObjectRegion and return it.
virtual SVal evalDerivedToBase(SVal derived, QualType basePtrType);
/// \brief Evaluates C++ dynamic_cast cast.
/// The callback may result in the following 3 scenarios:
/// - Successful cast (ex: derived is subclass of base).
/// - Failed cast (ex: derived is definitely not a subclass of base).
/// - We don't know (base is a symbolic region and we don't have
/// enough info to determine if the cast will succeed at run time).
/// The function returns an SVal representing the derived class; it's
/// valid only if Failed flag is set to false.
virtual SVal evalDynamicCast(SVal base, QualType derivedPtrType,bool &Failed);
StoreRef getInitialStore(const LocationContext *InitLoc) {
return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
}
//===-------------------------------------------------------------------===//
// Binding values to regions.
//===-------------------------------------------------------------------===//
RegionBindings invalidateGlobalRegion(MemRegion::Kind K,
const Expr *Ex,
unsigned Count,
const LocationContext *LCtx,
RegionBindings B,
InvalidatedRegions *Invalidated);
StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions,
const Expr *E, unsigned Count,
const LocationContext *LCtx,
InvalidatedSymbols &IS,
const CallEvent *Call,
InvalidatedRegions *Invalidated);
bool scanReachableSymbols(Store S, const MemRegion *R,
ScanReachableSymbols &Callbacks);
public: // Made public for helper classes.
RegionBindings removeSubRegionBindings(RegionBindings B, const SubRegion *R);
RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V);
RegionBindings addBinding(RegionBindings B, const MemRegion *R,
BindingKey::Kind k, SVal V);
const SVal *lookup(RegionBindings B, BindingKey K);
const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
RegionBindings removeBinding(RegionBindings B, BindingKey K);
RegionBindings removeBinding(RegionBindings B, const MemRegion *R,
BindingKey::Kind k);
RegionBindings removeBinding(RegionBindings B, const MemRegion *R) {
return removeBinding(removeBinding(B, R, BindingKey::Direct), R,
BindingKey::Default);
}
RegionBindings removeCluster(RegionBindings B, const MemRegion *R);
public: // Part of public interface to class.
StoreRef Bind(Store store, Loc LV, SVal V);
// BindDefault is only used to initialize a region with a default value.
StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
RegionBindings B = GetRegionBindings(store);
assert(!lookup(B, R, BindingKey::Default));
assert(!lookup(B, R, BindingKey::Direct));
return StoreRef(addBinding(B, R, BindingKey::Default, V)
.getRootWithoutRetain(), *this);
}
/// \brief Create a new store that binds a value to a compound literal.
///
/// \param ST The original store whose bindings are the basis for the new
/// store.
///
/// \param CL The compound literal to bind (the binding key).
///
/// \param LC The LocationContext for the binding.
///
/// \param V The value to bind to the compound literal.
StoreRef bindCompoundLiteral(Store ST,
const CompoundLiteralExpr *CL,
const LocationContext *LC, SVal V);
/// BindStruct - Bind a compound value to a structure.
StoreRef BindStruct(Store store, const TypedValueRegion* R, SVal V);
/// BindVector - Bind a compound value to a vector.
StoreRef BindVector(Store store, const TypedValueRegion* R, SVal V);
StoreRef BindArray(Store store, const TypedValueRegion* R, SVal V);
/// Clears out all bindings in the given region and assigns a new value
/// as a Default binding.
StoreRef BindAggregate(Store store, const TypedRegion *R, SVal DefaultVal);
StoreRef Remove(Store store, Loc LV);
void incrementReferenceCount(Store store) {
GetRegionBindings(store).manualRetain();
}
/// If the StoreManager supports it, decrement the reference count of
/// the specified Store object. If the reference count hits 0, the memory
/// associated with the object is recycled.
void decrementReferenceCount(Store store) {
GetRegionBindings(store).manualRelease();
}
bool includedInBindings(Store store, const MemRegion *region) const;
/// \brief Return the value bound to specified location in a given state.
///
/// The high level logic for this method is this:
/// getBinding (L)
/// if L has binding
/// return L's binding
/// else if L is in killset
/// return unknown
/// else
/// if L is on stack or heap
/// return undefined
/// else
/// return symbolic
SVal getBinding(Store store, Loc L, QualType T = QualType());
SVal getBindingForElement(Store store, const ElementRegion *R);
SVal getBindingForField(Store store, const FieldRegion *R);
SVal getBindingForObjCIvar(Store store, const ObjCIvarRegion *R);
SVal getBindingForVar(Store store, const VarRegion *R);
SVal getBindingForLazySymbol(const TypedValueRegion *R);
SVal getBindingForFieldOrElementCommon(Store store, const TypedValueRegion *R,
QualType Ty, const MemRegion *superR);
SVal getLazyBinding(const MemRegion *lazyBindingRegion,
Store lazyBindingStore);
/// Get bindings for the values in a struct and return a CompoundVal, used
/// when doing struct copy:
/// struct s x, y;
/// x = y;
/// y's value is retrieved by this method.
SVal getBindingForStruct(Store store, const TypedValueRegion* R);
SVal getBindingForArray(Store store, const TypedValueRegion* R);
/// Used to lazily generate derived symbols for bindings that are defined
/// implicitly by default bindings in a super region.
Optional<SVal> getBindingForDerivedDefaultValue(RegionBindings B,
const MemRegion *superR,
const TypedValueRegion *R,
QualType Ty);
/// Get the state and region whose binding this region R corresponds to.
std::pair<Store, const MemRegion*>
GetLazyBinding(RegionBindings B, const MemRegion *R,
const MemRegion *originalRegion,
bool includeSuffix = false);
//===------------------------------------------------------------------===//
// State pruning.
//===------------------------------------------------------------------===//
/// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
/// It returns a new Store with these values removed.
StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
SymbolReaper& SymReaper);
//===------------------------------------------------------------------===//
// Region "extents".
//===------------------------------------------------------------------===//
// FIXME: This method will soon be eliminated; see the note in Store.h.
DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
const MemRegion* R, QualType EleTy);
//===------------------------------------------------------------------===//
// Utility methods.
//===------------------------------------------------------------------===//
static inline RegionBindings GetRegionBindings(Store store) {
return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
}
void print(Store store, raw_ostream &Out, const char* nl,
const char *sep);
void iterBindings(Store store, BindingsHandler& f) {
RegionBindings B = GetRegionBindings(store);
for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
const ClusterBindings &Cluster = I.getData();
for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
CI != CE; ++CI) {
const BindingKey &K = CI.getKey();
if (!K.isDirect())
continue;
if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
// FIXME: Possibly incorporate the offset?
if (!f.HandleBinding(*this, store, R, CI.getData()))
return;
}
}
}
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// RegionStore creation.
//===----------------------------------------------------------------------===//
StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
RegionStoreFeatures F = maximal_features_tag();
return new RegionStoreManager(StMgr, F);
}
StoreManager *
ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
RegionStoreFeatures F = minimal_features_tag();
F.enableFields(true);
return new RegionStoreManager(StMgr, F);
}
//===----------------------------------------------------------------------===//
// Region Cluster analysis.
//===----------------------------------------------------------------------===//
namespace {
template <typename DERIVED>
class ClusterAnalysis {
protected:
typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
typedef SmallVector<const MemRegion *, 10> WorkList;
llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
WorkList WL;
RegionStoreManager &RM;
ASTContext &Ctx;
SValBuilder &svalBuilder;
RegionBindings B;
const bool includeGlobals;
const ClusterBindings *getCluster(const MemRegion *R) {
return B.lookup(R);
}
public:
ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
RegionBindings b, const bool includeGlobals)
: RM(rm), Ctx(StateMgr.getContext()),
svalBuilder(StateMgr.getSValBuilder()),
B(b), includeGlobals(includeGlobals) {}
RegionBindings getRegionBindings() const { return B; }
bool isVisited(const MemRegion *R) {
return Visited.count(getCluster(R));
}
void GenerateClusters() {
// Scan the entire set of bindings and record the region clusters.
for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
const MemRegion *Base = RI.getKey();
const ClusterBindings &Cluster = RI.getData();
assert(!Cluster.isEmpty() && "Empty clusters should be removed");
static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
if (includeGlobals)
if (isa<NonStaticGlobalSpaceRegion>(Base->getMemorySpace()))
AddToWorkList(Base, &Cluster);
}
}
bool AddToWorkList(const MemRegion *R, const ClusterBindings *C) {
if (C && !Visited.insert(C))
return false;
WL.push_back(R);
return true;
}
bool AddToWorkList(const MemRegion *R) {
const MemRegion *baseR = R->getBaseRegion();
return AddToWorkList(baseR, getCluster(baseR));
}
void RunWorkList() {
while (!WL.empty()) {
const MemRegion *baseR = WL.pop_back_val();
// First visit the cluster.
if (const ClusterBindings *Cluster = getCluster(baseR))
static_cast<DERIVED*>(this)->VisitCluster(baseR, *Cluster);
// Next, visit the base region.
static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
}
}
public:
void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
void VisitCluster(const MemRegion *baseR, const ClusterBindings &C) {}
void VisitBaseRegion(const MemRegion *baseR) {}
};
}
//===----------------------------------------------------------------------===//
// Binding invalidation.
//===----------------------------------------------------------------------===//
bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
ScanReachableSymbols &Callbacks) {
assert(R == R->getBaseRegion() && "Should only be called for base regions");
RegionBindings B = GetRegionBindings(S);
const ClusterBindings *Cluster = B.lookup(R);
if (!Cluster)
return true;
for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
RI != RE; ++RI) {
if (!Callbacks.scan(RI.getData()))
return false;
}
return true;
}
RegionBindings RegionStoreManager::removeSubRegionBindings(RegionBindings B,
const SubRegion *R) {
BindingKey SRKey = BindingKey::Make(R, BindingKey::Default);
const MemRegion *ClusterHead = SRKey.getBaseRegion();
if (R == ClusterHead) {
// We can remove an entire cluster's bindings all in one go.
return RBFactory.remove(B, R);
}
if (SRKey.hasSymbolicOffset()) {
const SubRegion *Base = cast<SubRegion>(SRKey.getConcreteOffsetRegion());
B = removeSubRegionBindings(B, Base);
return addBinding(B, Base, BindingKey::Default, UnknownVal());
}
// This assumes the region being invalidated is char-aligned. This isn't
// true for bitfields, but since bitfields have no subregions they shouldn't
// be using this function anyway.
uint64_t Length = UINT64_MAX;
SVal Extent = R->getExtent(svalBuilder);
if (nonloc::ConcreteInt *ExtentCI = dyn_cast<nonloc::ConcreteInt>(&Extent)) {
const llvm::APSInt &ExtentInt = ExtentCI->getValue();
assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
// Extents are in bytes but region offsets are in bits. Be careful!
Length = ExtentInt.getLimitedValue() * Ctx.getCharWidth();
}
const ClusterBindings *Cluster = B.lookup(ClusterHead);
if (!Cluster)
return B;
ClusterBindings Result = *Cluster;
// It is safe to iterate over the bindings as they are being changed
// because they are in an ImmutableMap.
for (ClusterBindings::iterator I = Cluster->begin(), E = Cluster->end();
I != E; ++I) {
BindingKey NextKey = I.getKey();
if (NextKey.getRegion() == SRKey.getRegion()) {
if (NextKey.getOffset() > SRKey.getOffset() &&
NextKey.getOffset() - SRKey.getOffset() < Length) {
// Case 1: The next binding is inside the region we're invalidating.
// Remove it.
Result = CBFactory.remove(Result, NextKey);
} else if (NextKey.getOffset() == SRKey.getOffset()) {
// Case 2: The next binding is at the same offset as the region we're
// invalidating. In this case, we need to leave default bindings alone,
// since they may be providing a default value for a regions beyond what
// we're invalidating.
// FIXME: This is probably incorrect; consider invalidating an outer
// struct whose first field is bound to a LazyCompoundVal.
if (NextKey.isDirect())
Result = CBFactory.remove(Result, NextKey);
}
} else if (NextKey.hasSymbolicOffset()) {
const MemRegion *Base = NextKey.getConcreteOffsetRegion();
if (R->isSubRegionOf(Base)) {
// Case 3: The next key is symbolic and we just changed something within
// its concrete region. We don't know if the binding is still valid, so
// we'll be conservative and remove it.
if (NextKey.isDirect())
Result = CBFactory.remove(Result, NextKey);
} else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
// Case 4: The next key is symbolic, but we changed a known
// super-region. In this case the binding is certainly no longer valid.
if (R == Base || BaseSR->isSubRegionOf(R))
Result = CBFactory.remove(Result, NextKey);
}
}
}
if (Result.isEmpty())
return RBFactory.remove(B, ClusterHead);
return RBFactory.add(B, ClusterHead, Result);
}
namespace {
class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
{
const Expr *Ex;
unsigned Count;
const LocationContext *LCtx;
StoreManager::InvalidatedSymbols &IS;
StoreManager::InvalidatedRegions *Regions;
public:
invalidateRegionsWorker(RegionStoreManager &rm,
ProgramStateManager &stateMgr,
RegionBindings b,
const Expr *ex, unsigned count,
const LocationContext *lctx,
StoreManager::InvalidatedSymbols &is,
StoreManager::InvalidatedRegions *r,
bool includeGlobals)
: ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
Ex(ex), Count(count), LCtx(lctx), IS(is), Regions(r) {}
void VisitCluster(const MemRegion *baseR, const ClusterBindings &C);
void VisitBaseRegion(const MemRegion *baseR);
private:
void VisitBinding(SVal V);
};
}
void invalidateRegionsWorker::VisitBinding(SVal V) {
// A symbol? Mark it touched by the invalidation.
if (SymbolRef Sym = V.getAsSymbol())
IS.insert(Sym);
if (const MemRegion *R = V.getAsRegion()) {
AddToWorkList(R);
return;
}
// Is it a LazyCompoundVal? All references get invalidated as well.
if (const nonloc::LazyCompoundVal *LCS =
dyn_cast<nonloc::LazyCompoundVal>(&V)) {
const MemRegion *LazyR = LCS->getRegion();
RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
// FIXME: This should not have to walk all bindings in the old store.
for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
const ClusterBindings &Cluster = RI.getData();
for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
CI != CE; ++CI) {
BindingKey K = CI.getKey();
if (const SubRegion *BaseR = dyn_cast<SubRegion>(K.getRegion())) {
if (BaseR == LazyR)
VisitBinding(CI.getData());
else if (K.hasSymbolicOffset() && BaseR->isSubRegionOf(LazyR))
VisitBinding(CI.getData());
}
}
}
return;
}
}
void invalidateRegionsWorker::VisitCluster(const MemRegion *BaseR,
const ClusterBindings &C) {
for (ClusterBindings::iterator I = C.begin(), E = C.end(); I != E; ++I)
VisitBinding(I.getData());
B = RM.removeCluster(B, BaseR);
}
void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
// Symbolic region? Mark that symbol touched by the invalidation.
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
IS.insert(SR->getSymbol());
// BlockDataRegion? If so, invalidate captured variables that are passed
// by reference.
if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
for (BlockDataRegion::referenced_vars_iterator
BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
BI != BE; ++BI) {
const VarRegion *VR = *BI;
const VarDecl *VD = VR->getDecl();
if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
AddToWorkList(VR);
}
else if (Loc::isLocType(VR->getValueType())) {
// Map the current bindings to a Store to retrieve the value
// of the binding. If that binding itself is a region, we should
// invalidate that region. This is because a block may capture
// a pointer value, but the thing pointed by that pointer may
// get invalidated.
Store store = B.getRootWithoutRetain();
SVal V = RM.getBinding(store, loc::MemRegionVal(VR));
if (const Loc *L = dyn_cast<Loc>(&V)) {
if (const MemRegion *LR = L->getAsRegion())
AddToWorkList(LR);
}
}
}
return;
}
// Otherwise, we have a normal data region. Record that we touched the region.
if (Regions)
Regions->push_back(baseR);
if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
// Invalidate the region by setting its default value to
// conjured symbol. The type of the symbol is irrelavant.
DefinedOrUnknownSVal V =
svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
B = RM.addBinding(B, baseR, BindingKey::Default, V);
return;
}
if (!baseR->isBoundable())
return;
const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
QualType T = TR->getValueType();
// Invalidate the binding.
if (T->isStructureOrClassType()) {
// Invalidate the region by setting its default value to
// conjured symbol. The type of the symbol is irrelavant.
DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
Ctx.IntTy, Count);
B = RM.addBinding(B, baseR, BindingKey::Default, V);
return;
}
if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
// Set the default value of the array to conjured symbol.
DefinedOrUnknownSVal V =
svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
AT->getElementType(), Count);
B = RM.addBinding(B, baseR, BindingKey::Default, V);
return;
}
if (includeGlobals &&
isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
// If the region is a global and we are invalidating all globals,
// just erase the entry. This causes all globals to be lazily
// symbolicated from the same base symbol.
B = RM.removeBinding(B, baseR);
return;
}
DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
T,Count);
assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
B = RM.addBinding(B, baseR, BindingKey::Direct, V);
}
RegionBindings RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
const Expr *Ex,
unsigned Count,
const LocationContext *LCtx,
RegionBindings B,
InvalidatedRegions *Invalidated) {
// Bind the globals memory space to a new symbol that we will use to derive
// the bindings for all globals.
const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (void*) GS, Ex, LCtx,
/* type does not matter */ Ctx.IntTy,
Count);
B = removeBinding(B, GS);
B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V);
// Even if there are no bindings in the global scope, we still need to
// record that we touched it.
if (Invalidated)
Invalidated->push_back(GS);
return B;
}
StoreRef RegionStoreManager::invalidateRegions(Store store,
ArrayRef<const MemRegion *> Regions,
const Expr *Ex, unsigned Count,
const LocationContext *LCtx,
InvalidatedSymbols &IS,
const CallEvent *Call,
InvalidatedRegions *Invalidated) {
invalidateRegionsWorker W(*this, StateMgr,
RegionStoreManager::GetRegionBindings(store),
Ex, Count, LCtx, IS, Invalidated, false);
// Scan the bindings and generate the clusters.
W.GenerateClusters();
// Add the regions to the worklist.
for (ArrayRef<const MemRegion *>::iterator
I = Regions.begin(), E = Regions.end(); I != E; ++I)
W.AddToWorkList(*I);
W.RunWorkList();
// Return the new bindings.
RegionBindings B = W.getRegionBindings();
// For all globals which are not static nor immutable: determine which global
// regions should be invalidated and invalidate them.
// TODO: This could possibly be more precise with modules.
//
// System calls invalidate only system globals.
if (Call && Call->isInSystemHeader()) {
B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
Ex, Count, LCtx, B, Invalidated);
// Internal calls might invalidate both system and internal globals.
} else {
B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
Ex, Count, LCtx, B, Invalidated);
B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
Ex, Count, LCtx, B, Invalidated);
}
return StoreRef(B.getRootWithoutRetain(), *this);
}
//===----------------------------------------------------------------------===//
// Extents for regions.
//===----------------------------------------------------------------------===//
DefinedOrUnknownSVal
RegionStoreManager::getSizeInElements(ProgramStateRef state,
const MemRegion *R,
QualType EleTy) {
SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
if (!SizeInt)
return UnknownVal();
CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
if (Ctx.getAsVariableArrayType(EleTy)) {
// FIXME: We need to track extra state to properly record the size
// of VLAs. Returning UnknownVal here, however, is a stop-gap so that
// we don't have a divide-by-zero below.
return UnknownVal();
}
CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
// If a variable is reinterpreted as a type that doesn't fit into a larger
// type evenly, round it down.
// This is a signed value, since it's used in arithmetic with signed indices.
return svalBuilder.makeIntVal(RegionSize / EleSize, false);
}
//===----------------------------------------------------------------------===//
// Location and region casting.
//===----------------------------------------------------------------------===//
/// ArrayToPointer - Emulates the "decay" of an array to a pointer
/// type. 'Array' represents the lvalue of the array being decayed
/// to a pointer, and the returned SVal represents the decayed
/// version of that lvalue (i.e., a pointer to the first element of
/// the array). This is called by ExprEngine when evaluating casts
/// from arrays to pointers.
SVal RegionStoreManager::ArrayToPointer(Loc Array) {
if (!isa<loc::MemRegionVal>(Array))
return UnknownVal();
const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
if (!ArrayR)
return UnknownVal();
// Strip off typedefs from the ArrayRegion's ValueType.
QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
const ArrayType *AT = cast<ArrayType>(T);
T = AT->getElementType();
NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
}
// This mirrors Type::getCXXRecordDeclForPointerType(), but there doesn't
// appear to be another need for this in the rest of the codebase.
static const CXXRecordDecl *GetCXXRecordDeclForReferenceType(QualType Ty) {
if (const ReferenceType *RT = Ty->getAs<ReferenceType>())
if (const RecordType *RCT = RT->getPointeeType()->getAs<RecordType>())
return dyn_cast<CXXRecordDecl>(RCT->getDecl());
return 0;
}
SVal RegionStoreManager::evalDerivedToBase(SVal derived, QualType baseType) {
const CXXRecordDecl *baseDecl;
if (baseType->isPointerType())
baseDecl = baseType->getCXXRecordDeclForPointerType();
else if (baseType->isReferenceType())
baseDecl = GetCXXRecordDeclForReferenceType(baseType);
else
baseDecl = baseType->getAsCXXRecordDecl();
assert(baseDecl && "not a CXXRecordDecl?");
loc::MemRegionVal *derivedRegVal = dyn_cast<loc::MemRegionVal>(&derived);
if (!derivedRegVal)
return derived;
const MemRegion *baseReg =
MRMgr.getCXXBaseObjectRegion(baseDecl, derivedRegVal->getRegion());
return loc::MemRegionVal(baseReg);
}
SVal RegionStoreManager::evalDynamicCast(SVal base, QualType derivedType,
bool &Failed) {
Failed = false;
loc::MemRegionVal *baseRegVal = dyn_cast<loc::MemRegionVal>(&base);
if (!baseRegVal)
return UnknownVal();
const MemRegion *BaseRegion = baseRegVal->stripCasts(/*StripBases=*/false);
// Assume the derived class is a pointer or a reference to a CXX record.
derivedType = derivedType->getPointeeType();
assert(!derivedType.isNull());
const CXXRecordDecl *DerivedDecl = derivedType->getAsCXXRecordDecl();
if (!DerivedDecl && !derivedType->isVoidType())
return UnknownVal();
// Drill down the CXXBaseObject chains, which represent upcasts (casts from
// derived to base).
const MemRegion *SR = BaseRegion;
while (const TypedRegion *TSR = dyn_cast_or_null<TypedRegion>(SR)) {
QualType BaseType = TSR->getLocationType()->getPointeeType();
assert(!BaseType.isNull());
const CXXRecordDecl *SRDecl = BaseType->getAsCXXRecordDecl();
if (!SRDecl)
return UnknownVal();
// If found the derived class, the cast succeeds.
if (SRDecl == DerivedDecl)
return loc::MemRegionVal(TSR);
if (!derivedType->isVoidType()) {
// Static upcasts are marked as DerivedToBase casts by Sema, so this will
// only happen when multiple or virtual inheritance is involved.
CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
/*DetectVirtual=*/false);
if (SRDecl->isDerivedFrom(DerivedDecl, Paths)) {
SVal Result = loc::MemRegionVal(TSR);
const CXXBasePath &Path = *Paths.begin();
for (CXXBasePath::const_iterator I = Path.begin(), E = Path.end();
I != E; ++I) {
Result = evalDerivedToBase(Result, I->Base->getType());
}
return Result;
}
}
if (const CXXBaseObjectRegion *R = dyn_cast<CXXBaseObjectRegion>(TSR))
// Drill down the chain to get the derived classes.
SR = R->getSuperRegion();
else {
// We reached the bottom of the hierarchy.
// If this is a cast to void*, return the region.
if (derivedType->isVoidType())
return loc::MemRegionVal(TSR);
// We did not find the derived class. We we must be casting the base to
// derived, so the cast should fail.
Failed = true;
return UnknownVal();
}
}
return UnknownVal();
}
//===----------------------------------------------------------------------===//
// Loading values from regions.
//===----------------------------------------------------------------------===//
Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
const MemRegion *R) {
if (const SVal *V = lookup(B, R, BindingKey::Direct))
return *V;
return Optional<SVal>();
}
Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
const MemRegion *R) {
if (R->isBoundable())
if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
if (TR->getValueType()->isUnionType())
return UnknownVal();
if (const SVal *V = lookup(B, R, BindingKey::Default))
return *V;
return Optional<SVal>();
}
SVal RegionStoreManager::getBinding(Store store, Loc L, QualType T) {
assert(!isa<UnknownVal>(L) && "location unknown");
assert(!isa<UndefinedVal>(L) && "location undefined");
// For access to concrete addresses, return UnknownVal. Checks
// for null dereferences (and similar errors) are done by checkers, not
// the Store.
// FIXME: We can consider lazily symbolicating such memory, but we really
// should defer this when we can reason easily about symbolicating arrays
// of bytes.
if (isa<loc::ConcreteInt>(L)) {
return UnknownVal();
}
if (!isa<loc::MemRegionVal>(L)) {
return UnknownVal();
}
const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
if (isa<AllocaRegion>(MR) ||
isa<SymbolicRegion>(MR) ||
isa<CodeTextRegion>(MR)) {
if (T.isNull()) {
if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
T = TR->getLocationType();
else {
const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
T = SR->getSymbol()->getType(Ctx);
}
}
MR = GetElementZeroRegion(MR, T);
}
// FIXME: Perhaps this method should just take a 'const MemRegion*' argument
// instead of 'Loc', and have the other Loc cases handled at a higher level.
const TypedValueRegion *R = cast<TypedValueRegion>(MR);
QualType RTy = R->getValueType();
// FIXME: We should eventually handle funny addressing. e.g.:
//
// int x = ...;
// int *p = &x;
// char *q = (char*) p;
// char c = *q; // returns the first byte of 'x'.
//
// Such funny addressing will occur due to layering of regions.
if (RTy->isStructureOrClassType())
return getBindingForStruct(store, R);
// FIXME: Handle unions.
if (RTy->isUnionType())
return UnknownVal();
if (RTy->isArrayType()) {
if (RTy->isConstantArrayType())
return getBindingForArray(store, R);
else
return UnknownVal();
}
// FIXME: handle Vector types.
if (RTy->isVectorType())
return UnknownVal();
if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
return CastRetrievedVal(getBindingForField(store, FR), FR, T, false);
if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
// FIXME: Here we actually perform an implicit conversion from the loaded
// value to the element type. Eventually we want to compose these values
// more intelligently. For example, an 'element' can encompass multiple
// bound regions (e.g., several bound bytes), or could be a subset of
// a larger value.
return CastRetrievedVal(getBindingForElement(store, ER), ER, T, false);
}
if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
// FIXME: Here we actually perform an implicit conversion from the loaded
// value to the ivar type. What we should model is stores to ivars
// that blow past the extent of the ivar. If the address of the ivar is
// reinterpretted, it is possible we stored a different value that could
// fit within the ivar. Either we need to cast these when storing them
// or reinterpret them lazily (as we do here).
return CastRetrievedVal(getBindingForObjCIvar(store, IVR), IVR, T, false);
}
if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
// FIXME: Here we actually perform an implicit conversion from the loaded
// value to the variable type. What we should model is stores to variables
// that blow past the extent of the variable. If the address of the
// variable is reinterpretted, it is possible we stored a different value
// that could fit within the variable. Either we need to cast these when
// storing them or reinterpret them lazily (as we do here).
return CastRetrievedVal(getBindingForVar(store, VR), VR, T, false);
}
RegionBindings B = GetRegionBindings(store);
const SVal *V = lookup(B, R, BindingKey::Direct);
// Check if the region has a binding.
if (V)
return *V;
// The location does not have a bound value. This means that it has
// the value it had upon its creation and/or entry to the analyzed
// function/method. These are either symbolic values or 'undefined'.
if (R->hasStackNonParametersStorage()) {
// All stack variables are considered to have undefined values
// upon creation. All heap allocated blocks are considered to
// have undefined values as well unless they are explicitly bound
// to specific values.
return UndefinedVal();
}
// All other values are symbolic.
return svalBuilder.getRegionValueSymbolVal(R);
}
std::pair<Store, const MemRegion *>
RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R,
const MemRegion *originalRegion,
bool includeSuffix) {
if (originalRegion != R) {
if (Optional<SVal> OV = getDefaultBinding(B, R)) {
if (const nonloc::LazyCompoundVal *V =
dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
return std::make_pair(V->getStore(), V->getRegion());
}
}
if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
const std::pair<Store, const MemRegion *> &X =
GetLazyBinding(B, ER->getSuperRegion(), originalRegion);
if (X.second)
return std::make_pair(X.first,
MRMgr.getElementRegionWithSuper(ER, X.second));
}
else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
const std::pair<Store, const MemRegion *> &X =
GetLazyBinding(B, FR->getSuperRegion(), originalRegion);
if (X.second) {
if (includeSuffix)
return std::make_pair(X.first,
MRMgr.getFieldRegionWithSuper(FR, X.second));
return X;
}
}
// C++ base object region is another kind of region that we should blast
// through to look for lazy compound value. It is like a field region.
else if (const CXXBaseObjectRegion *baseReg =
dyn_cast<CXXBaseObjectRegion>(R)) {
const std::pair<Store, const MemRegion *> &X =
GetLazyBinding(B, baseReg->getSuperRegion(), originalRegion);
if (X.second) {
if (includeSuffix)
return std::make_pair(X.first,
MRMgr.getCXXBaseObjectRegionWithSuper(baseReg,
X.second));
return X;
}
}
// The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
// possible for a valid lazy binding.
return std::make_pair((Store) 0, (const MemRegion *) 0);
}
SVal RegionStoreManager::getBindingForElement(Store store,
const ElementRegion* R) {
// We do not currently model bindings of the CompoundLiteralregion.
if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
return UnknownVal();
// Check if the region has a binding.
RegionBindings B = GetRegionBindings(store);
if (const Optional<SVal> &V = getDirectBinding(B, R))
return *V;
const MemRegion* superR = R->getSuperRegion();
// Check if the region is an element region of a string literal.
if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
// FIXME: Handle loads from strings where the literal is treated as
// an integer, e.g., *((unsigned int*)"hello")
QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
if (T != Ctx.getCanonicalType(R->getElementType()))
return UnknownVal();
const StringLiteral *Str = StrR->getStringLiteral();
SVal Idx = R->getIndex();
if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
int64_t i = CI->getValue().getSExtValue();
// Abort on string underrun. This can be possible by arbitrary
// clients of getBindingForElement().
if (i < 0)
return UndefinedVal();
int64_t length = Str->getLength();
// Technically, only i == length is guaranteed to be null.
// However, such overflows should be caught before reaching this point;
// the only time such an access would be made is if a string literal was
// used to initialize a larger array.
char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
return svalBuilder.makeIntVal(c, T);
}
}
// Check for loads from a code text region. For such loads, just give up.
if (isa<CodeTextRegion>(superR))
return UnknownVal();
// Handle the case where we are indexing into a larger scalar object.
// For example, this handles:
// int x = ...
// char *y = &x;
// return *y;
// FIXME: This is a hack, and doesn't do anything really intelligent yet.
const RegionRawOffset &O = R->getAsArrayOffset();
// If we cannot reason about the offset, return an unknown value.
if (!O.getRegion())
return UnknownVal();
if (const TypedValueRegion *baseR =
dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
QualType baseT = baseR->getValueType();
if (baseT->isScalarType()) {
QualType elemT = R->getElementType();
if (elemT->isScalarType()) {
if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
if (const Optional<SVal> &V = getDirectBinding(B, superR)) {
if (SymbolRef parentSym = V->getAsSymbol())
return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
if (V->isUnknownOrUndef())
return *V;
// Other cases: give up. We are indexing into a larger object
// that has some value, but we don't know how to handle that yet.
return UnknownVal();
}
}
}
}
}
return getBindingForFieldOrElementCommon(store, R, R->getElementType(),
superR);
}
SVal RegionStoreManager::getBindingForField(Store store,
const FieldRegion* R) {
// Check if the region has a binding.
RegionBindings B = GetRegionBindings(store);
if (const Optional<SVal> &V = getDirectBinding(B, R))
return *V;
QualType Ty = R->getValueType();
return getBindingForFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
}
Optional<SVal>
RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindings B,
const MemRegion *superR,
const TypedValueRegion *R,
QualType Ty) {
if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
const SVal &val = D.getValue();
if (SymbolRef parentSym = val.getAsSymbol())
return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
if (val.isZeroConstant())
return svalBuilder.makeZeroVal(Ty);
if (val.isUnknownOrUndef())
return val;
// Lazy bindings are handled later.
if (isa<nonloc::LazyCompoundVal>(val))
return Optional<SVal>();
llvm_unreachable("Unknown default value");
}
return Optional<SVal>();
}
SVal RegionStoreManager::getLazyBinding(const MemRegion *lazyBindingRegion,
Store lazyBindingStore) {
if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
return getBindingForElement(lazyBindingStore, ER);
return getBindingForField(lazyBindingStore,
cast<FieldRegion>(lazyBindingRegion));
}
SVal RegionStoreManager::getBindingForFieldOrElementCommon(Store store,
const TypedValueRegion *R,
QualType Ty,
const MemRegion *superR) {
// At this point we have already checked in either getBindingForElement or
// getBindingForField if 'R' has a direct binding.
RegionBindings B = GetRegionBindings(store);
// Lazy binding?
Store lazyBindingStore = NULL;
const MemRegion *lazyBindingRegion = NULL;
llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R, R,
true);
if (lazyBindingRegion)
return getLazyBinding(lazyBindingRegion, lazyBindingStore);
// Record whether or not we see a symbolic index. That can completely
// be out of scope of our lookup.
bool hasSymbolicIndex = false;
while (superR) {
if (const Optional<SVal> &D =
getBindingForDerivedDefaultValue(B, superR, R, Ty))
return *D;
if (const ElementRegion *ER = dyn_cast<ElementRegion>(superR)) {
NonLoc index = ER->getIndex();
if (!index.isConstant())
hasSymbolicIndex = true;
}
// If our super region is a field or element itself, walk up the region
// hierarchy to see if there is a default value installed in an ancestor.
if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
superR = SR->getSuperRegion();
continue;
}
break;
}
if (R->hasStackNonParametersStorage()) {
if (isa<ElementRegion>(R)) {
// Currently we don't reason specially about Clang-style vectors. Check
// if superR is a vector and if so return Unknown.
if (const TypedValueRegion *typedSuperR =
dyn_cast<TypedValueRegion>(superR)) {
if (typedSuperR->getValueType()->isVectorType())
return UnknownVal();
}
}
// FIXME: We also need to take ElementRegions with symbolic indexes into
// account. This case handles both directly accessing an ElementRegion
// with a symbolic offset, but also fields within an element with
// a symbolic offset.
if (hasSymbolicIndex)
return UnknownVal();
return UndefinedVal();
}
// All other values are symbolic.
return svalBuilder.getRegionValueSymbolVal(R);
}
SVal RegionStoreManager::getBindingForObjCIvar(Store store,
const ObjCIvarRegion* R) {
// Check if the region has a binding.
RegionBindings B = GetRegionBindings(store);
if (const Optional<SVal> &V = getDirectBinding(B, R))
return *V;
const MemRegion *superR = R->getSuperRegion();
// Check if the super region has a default binding.
if (const Optional<SVal> &V = getDefaultBinding(B, superR)) {
if (SymbolRef parentSym = V->getAsSymbol())
return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
// Other cases: give up.
return UnknownVal();
}
return getBindingForLazySymbol(R);
}
SVal RegionStoreManager::getBindingForVar(Store store, const VarRegion *R) {
// Check if the region has a binding.
RegionBindings B = GetRegionBindings(store);
if (const Optional<SVal> &V = getDirectBinding(B, R))
return *V;
// Lazily derive a value for the VarRegion.
const VarDecl *VD = R->getDecl();
QualType T = VD->getType();
const MemSpaceRegion *MS = R->getMemorySpace();
if (isa<UnknownSpaceRegion>(MS) ||
isa<StackArgumentsSpaceRegion>(MS))
return svalBuilder.getRegionValueSymbolVal(R);
if (isa<GlobalsSpaceRegion>(MS)) {
if (isa<NonStaticGlobalSpaceRegion>(MS)) {
// Is 'VD' declared constant? If so, retrieve the constant value.
QualType CT = Ctx.getCanonicalType(T);
if (CT.isConstQualified()) {
const Expr *Init = VD->getInit();
// Do the null check first, as we want to call 'IgnoreParenCasts'.
if (Init)
if (const IntegerLiteral *IL =
dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL);
return svalBuilder.evalCast(V, Init->getType(), IL->getType());
}
}
if (const Optional<SVal> &V
= getBindingForDerivedDefaultValue(B, MS, R, CT))
return V.getValue();
return svalBuilder.getRegionValueSymbolVal(R);
}
if (T->isIntegerType())
return svalBuilder.makeIntVal(0, T);
if (T->isPointerType())
return svalBuilder.makeNull();
return UnknownVal();
}
return UndefinedVal();
}
SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
// All other values are symbolic.
return svalBuilder.getRegionValueSymbolVal(R);
}
static bool mayHaveLazyBinding(QualType Ty) {
return Ty->isArrayType() || Ty->isStructureOrClassType();
}
SVal RegionStoreManager::getBindingForStruct(Store store,
const TypedValueRegion* R) {
const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
if (RD->field_empty())
return UnknownVal();
// If we already have a lazy binding, don't create a new one,
// unless the first field might have a lazy binding of its own.
// (Right now we can't tell the difference.)
QualType FirstFieldType = RD->field_begin()->getType();
if (!mayHaveLazyBinding(FirstFieldType)) {
RegionBindings B = GetRegionBindings(store);
BindingKey K = BindingKey::Make(R, BindingKey::Default);
if (const nonloc::LazyCompoundVal *V =
dyn_cast_or_null<nonloc::LazyCompoundVal>(lookup(B, K))) {
return *V;
}
}
return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
}
SVal RegionStoreManager::getBindingForArray(Store store,
const TypedValueRegion * R) {
const ConstantArrayType *Ty = Ctx.getAsConstantArrayType(R->getValueType());
assert(Ty && "Only constant array types can have compound bindings.");
// If we already have a lazy binding, don't create a new one,
// unless the first element might have a lazy binding of its own.
// (Right now we can't tell the difference.)
if (!mayHaveLazyBinding(Ty->getElementType())) {
RegionBindings B = GetRegionBindings(store);
BindingKey K = BindingKey::Make(R, BindingKey::Default);
if (const nonloc::LazyCompoundVal *V =
dyn_cast_or_null<nonloc::LazyCompoundVal>(lookup(B, K))) {
return *V;
}
}
return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
}
bool RegionStoreManager::includedInBindings(Store store,
const MemRegion *region) const {
RegionBindings B = GetRegionBindings(store);
region = region->getBaseRegion();
// Quick path: if the base is the head of a cluster, the region is live.
if (B.lookup(region))
return true;
// Slow path: if the region is the VALUE of any binding, it is live.
for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
const ClusterBindings &Cluster = RI.getData();
for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
CI != CE; ++CI) {
const SVal &D = CI.getData();
if (const MemRegion *R = D.getAsRegion())
if (R->getBaseRegion() == region)
return true;
}
}
return false;
}
//===----------------------------------------------------------------------===//
// Binding values to regions.
//===----------------------------------------------------------------------===//
StoreRef RegionStoreManager::Remove(Store store, Loc L) {
if (isa<loc::MemRegionVal>(L))
if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
return StoreRef(removeBinding(GetRegionBindings(store),
R).getRootWithoutRetain(),
*this);
return StoreRef(store, *this);
}
StoreRef RegionStoreManager::Bind(Store store, Loc L, SVal V) {
if (isa<loc::ConcreteInt>(L))
return StoreRef(store, *this);
// If we get here, the location should be a region.
const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
// Check if the region is a struct region.
if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
QualType Ty = TR->getValueType();
if (Ty->isArrayType())
return BindArray(store, TR, V);
if (Ty->isStructureOrClassType())
return BindStruct(store, TR, V);
if (Ty->isVectorType())
return BindVector(store, TR, V);
}
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
// Binding directly to a symbolic region should be treated as binding
// to element 0.
QualType T = SR->getSymbol()->getType(Ctx);
// FIXME: Is this the right way to handle symbols that are references?
if (const PointerType *PT = T->getAs<PointerType>())
T = PT->getPointeeType();
else
T = T->getAs<ReferenceType>()->getPointeeType();
R = GetElementZeroRegion(SR, T);
}
// Clear out bindings that may overlap with this binding.
// Perform the binding.
RegionBindings B = GetRegionBindings(store);
B = removeSubRegionBindings(B, cast<SubRegion>(R));
BindingKey Key = BindingKey::Make(R, BindingKey::Direct);
return StoreRef(addBinding(B, Key, V).getRootWithoutRetain(), *this);
}
// FIXME: this method should be merged into Bind().
StoreRef RegionStoreManager::bindCompoundLiteral(Store ST,
const CompoundLiteralExpr *CL,
const LocationContext *LC,
SVal V) {
return Bind(ST, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)), V);
}
StoreRef RegionStoreManager::setImplicitDefaultValue(Store store,
const MemRegion *R,
QualType T) {
RegionBindings B = GetRegionBindings(store);
SVal V;
if (Loc::isLocType(T))
V = svalBuilder.makeNull();
else if (T->isIntegerType())
V = svalBuilder.makeZeroVal(T);
else if (T->isStructureOrClassType() || T->isArrayType()) {
// Set the default value to a zero constant when it is a structure
// or array. The type doesn't really matter.
V = svalBuilder.makeZeroVal(Ctx.IntTy);
}
else {
// We can't represent values of this type, but we still need to set a value
// to record that the region has been initialized.
// If this assertion ever fires, a new case should be added above -- we
// should know how to default-initialize any value we can symbolicate.
assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
V = UnknownVal();
}
return StoreRef(addBinding(B, R, BindingKey::Default,
V).getRootWithoutRetain(), *this);
}
StoreRef RegionStoreManager::BindArray(Store store, const TypedValueRegion* R,
SVal Init) {
const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
QualType ElementTy = AT->getElementType();
Optional<uint64_t> Size;
if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
Size = CAT->getSize().getZExtValue();
// Check if the init expr is a string literal.
if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
const StringRegion *S = cast<StringRegion>(MRV->getRegion());
// Treat the string as a lazy compound value.
nonloc::LazyCompoundVal LCV =
cast<nonloc::LazyCompoundVal>(svalBuilder.
makeLazyCompoundVal(StoreRef(store, *this), S));
return BindAggregate(store, R, LCV);
}
// Handle lazy compound values.
if (isa<nonloc::LazyCompoundVal>(Init))
return BindAggregate(store, R, Init);
// Remaining case: explicit compound values.
if (Init.isUnknown())
return setImplicitDefaultValue(store, R, ElementTy);
nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
uint64_t i = 0;
StoreRef newStore(store, *this);
for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
// The init list might be shorter than the array length.
if (VI == VE)
break;
const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
if (ElementTy->isStructureOrClassType())
newStore = BindStruct(newStore.getStore(), ER, *VI);
else if (ElementTy->isArrayType())
newStore = BindArray(newStore.getStore(), ER, *VI);
else
newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
}
// If the init list is shorter than the array length, set the
// array default value.
if (Size.hasValue() && i < Size.getValue())
newStore = setImplicitDefaultValue(newStore.getStore(), R, ElementTy);
return newStore;
}
StoreRef RegionStoreManager::BindVector(Store store, const TypedValueRegion* R,
SVal V) {
QualType T = R->getValueType();
assert(T->isVectorType());
const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
// Handle lazy compound values and symbolic values.
if (isa<nonloc::LazyCompoundVal>(V) || isa<nonloc::SymbolVal>(V))
return BindAggregate(store, R, V);
// We may get non-CompoundVal accidentally due to imprecise cast logic or
// that we are binding symbolic struct value. Kill the field values, and if
// the value is symbolic go and bind it as a "default" binding.
if (!isa<nonloc::CompoundVal>(V)) {
return BindAggregate(store, R, UnknownVal());
}
QualType ElemType = VT->getElementType();
nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
unsigned index = 0, numElements = VT->getNumElements();
StoreRef newStore(store, *this);
for ( ; index != numElements ; ++index) {
if (VI == VE)
break;
NonLoc Idx = svalBuilder.makeArrayIndex(index);
const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
if (ElemType->isArrayType())
newStore = BindArray(newStore.getStore(), ER, *VI);
else if (ElemType->isStructureOrClassType())
newStore = BindStruct(newStore.getStore(), ER, *VI);
else
newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
}
return newStore;
}
StoreRef RegionStoreManager::BindStruct(Store store, const TypedValueRegion* R,
SVal V) {
if (!Features.supportsFields())
return StoreRef(store, *this);
QualType T = R->getValueType();
assert(T->isStructureOrClassType());
const RecordType* RT = T->getAs<RecordType>();
RecordDecl *RD = RT->getDecl();
if (!RD->isCompleteDefinition())
return StoreRef(store, *this);
// Handle lazy compound values and symbolic values.
if (isa<nonloc::LazyCompoundVal>(V) || isa<nonloc::SymbolVal>(V))
return BindAggregate(store, R, V);
// We may get non-CompoundVal accidentally due to imprecise cast logic or
// that we are binding symbolic struct value. Kill the field values, and if
// the value is symbolic go and bind it as a "default" binding.
if (V.isUnknown() || !isa<nonloc::CompoundVal>(V))
return BindAggregate(store, R, UnknownVal());
nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
RecordDecl::field_iterator FI, FE;
StoreRef newStore(store, *this);
for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
if (VI == VE)
break;
// Skip any unnamed bitfields to stay in sync with the initializers.
if (FI->isUnnamedBitfield())
continue;
QualType FTy = FI->getType();
const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
if (FTy->isArrayType())
newStore = BindArray(newStore.getStore(), FR, *VI);
else if (FTy->isStructureOrClassType())
newStore = BindStruct(newStore.getStore(), FR, *VI);
else
newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(FR), *VI);
++VI;
}
// There may be fewer values in the initialize list than the fields of struct.
if (FI != FE) {
RegionBindings B = GetRegionBindings(newStore.getStore());
B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false));
newStore = StoreRef(B.getRootWithoutRetain(), *this);
}
return newStore;
}
StoreRef RegionStoreManager::BindAggregate(Store store, const TypedRegion *R,
SVal Val) {
// Remove the old bindings, using 'R' as the root of all regions
// we will invalidate. Then add the new binding.
RegionBindings B = GetRegionBindings(store);
B = removeSubRegionBindings(B, R);
B = addBinding(B, R, BindingKey::Default, Val);
return StoreRef(B.getRootWithoutRetain(), *this);
}
//===----------------------------------------------------------------------===//
// "Raw" retrievals and bindings.
//===----------------------------------------------------------------------===//
RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K,
SVal V) {
const MemRegion *Base = K.getBaseRegion();
const ClusterBindings *ExistingCluster = B.lookup(Base);
ClusterBindings Cluster = (ExistingCluster ? *ExistingCluster
: CBFactory.getEmptyMap());
ClusterBindings NewCluster = CBFactory.add(Cluster, K, V);
return RBFactory.add(B, Base, NewCluster);
}
RegionBindings RegionStoreManager::addBinding(RegionBindings B,
const MemRegion *R,
BindingKey::Kind k, SVal V) {
return addBinding(B, BindingKey::Make(R, k), V);
}
const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) {
const ClusterBindings *Cluster = B.lookup(K.getBaseRegion());
if (!Cluster)
return 0;
return Cluster->lookup(K);
}
const SVal *RegionStoreManager::lookup(RegionBindings B,
const MemRegion *R,
BindingKey::Kind k) {
return lookup(B, BindingKey::Make(R, k));
}
RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
BindingKey K) {
const MemRegion *Base = K.getBaseRegion();
const ClusterBindings *Cluster = B.lookup(Base);
if (!Cluster)
return B;
ClusterBindings NewCluster = CBFactory.remove(*Cluster, K);
if (NewCluster.isEmpty())
return RBFactory.remove(B, Base);
return RBFactory.add(B, Base, NewCluster);
}
RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
const MemRegion *R,
BindingKey::Kind k){
return removeBinding(B, BindingKey::Make(R, k));
}
RegionBindings RegionStoreManager::removeCluster(RegionBindings B,
const MemRegion *Base) {
return RBFactory.remove(B, Base);
}
//===----------------------------------------------------------------------===//
// State pruning.
//===----------------------------------------------------------------------===//
namespace {
class removeDeadBindingsWorker :
public ClusterAnalysis<removeDeadBindingsWorker> {
SmallVector<const SymbolicRegion*, 12> Postponed;
SymbolReaper &SymReaper;
const StackFrameContext *CurrentLCtx;
public:
removeDeadBindingsWorker(RegionStoreManager &rm,
ProgramStateManager &stateMgr,
RegionBindings b, SymbolReaper &symReaper,
const StackFrameContext *LCtx)
: ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
/* includeGlobals = */ false),
SymReaper(symReaper), CurrentLCtx(LCtx) {}
// Called by ClusterAnalysis.
void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
void VisitCluster(const MemRegion *baseR, const ClusterBindings &C);
void VisitBindingKey(BindingKey K);
bool UpdatePostponed();
void VisitBinding(SVal V);
};
}
void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
const ClusterBindings &C) {
if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
if (SymReaper.isLive(VR))
AddToWorkList(baseR, &C);
return;
}
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
if (SymReaper.isLive(SR->getSymbol()))
AddToWorkList(SR, &C);
else
Postponed.push_back(SR);
return;
}
if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
AddToWorkList(baseR, &C);
return;
}
// CXXThisRegion in the current or parent location context is live.
if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
const StackArgumentsSpaceRegion *StackReg =
cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
const StackFrameContext *RegCtx = StackReg->getStackFrame();
if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))
AddToWorkList(TR, &C);
}
}
void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
const ClusterBindings &C) {
for (ClusterBindings::iterator I = C.begin(), E = C.end(); I != E; ++I) {
VisitBindingKey(I.getKey());
VisitBinding(I.getData());
}
}
void removeDeadBindingsWorker::VisitBinding(SVal V) {
// Is it a LazyCompoundVal? All referenced regions are live as well.
if (const nonloc::LazyCompoundVal *LCS =
dyn_cast<nonloc::LazyCompoundVal>(&V)) {
const MemRegion *LazyR = LCS->getRegion();
RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
// FIXME: This should not have to walk all bindings in the old store.
for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
const ClusterBindings &Cluster = RI.getData();
for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
CI != CE; ++CI) {
BindingKey K = CI.getKey();
if (const SubRegion *BaseR = dyn_cast<SubRegion>(K.getRegion())) {
if (BaseR == LazyR)
VisitBinding(CI.getData());
else if (K.hasSymbolicOffset() && BaseR->isSubRegionOf(LazyR))
VisitBinding(CI.getData());
}
}
}
return;
}
// If V is a region, then add it to the worklist.
if (const MemRegion *R = V.getAsRegion()) {
AddToWorkList(R);
// All regions captured by a block are also live.
if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
E = BR->referenced_vars_end();
for ( ; I != E; ++I)
AddToWorkList(I.getCapturedRegion());
}
}
// Update the set of live symbols.
for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
SI!=SE; ++SI)
SymReaper.markLive(*SI);
}
void removeDeadBindingsWorker::VisitBindingKey(BindingKey K) {
const MemRegion *R = K.getRegion();
// Mark this region "live" by adding it to the worklist. This will cause
// use to visit all regions in the cluster (if we haven't visited them
// already).
if (AddToWorkList(R)) {
// Mark the symbol for any live SymbolicRegion as "live". This means we
// should continue to track that symbol.
if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
SymReaper.markLive(SymR->getSymbol());
}
}
bool removeDeadBindingsWorker::UpdatePostponed() {
// See if any postponed SymbolicRegions are actually live now, after
// having done a scan.
bool changed = false;
for (SmallVectorImpl<const SymbolicRegion*>::iterator
I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) {
if (SymReaper.isLive(SR->getSymbol())) {
changed |= AddToWorkList(SR);
*I = NULL;
}
}
}
return changed;
}
StoreRef RegionStoreManager::removeDeadBindings(Store store,
const StackFrameContext *LCtx,
SymbolReaper& SymReaper) {
RegionBindings B = GetRegionBindings(store);
removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
W.GenerateClusters();
// Enqueue the region roots onto the worklist.
for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
E = SymReaper.region_end(); I != E; ++I) {
W.AddToWorkList(*I);
}
do W.RunWorkList(); while (W.UpdatePostponed());
// We have now scanned the store, marking reachable regions and symbols
// as live. We now remove all the regions that are dead from the store
// as well as update DSymbols with the set symbols that are now dead.
for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
const MemRegion *Base = I.getKey();
// If the cluster has been visited, we know the region has been marked.
if (W.isVisited(Base))
continue;
// Remove the dead entry.
B = removeCluster(B, Base);
if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
SymReaper.maybeDead(SymR->getSymbol());
// Mark all non-live symbols that this binding references as dead.
const ClusterBindings &Cluster = I.getData();
for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
CI != CE; ++CI) {
SVal X = CI.getData();
SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
for (; SI != SE; ++SI)
SymReaper.maybeDead(*SI);
}
}
return StoreRef(B.getRootWithoutRetain(), *this);
}
//===----------------------------------------------------------------------===//
// Utility methods.
//===----------------------------------------------------------------------===//
void RegionStoreManager::print(Store store, raw_ostream &OS,
const char* nl, const char *sep) {
RegionBindings B = GetRegionBindings(store);
OS << "Store (direct and default bindings), "
<< (void*) B.getRootWithoutRetain()
<< " :" << nl;
for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
const ClusterBindings &Cluster = I.getData();
for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
CI != CE; ++CI) {
OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
}
OS << nl;
}
}